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Abstract: It is well established that classical one-parameter distributions lack the flexibility to model
the characteristics of a complex random phenomenon. This fact motivates clever generalizations
of these distributions by applying various mathematical schemes. In this paper, we contribute in
extending the one-parameter length-biased Maxwell distribution through the famous Marshall–Olkin
scheme. We thus introduce a new two-parameter lifetime distribution called the Marshall–Olkin
length-biased Maxwell distribution. We emphasize the pliancy of the main functions, strong
stochastic order results and versatile moments measures, including the mean, variance, skewness
and kurtosis, offering more possibilities compared to the parental length-biased Maxwell distribution.
The statistical characteristics of the new model are discussed on the basis of the maximum likelihood
estimation method. Applications to simulated and practical data sets are presented. In particular,
for five referenced data sets, we show that the proposed model outperforms five other comparable
models, also well known for their fitting skills.

Keywords: length-biased Maxwell distribution; moments; maximum likelihood estimation;
data analysis
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1. Introduction

The Maxwell (M) distribution, also called Maxwell–Boltzmann distribution, is a classical
one-parameter distribution, finding numerous applications in engineering, physics, chemistry and
reliability. Formerly, it appears in statistical mechanics, corresponding to the distribution of the speed
of molecules in a gas. Mathematically, the M distribution with parameter α > 0 is specified by the
following cumulative distribution function (cdf):

FM(x; α) = erf
(

x√
2α

)
−
√

2
π

1
α

xe−x2/(2α2), x > 0,

and FM(x; α) = 0 for x ≤ 0, where erf(x) = (2/
√

π)
∫ x

0 e−t2
dt is the standard error function.

The corresponding probability density function (pdf) is obtained as

fM(x; α) =

√
2
π

1
α3 x2e−x2/(2α2), x > 0,

and fM(x; α) = 0 for x ≤ 0. Historically, the parameter α connected with the Boltzmann constant
(k), the temperature of the gas (T) and the mass of a molecule (m) through the following formula:
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α =
√

kT/m. Beyond the previous use, many studies have shown the interest of the M distribution,
both from a theoretical and statistical point of view. We refer the reader to [1–8].

However, like most one-parameter distributions, the M distribution is not suitable to model
certain lifetime phenomena. This is especially true for those with highly biased right distributed values
or any other type of left skewed distributed values. For this reason, some extensions were developed by
applying diverse notorious schemes. We may refer to those presented in [9–12]. In particular, Modi [11]
and Saghir [12] proposed to extend the M distribution through the use of the length-biased scheme,
introducing the length-biased Maxwell (LBM) distribution with parameter α > 0. The corresponding
cdf is

FLBM(x; α) = 1− e−x2/(2α2)

(
1 +

x2

2α2

)
, x > 0,

and FLBM(x; α) = 0 for x ≤ 0, and the pdf is expressed as

fLBM(x; α) =
1

2α4 x3e−x2/(2α2), x > 0,

and fLBM(x; α) = 0 for x ≤ 0. This pdf is defined such that fLBM(x; α) = x fM(x; α)/µM,
where µM =

∫ +∞
0 x fM(x; α)dx. It is proven that the LBM model offers an interesting alternative to

the M model on certain aspects, while keeping the simplicity of one-parameter adjustment. The merits
of the LBM distribution are discussed in more detail in [11–14]. For these reasons, the LBM distribution
is a candidate to be at the top of the list of useful one-parameter lifetime distributions, alongside the
exponential distribution, Rayleigh distribution, Maxwell distribution, Lindley distribution by [15],
Shanker distribution by [16], length-biased exponential (LBE) distribution introduced by [17] and the
distribution for instantaneous failures proposed by [18], to name a few.

As a new remark, the LBM distribution can be viewed as a special power version of the LBE
distribution, the LBE distribution being defined by the following cdf:

FLBE(x; γ) = 1− e−x/γ

(
1 +

x
γ

)
, x > 0,

and FLBM(x; γ) = 0 for x ≤ 0, where γ > 0 denotes the related parameter. More precisely, if X
denotes a random variable following the LBE distribution with parameter 2α2, then

√
X follows the

LBM distribution with parameter α. This remark combined with recent developments on the LBE
distribution inspired this study. In particular, Haq [19] proposed to extend the LBE distribution
through the famous Marshall–Olkin scheme established by [20]. Then, it is proven that the ratio
transform and the additional tuning parameter of the Marshall–Olkin scheme extend the perspectives
of applications of the former LBE distribution. More precisely, Haq [19] introduced the Marshall–Olkin
length-biased exponential (MOLBE) distribution defined by following cdf:

FMOLBE(x; γ, β) =
FLBE(x; γ)

1− (1− β)[1− FLBE(x; γ)]
, x ∈ R,

where β > 0 is an additional parameter. In some senses, the MOLBE corrects the lack of flexibility in
skewness and kurtosis of the LBE distribution. As a consequence, it demonstrates a more adequate fit
to the LBE distribution for various data sets.

In this study, based on the link between the LBE and LBM distributions and the successful strategy
of [19], we seek to apply the Marshall–Olkin scheme for the LBM distribution. We thus introduce the
Marshall–Olkin LBM (MOLBM) distribution, defined with the following cdf:

FMOLBM(x; α, β) =
FLBM(x; α)

1− (1− β)[1− FLBM(x; α)]
, x ∈ R,
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where β > 0. Explicitly, for x > 0, we have

FMOLBM(x; α, β) =
1− e−x2/(2α2)

(
1 + x2/(2α2)

)
1− (1− β)e−x2/(2α2) (1 + x2/(2α2))

. (1)

We investigate the basics of the MOLBM distribution, defining the corresponding pdf, survival
function (sf), hazard rate function (hrf) and quantile function (qf). Then, we analyze the shape
properties of the pdf and hrf, showing that they are more pliant than the corresponding pdf and hrf
of the LBM distribution. In particular, we show that the pdf can be skewed to the right or to the left,
with wide variations on the kurtosis. Strong compounding and stochastic dominance results are proven,
revealing some hierarchy between the pdfs and hrfs of the MOLBM and LBM distributions, mainly
depending on β. We perform a moment analysis of the new distribution by providing theoretical
and numerical results. The versatility of the skewness and kurtosis is emphasized. We define the
incomplete moments and some related functions having possible applications in lifetime analysis.
Then, the statistical side of the MOLBM distribution is explored through the use of the maximum
likelihood method. A simulation work provides some guarantee of convergence of the related estimates.
Then, the new model is applied to fit five practical data sets. As a notable result, it outperforms the fit
behavior of five well-referenced models based on the following reputed criteria: Akaike information
criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information criterion (BIC)
and Hannan–Quinn information criterion (HQIC), and based on the following well-known goodness
of fit measures as well: Anderson–Darling (A∗), Cramer-von Mises (W∗), Kolmogorov–Smirnov (KS)
and its p-value.

The structure of the paper is as follows. Section 2 is devoted to the fundamental functions of the
MOLBM distribution. The stochastic and moments properties are examined in Section 3. Estimation of
the model parameters is discussed in Section 4. Section 5 contains our data analyzes. The paper ends
with concluding notes in Section 6.

2. Basics of the MOLBM Distribution

The fundamental functions of the MOLBM distribution are now derived and analyzed.

2.1. Useful Functions

Hereafter, we recall that the MOLBM distribution is defined with the cdf FMOLBM(x; α, β) specified
by (1) for x > 0, and FMOLBM(x; α, β) = 0 for x ≤ 0. The pdf of the MOLBM distribution is obtained as

fMOLBM(x; α, β) =
βx3e−x2/(2α2)

2α4
[
1− (1− β)e−x2/(2α2) (1 + x2/(2α2))

]2 , x > 0, (2)

and fMOLBM(x; α, β) = 0 for x ≤ 0. The analytical behavior of this function is essential to understand
the tuning capability of the MOLBM model.

As a key reliability function, the sf is obtained as

SMOLBM(x; α, β) =
βe−x2/(2α2)

(
1 + x2/(2α2)

)
1− (1− β)e−x2/(2α2) (1 + x2/(2α2))

, x > 0,

and SMOLBM(x; α, β) = 1 for x ≤ 0.
The hrf is given by

hMOLBM(x; α, β) =
x3

2α4
[
1− (1− β)e−x2/(2α2) (1 + x2/(2α2))

]
(1 + x2/(2α2))

, x > 0, (3)
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and hMOLBM(x; α, β) = 0 for x ≤ 0. The possible shapes of this function are particularly informative
on the fit behavior of the MOLBM model. See [21].

The qf of the MOLBM distribution is quite manageable; it is given by

QMOLBM(y; α, β) = α

(
−2
{

W
[

e−1
(

y− 1
1− (1− β)y

)]
+ 1
})1/2

, y ∈ (0, 1), (4)

where W(x) denotes the Lambert function satisfying the following equation: W(x)eW(x) = x.
Thanks to this function, the quartiles can be defined. In particular, the median is given as

M = α
(
−2
{

W
[
−e−1(1 + β)−1]+ 1

})1/2. The qf can also serve in various procedures allowing
the generation of values from the MOLBM distribution.

2.2. Analysis of fMOLBM(x; α, β)

Based on (2), some analytical facts about fMOLBM(x; α, β) are now discussed. First, we have
fMOLBM(0; α, β) = 0 with fMOLBM(x; α, β) ∼ x3/(2α4β) when x → 0. In addition,
we have fMOLBM(x; α, β) → 0 when x → +∞, along with the following equivalence:
fMOLBM(x; α, β) ∼ βx3e−x2/(2α2)/(2α4). Hence, the convergence to 0 is with a polynomial-exponential
decay. Let us now discuss the maximum(s) and possible shapes of fMOLBM(x; α, β) through a graphical
analysis. In this aim, several curves of fMOLBM(x; α, β) are shown in Figure 1 for diverse values of α and β.
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Figure 1. Curves of the pdf of the Marshall–Olkin length-biased Maxwell (MOLBM) distribution for
different values of the parameters.

This figure shows that the pdf of the MOLBM distribution has many shape possibilities; it can be
bell shaped, right-skewed, left-skewed with all types of peakedness and with various weights on the
tails. These combined qualities are rare for a lifetime distribution.

2.3. Analysis of hMOLBM(x; α, β)

Here, we focus on hMOLBM(x; α, β). From (3), it is clear that hMOLBM(0; α, β) = 0, along with
the following equivalence: hMOLBM(x; α, β) ∼ x3/(2α4β) when x → 0. In addition, we have
hMOLBM(x; α, β) → +∞ when x → +∞, with hMOLBM(x; α, β) ∼ x/α2. Let us now investigate
the mode and possible shapes of hMOLBM(x; α, β) through a graphical analysis. In this regard, several
curves of hMOLBM(x; α, β) are displayed in Figure 2.
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Figure 2. Curves of the hrf of the MOLBM distribution for different values of the parameters.

This figure shows that the hrf possesses increasing shapes, with concave and convex forms.

3. Compounding, Dominance and Moments

We now put the light on some interesting results involving the MOLBM distribution.

3.1. Compounding

The following theorem is about a compounding characterization of the MOLBM distribution.

Theorem 1. Let X and Y be two random variables such that X | {Y = y} has the following conditional sf:

S(x | y; α) = exp
{
−
[

ex2/(2α2)
(

1 + x2/(2α2)
)−1
− 1
]

y
}

, x > 0

and S(x | y; α) = 1 for x ≤ 0, with y > 0 and α > 0, and Y follows the exponential distribution with parameter
β > 0, i.e., with pdf fEx(y; β) = βe−βy for y > 0 and fEx(y; β) = 0 for y ≤ 0. Then, X follows the MOLBM
distribution with parameters α and β.

Proof. By the definition, the sf of X is obtained as

S(x; α, β) =
∫ +∞

0
S(x | y; α) fEx(y; β)dy

= β
∫ +∞

0
exp

{
−
[

ex2/(2α2)
(

1 + x2/(2α2)
)−1
− (1− β)

]
y
}

dy

= β
∫ +∞

0
exp

{
−
[

1− (1− β)e−x2/(2α2)
(
1 + x2/(2α2)

)
e−x2/(2α2) (1 + x2/(2α2))

]
y

}
dy

=
βe−x2/(2α2)

(
1 + x2/(2α2)

)
1− (1− β)e−x2/(2α2) (1 + x2/(2α2))

.

We recognize SMOLBM(x; α, β), ending the proof of Theorem 1.
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3.2. Stochastic Dominance

The following first-order stochastic dominance result holds.

Proposition 1. For any 0 < α1 ≤ α2, 0 ≤ β1 ≤ β2, and x ∈ R, we have

FMOLBM(x; α2, β2) ≤ FMOLBM(x; α1, β1).

Proof. This inequality is clear for x ≤ 0, the both cdfs being equal to 0. For x > 0, we have

∂

∂α
FMOLBM(x; α, β) = − 2βx4ex2/(2α2)

α
[
2α2(ex2/(2α2) + β− 1) + (β− 1)x2

]2 < 0

and

∂

∂β
FMOLBM(x; α, β) = −

e−x2/(2α2)
(
1 + x2/(2α2)

) [
1− e−x2/(2α2)

(
1 + x2/(2α2)

)]
[
1− (1− β)e−x2/(2α2) (1 + x2/(2α2))

]2 < 0.

Therefore, FMOLBM(x; α, β) is a decreasing function with respect to α and β, proving the
desired result.

In particular, since FMOLBM(x; α, 1) = FLBM(x; α), Proposition 1 implies the following first-order
stochastic dominance related to the MOLBM and LBM distributions: For β ∈ (0, 1), we have
FLBM(x; α) ≤ FMOLBM(x; α, β), and for β ≥ 1, FMOLBM(x; α, β) ≤ FLBM(x; α).

The MOLBM distribution also enjoys a strong hazard rate dominance, formulated in the
next result.

Proposition 2. For any 0 ≤ β1 ≤ β2 and x ∈ R, we have

hMOLBM(x; α, β2) ≤ hMOLBM(x; α, β1).

Proof. This inequality is clear for x ≤ 0, the both hrfs being equal to 0. For x > 0, we have

∂

∂β
hMOLBM(x; α, β) = − x3e−x2/(2α2)

2α4
[
1− (1− β)e−x2/(2α2) (1 + x2/(2α2))

]2 < 0.

Therefore, hMOLBM(x; α, β) is a decreasing function with respect to β, proving the desired result.

In particular, since hMOLBM(x; α, 1) corresponds to the hazard rate function of the LBM
distribution denoted by hLBM(x; α), the following hazard rate dominance result holds: For β ∈ (0, 1),
we have hLBM(x; α) ≤ hMOLBM(x; α, β), and for β ≥ 1, hMOLBM(x; α, β) ≤ hLBM(x; α).

All the above results demonstrate the power of β in the pliancy of the MOLBM distribution
in comparison to the classic LBM distribution. For further results about the first-order stochastic
dominance, we refer the reader to [22].

3.3. Moments

Hereafter, we work with a random variable X following the MOLBM distribution with parameters
α > 0 and β > 0. Then, for any integer s, the sth moment of X is obtained as

θs = E(Xs) =
∫ +∞

0
xs fMOLBM(x; α, β)dx,
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where E denotes the expectation. Thanks to the obtained equivalences functions of fMOLBM(x; α, β) at
x → 0 and x → +∞, owing to the Riemann integral criteria, θs exists in the integral convergence sense.

However, in view of the complexity of fMOLBM(x; α, β), there is no simple analytical expression
for θs. From a computational point of view, numerical integration techniques can be employed to
evaluate it through the use of mathematical software. A more transparency, direct and analytical
approach consists in providing series expansion for θs. A such expansion is given in the following
result for the case β ∈ (0, 1) through the use of the gamma function defined by Γ(a) =

∫ +∞
0 ta−1e−tdt

with a > 0.

Proposition 3. For β ∈ (0, 1), we have

θs = β2s/2αs
+∞

∑
k=0

k

∑
`=0

(
k
`

)
(1− β)k

(k + 1)s/2+`+1 Γ
( s

2
+ `+ 2

)
.

Proof. In the case β ∈ (0, 1), we have (1 − β)e−x2/(2α2)
(
1 + x2/(2α2)

)
∈ (0, 1). By applying

the geometric series formula, followed by the classic binomial formula, a series expansion of
fMOLBM(x; α, β) is given as

fMOLBM(x; α, β) =
βx3e−x2/(2α2)

2α4

{
+∞

∑
k=0

(k + 1)(1− β)ke−kx2/(2α2)

(
1 +

x2

2α2

)k}

=
βx3e−x2/(2α2)

2α4

{
+∞

∑
k=0

k

∑
`=0

(
k
`

)
(k + 1)(1− β)ke−kx2/(2α2) x2`

(2α2)`

}

=
+∞

∑
k=0

k

∑
`=0

uk,`

[
x2`+3e−(k+1)x2/(2α2)

]
, uk,` =

β

2`+1α2`+4

(
k
`

)
(k + 1)(1− β)k.

Now, by the dominated convergence theorem, we get

θs =
+∞

∑
k=0

k

∑
`=0

uk,`Υk,`|s, Υk,`|s =
∫ +∞

0
xs+2`+3e−(k+1)x2/(2α2)dx.

By applying the change of variable y = (k + 1)x2/(2α2) and introducing the well-known gamma
function, we can express Υk,`|s as

Υk,`|s =
2s/2+`+1αs+2`+4

(k + 1)s/2+`+2

∫ +∞

0
ys/2+`+1e−ydy =

2s/2+`+1αs+2`+4

(k + 1)s/2+`+2 Γ
( s

2
+ `+ 2

)
. (5)

Therefore, by putting the previous equalities together, we get

θs = β2s/2αs
+∞

∑
k=0

k

∑
`=0

(
k
`

)
(1− β)k

(k + 1)s/2+`+1 Γ
( s

2
+ `+ 2

)
.

This ends the proof of Proposition 3.

From Proposition 3, it is clear that θs is an increasing function with respect to α.
The case β = 1, corresponding to the classic LBM distribution, can be found in [12]. From this

reference, the following formula is reported:

θs = 2s/2αsΓ
( s

2
+ 2
)

.

The next result discusses a series expansion for θs in the case β > 1, demanding another strategy
of proof.
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Proposition 4. For β > 1, we have

θs =
2s/2αs

β

+∞

∑
k=0

k

∑
`=0

`

∑
m=0

(
k
`

)(
`

m

)
(k + 1)

(1− 1/β)k (−1)`

(`+ 1)s/2+m+2 Γ
( s

2
+ m + 2

)
.

Proof. In the case β > 1, in view of using some generic formula, we need to re-express fMOLBM(x; α, β).
In this regard, for x > 0, we have

fMOLBM(x; α, β) =
x3e−x2/(2α2)

2α4β
{

1− (1− 1/β)
[
1− e−x2/(2α2) (1 + x2/(2α2))

]}2 .

Now, let us notice that (1− 1/β)
[
1− e−x2/(2α2)

(
1 + x2/(2α2)

)]
∈ (0, 1). By applying the geometric

series formula, followed by the classic binomial formula two times in a row, the following series
expansion of fMOLBM(x; α, β) holds:

fMOLBM(x; α, β) =
x3e−x2/(2α2)

2α4β

{
+∞

∑
k=0

(k + 1)
(

1− 1
β

)k [
1− e−x2/(2α2)

(
1 +

x2

2α2

)]k}

=
x3e−x2/(2α2)

2α4β

{
+∞

∑
k=0

k

∑
`=0

`

∑
m=0

(
k
`

)(
`

m

)
(k + 1)

(
1− 1

β

)k
(−1)`e−`x2/(2α2) x2m

(2α2)m

}

=
+∞

∑
k=0

k

∑
`=0

`

∑
m=0

vk,`,m

[
x2m+3e−(`+1)x2/(2α2)

]
,

where

vk,`,m =
1

β2m+1α2m+4

(
k
`

)(
`

m

)
(k + 1)

(
1− 1

β

)k
(−1)`.

Now, by the dominated convergence theorem, we get

θs =
+∞

∑
k=0

k

∑
`=0

`

∑
m=0

vk,`,mΞ`,m|s, Ξ`,m|s =
∫ +∞

0
xs+2m+3e−(`+1)x2/(2α2)dx.

By proceeding as in (5), we arrive at

Ξ`,m|s =
2s/2+m+1αs+2m+4

(`+ 1)s/2+m+2

∫ +∞

0
ys/2+m+1e−ydy =

2s/2+m+1αs+2m+4

(`+ 1)s/2+m+2 Γ
( s

2
+ m + 2

)
.

Therefore, by putting the previous equalities together, we get

θs =
2s/2αs

β

+∞

∑
k=0

k

∑
`=0

`

∑
m=0

(
k
`

)(
`

m

)
(k + 1)

(1− 1/β)k (−1)`

(`+ 1)s/2+m+2 Γ
( s

2
+ m + 2

)
.

This ends the proof of Proposition 4.

From Proposition 4, as for the case β ∈ (0, 1), we can notice θs is an increasing function with
respect to α. By combining Propositions 3 and 4, we can derive a manageable approximation finite
sum expression of θs by substituting the infinite limits by large integers. From the computational point
of view, such series approximation can be more precise than direct integral approximation techniques
from the initial definition of θs.
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Remark 1. One can show that E(Xυ) exists provided υ > −4, allowing the consideration of some negative
moments for X. The sth negative moment being defined by

θ−s = E(X−s) =
∫ +∞

0
x−s fMOLBM(x; α, β)dx.

Therefore, for s = 1, 2 and 3, θ−s can be expressed as θs in Propositions 3 and 4 by putting −s instead of s in the
series expansions.

The moments of X include the mean of X corresponding to θ1. The variance of X is obtained
by the standard Koenig–Huygens formula: V = θ2 − θ2

1 . In addition, the sth central moment of X is
obtained as

θo
s = E((X− θ1)

s) =
s

∑
`=0

(
s
`

)
(−1)s−`θs−`

1 θ`.

From this central moment, we can define the sth general coefficient of X by Gs = θo
s /Vs/2.

The coefficients of asymmetry and kurtosis of X are given as G3 and G4, respectively.
Table 1 indicates numerical values for moments (standard and negative), asymmetry and kurtosis

of the MOLBM distribution for selected values of parameters α and β.

Table 1. Numerical values for moments, asymmetry and kurtosis of the MOLBM distribution for
selected values of the parameters.

(α, β) θ1 (θ−1 ) θ2(θ−2 ) θ3 (θ−3 ) θ4 V G3 G4

(0.005, 100) 0.0184 0.0008 1.01×10−6 1.3×10−8 0.0005 −2.9011 5.0819
(57.1350) (4528.16) (274,453)

(0.05, 20) 0.1524 0.0243 0.0039 0.0006 0.0010 −1.6821 27.7787
(7.0120) (55.3985) (598.8584)

(75, 25) 234.5479 57,449.4207 14,572,745 3,783,926,248 2436.636 −0.3737 −0.7699
(0.0045) (0.00002) (1.5×10−7)

(0.5, 2) 1.0757 1.2802 1.6493 2.2691 0.1230 0.1693 2.9014
(1.0693) (1.4253) (2.9580)

(15, 0.5) 14.1882 311.9162 8183.9644 246,252 110.6081 0.5327 3.0209
(0.0765) (0.0008) (0.0001)

(20, 0.05) 5.9051 126.1360 3444.8536 115,297 91.2657 1.8604 6.8036
(0.0389) (0.0020) (0.0004)

(100, 0.005) 7.0709 532.4942 57,231.6903 8,346,402.62 482.4955 4.4009 29.5526
(0.0047) (0.00001) (9.4183×10−7)

From this table, we see wide variations in the values of the mean, the other moments and negatives
moments. The variance can be small or large. In addition, the MOLBM distribution can have G3 < 0 or
G3 > 0, revealing the versatile nature of its skewness. The same remark holds for the kurtosis; we have
G4 < 3, G4 ≈ 3 or G4 > 3, showing that the MOLBM distribution can be platykurtic, mesokurtic or
leptokurtic, respectively.

3.4. Incomplete Moments

Let t ≥ 0 and I(X ≤ t) be the indicator random variable over the event {X ≤ t}, that is
I(X ≤ t) = 1 if {X ≤ t} realized, and 0 otherwise. Then, for any integer s, the sth incomplete moment
of X at t exists and it is obtained as

θs(t) = E(Xs I(X ≤ t)) =
∫ t

0
xs fMOLBM(x; α, β)dx.
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An analytical expression for θs(t) is not expected, but numerical integration techniques can be
considered. Alternatively, we can express it as in Propositions 3 and 4 through the use of the lower
incomplete gamma function defined by γ(a, x) =

∫ x
0 ta−1e−tdt with a > 0 and t ≥ 0. The proposition

below formalizes this expression, according to β ∈ (0, 1), β = 1 and β > 1.

Proposition 5. The following expansions for θs(t) hold:

• For β ∈ (0, 1), we have

θs(t) = β2s/2αs
+∞

∑
k=0

k

∑
`=0

(
k
`

)
(1− β)k

(k + 1)s/2+`+1 γ

(
s
2
+ `+ 2,

k + 1
2α2 t2

)
.

• For β = 1, we have

θs(t) = 2s/2αsγ

(
s
2
+ 2,

t2

2α2

)
.

• For β > 1, we have

θs(t) =
2s/2αs

β

+∞

∑
k=0

k

∑
`=0

`

∑
m=0

(
k
`

)(
`

m

)
(k + 1)

(1− 1/β)k (−1)`

(`+ 1)s/2+m+2 γ

(
s
2
+ m + 2,

`+ 1
2α2 t2

)
.

The proof of Proposition 5 follows the lines of Propositions 3 and 4, just an adjustment of the
upper bound in the integral needs special treatment according to the respective changes of variables.
For this reason, the detailed proof is omitted.

By applying t → +∞, we rediscover the sth moment of X. Several related quantities can be
derived from ms(t), such as the mean deviation about the mean defined by

δ = E(|X− θ1|) =
∫ +∞

0
|x− θ1| fMOLBM(x; α, β)dx = 2θ1FMOLBM(θ1; α, β)− 2θ1(θ1),

where θ1(θ1) denotes the first incomplete moment of X taken at t = θ1. As a second famous example,
one can discuss the reversed residual life of X defined by

Φs(t) = E((t− X)s I(X ≤ t)) =
1

FMOLBM(t; α, β)

∫ t

0
(t− x)s fMOLBM(x; α, β)dx,

where, by the classic binomial formula, the integral term can be developed as

∫ t

0
(t− x)s fMOLBM(x; α, β)dx =

s

∑
k=0

(
s
k

)
ts−k(−1)kθk(t).

We thus have a generic expression for Φs(t) according to the incomplete moments, from which we can
deduce the mean waiting time of X by taking s = 1. Similarly, the variance and coefficient of variation
of the reversed residual life of X can be defined from Φ1(t) and Φ2(t). More details are provided
in [23].

4. Estimation

In view of exploring the fitting behavior of the MOLBM model, we discuss the estimation of the
parameters via the famous maximum likelihood method.
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4.1. Estimates

Let x1, . . . , xn be n values distributed from the MOLBM distribution with parameters α > 0 and
β > 0. We now assume that α and β are unknown, and seek to estimate them via x1, . . . , xn. In this
regard, the maximum likelihood approach is considered. The likelihood function of α and β based on
x1, . . . , xn is given by

L(α, β) =
n

∏
i=1

fMOLBM(xi; α, β)

=
βn (∏n

i=1 x3
i
)

e−[1/(2α2)]∑n
i=1 x2

i

2nα4n ∏n
i=1

[
1− (1− β)e−x2

i /(2α2)
(
1 + x2

i /(2α2)
)]2 ,

from which we deduce the log-likelihood function obtained as

`(α, β) = n log β− n log 2− 4n log α + 3
n

∑
i=1

log xi −
1

2α2

n

∑
i=1

x2
i

− 2
n

∑
i=1

log

[
1− (1− β)e−x2

i /(2α2)

(
1 +

x2
i

2α2

)]
.

The maximum likelihood estimates (MLEs) of α and β are defined by

(α̂, β̂) = argmax(α,β)∈(0,+∞)2 `(α, β),

assuming that there are uniques. That is, α̂ and β̂ satisfy the score equations corresponding to
∂`(α, β)/∂α |α=α̂,β=β̂= 0, that is

−4n
α

+
1
α3

n

∑
i=1

x2
i −

β− 1
α5

n

∑
i=1

x4
i e−x2

i /(2α2)

1− (1− β)e−x2
i /(2α2)

(
1 + x2

i /(2α2)
)
∣∣∣∣∣
α=α̂,β=β̂

= 0,

and ∂`(α, β)/∂β |α=α̂,β=β̂= 0, that is

n
β
− 2

n

∑
i=1

e−x2
i /(2α2)

(
1 + x2

i /(2α2)
)

1− (1− β)e−x2
i /(2α2)

(
1 + x2

i /(2α2)
)
∣∣∣∣∣
α=α̂,β=β̂

= 0.

The mathematical expressions of α̂ and β̂ depending x1, . . . , xn are not available. However,
their numerical values can be determined via statistical softwares. Theoretical results guarantee the
convergence of the MLEs in several senses, including the following desirable asymptotic normality.
Under some smoothness conditions, we have (α̂, β̂) ∼ N2((α, β), C), where

C =

(
c1,1(α, β) c1,2(α, β)

c2,1(α, β) c2,2(α, β)

)−1

,

c1,1(α, β) = − ∂2

∂α2 `(α, β), c2,2(α, β) = − ∂2

∂β2 `(α, β), c1,2(α, β) = c2,1(α, β) = − ∂2

∂α∂β
`(α, β).

From this result, the estimated standard errors (SEs) corresponding to α̂ and β̂ are, respectively, given as

SEα̂ =

√
c2,2(α, β)

∆(α, β)

∣∣∣∣∣
α=α̂,β=β̂

, SEβ̂ =

√
c1,1(α, β)

∆(α, β)

∣∣∣∣∣
α=α̂,β=β̂

,
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where ∆(α, β) = c2,2(α, β)c1,1(α, β)− c1,2(α, β)2. In addition, the maximum likelihood approach allows
us to define some criteria to compare the fit behavior of different models, such as the AIC, CAIC, BIC
and HQIC. In the case of the MOLBM model, they are defined by

AIC = −2 log L + 2k, CAIC = −2 log L +
2kn

n− k− 1
,

BIC = −2 log L + k log(n), HQIC = −2 log L + 2k log(log(n)),

where − log L = −`(α̂, β̂) and k = 2 is the number of parameters. In the simulated and concrete
applications of this study, R will be used (see [24]).

4.2. Simulation

A Monte Carlo simulation study is conducted for the MOLBM model. The results are obtained
from 1000 Monte Carlo replications and the simulations are carried out using the statistical software
R. In each replication, a random sample of size 10, 20, 30, 50 and 100 is generated for different
combinations of α and β. The combination values of α and β are (0.75, 0.4), (0.75, 1.5), (0.5, 0.5),
(0.5, 1.5) and (1.2, 0.5). Tables 2–6 list the average MLEs, biases and the corresponding mean squared
errors (MSEs).

Table 2. Estimates, biases and mean squared errors (MSEs) for α = 0.75 and β = 0.4.

Sample Size (n) Parameters Estimates Biases MSEs

10 α 0.1975 −0.5524 0.4492
β 0.5397 0.1397 4.5310

20 α 0.2779 −0.4720 0.4652
β 0.3733 −0.0266 0.8851

30 α 0.3938 −0.3561 0.3993
β 0.3730 −0.0269 0.4443

50 α 0.5864 −0.1635 0.3541
β 0.4278 0.0278 0.2246

100 α 0.6157 −0.1342 0.1341
β 0.4081 0.0081 0.0979

Table 3. Estimates, biases and MSEs for α = 0.75 and β = 1.5.

Sample Size (n) Parameters Estimates Biases MSEs

10 α 0.7360 −0.0139 0.1338
β 7.1195 5.6195 433.1667

20 α 0.7461 −0.0038 0.1172
β 3.0168 1.5168 15.3585

30 α 0.7532 0.0032 0.0758
β 2.3176 0.8176 5.6637

50 α 0.7472 −0.0027 0.0070
β 1.9418 0.4418 1.9821

100 α 0.7489 −0.0010 0.0032
β 1.6727 0.1727 0.5373
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Table 4. Estimates, biases and MSEs for α = 0.5 and β = 0.5.

Sample Size (n) Parameters Estimates Biases MSEs

10 α 0.1231 −0.3768 0.2132
β 0.9647 0.4647 49.7625

20 α 0.4079 −0.0920 0.2659
β 0.9165 0.4165 6.2857

30 α 0.5026 0.0026 0.0735
β 0.9406 0.4406 1.1700

50 α 0.5025 0.0025 0.0376
β 0.7437 0.2437 0.3841

100 α 0.4987 −0.0012 0.0035
β 0.5992 0.0992 0.1135

Table 5. Estimates, biases and MSEs for α = 0.5 and β = 1.5.

Sample Size (n) Parameters Estimates Biases MSEs

10 α 0.4840 −0.01597 0.0325
β 6.3054 4.8054 385.5095

20 α 0.4975 −0.0024 0.0408
β 2.9662 1.4662 13.2258

30 α 0.4987 −0.0012 0.0230
β 2.3570 0.8570 5.2564

50 α 0.4988 −0.0011 0.0033
β 1.9295 0.4295 1.6671

100 α 0.4994 −0.0005 0.0014
β 1.6842 0.1842 0.5081

Table 6. Estimates, biases and MSEs for α = 1.2 and β = 0.5.

Sample Size (n) Parameters Estimates Biases MSEs

10 α 0.4919 −0.7080 1.3195
β 0.9573 0.4573 11.3779

20 α 1.2441 0.0441 0.9715
β 1.1786 0.6786 2.3047

30 α 1.2325 0.0325 0.6709
β 0.9305 0.4305 0.9875

50 α 1.2264 0.0264 0.3633
β 0.7026 0.2026 0.3233

100 α 1.2112 0.0112 0.0644
β 0.5868 0.0868 0.1046

The results in these tables reveal that the estimates are stable and relatively close to the true
parameter values for these sample sizes. In particular, as expected, the MSEs decrease as n increases
from 20.

5. Applications

In this section, we explore the potentiality of the new model with other five well known
competitive models which are the Marshall–Olkin length-biased exponential (MOLBE), Marshall–Olkin
extended Lindley (MOEL) (see [25]), generalized Rayleigh (GR) (see [26]), Weibull and length-biased
Maxwell (LBM) models. For the sake of transparency, the pdfs of these competitive models are
expressed below.
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The pdf of the MOLBE model is

fMOLBE(x; α, β) =
αxe−x/β

β2
[
1− (1− α)(1 + x/β)e−x/β

]2 , x > 0,

and fMOLBE(x; α, β) = 0 for x ≤ 0.
The pdf of the MOEL model is

fMOEL(x; α, β) =
αβ2(1 + x)e−βx

(β + 1)
[
1− (1− α)(1 + βx/(β + 1))e−βx

]2 , x > 0,

and fMOEL(x; α, β) = 0 for x ≤ 0.
The pdf of the GR model is

fGR(x; α, β) = 2αβ2xe−(βx)2
(

1− e−(βx)2
)α−1

, x > 0,

and fGR(x; α, β) = 0 for x ≤ 0.
The pdf of the Weibull model is

fWeibull(x; α, β) =
β

α

( x
α

)β−1
e−(x/α)β

, x > 0,

and fWeibull(x; α, β) = 0 for x ≤ 0.
The pdf of the LBM model is

fLBM(x; α) =
1

2α4 x3e−x2/(2α2), x > 0,

and fLBM(x; α) = 0 for x ≤ 0.
All the involved parameters α and β are supposed to be strictly positive.
The five data sets considered are given below, along with the estimated model parameters, the

values of the following models comparison criteria: AIC, CAIC, BIC and HQIC, and the following
goodness-of-fit statistics values: A∗, W∗ and KS, as well as the p-value of the KS test. We recall that
a lower AIC, BIC, CAIC, BIC, HQIC, A∗, W∗ or KS value indicates a better fit for the corresponding
model. Moreover, the larger the p-value of the KS test, the less we can reject the suitability of the model
to fit the data.

Data set 1: The data are extracted from [27]. They represent the failure times of mechanical components.
They are given as follows: 30.94, 18.51, 16.62, 51.56, 22.85, 22.38, 19.08, 49.56, 17.12, 10.67, 25.43, 10.24,
27.47, 14.70, 14.10, 29.93, 27.98, 36.02, 19.40, 14.97, 22.57, 12.26, 18.14, 18.84.

Table 7 shows the MLEs of the parameters of the considered models, with their standard errors.

Table 7. Estimates and standard errors (in parentheses) of the parameters for Data set 1.

Models α β

MOLBM 21.5256 (11.4235) 0.0849 (0.1721)
MOLBE 9.7838 (8.0270) 5.3859 (1.1659)
MOEL 12.0423 (9.9529) 0.1885 (0.0393)
GR 1.6630 (0.5149) 0.0463 (0.0057)
Weibull 26.0260 (2.4458) 2.3091 (0.3377)
LBM 12.6351 (0.9118) -

Table 8 indicates the −log L, AIC, CAIC, BIC, HQIC, A∗, W∗, KS and p-value of the
considered models.
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Table 8. Some criteria and goodness of fit measures for Data set 1.

Model −log L AIC CAIC BIC HQIC A∗ W∗ KS p-Value

MOLBM 86.2493 176.4986 177.0700 178.8547 177.1237 0.2184 0.0278 0.0991 0.9538
MOLBE 88.8814 181.7629 182.3343 184.1190 182.3880 0.6057 0.0694 0.1257 0.7982
MOEL 89.0309 182.0618 182.6332 184.4179 182.6869 0.6197 0.0699 0.1274 0.7852
GR 88.0440 180.0882 180.6596 182.4443 180.7133 0.6661 0.1014 0.1660 0.4723
Weibull 88.8909 181.7820 182.3532 184.1381 182.4069 0.7470 0.1083 0.1437 0.6523
LBM 88.9802 179.9605 180.1423 181.1386 180.2730 1.1852 0.1940 0.2120 0.2001

A global conclusion on the fit behavior of the MOLBM model for the five data sets will be
formulated later.

Data set 2: The data are taken from [28]. They represent fracture toughness MPa m1/2 data from the
Alumina (Al2O3) material. They are given as follows: 5.5, 5, 4.9, 6.4, 5.1, 5.2, 5.2, 5, 4.7, 4, 4.5, 4.2, 4.1,
4.56, 5.01, 4.7, 3.13, 3.12, 2.68, 2.77, 2.7, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 2.04, 2.08, 2.13,
3.8, 3.73, 3.71, 3.28, 3.9, 4, 3.8, 4.1, 3.9, 4.05, 4, 3.95, 4, 4.5, 4.5, 4.2, 4.55, 4.65, 4.1, 4.25, 4.3, 4.5, 4.7, 5.15,
4.3, 4.5, 4.9, 5, 5.35, 5.15, 5.25, 5.8, 5.85, 5.9, 5.75, 6.25, 6.05, 5.9, 3.6, 4.1, 4.5, 5.3, 4.85, 5.3, 5.45, 5.1, 5.3,
5.2, 5.3, 5.25, 4.75, 4.5, 4.2, 4, 4.15, 4.25, 4.3, 3.75, 3.95, 3.51, 4.13, 5.4, 5, 2.1, 4.6, 3.2, 2.5, 4.1, 3.5, 3.2, 3.3,
4.6, 4.3, 4.3, 4.5, 5.5, 4.6, 4.9, 4.3, 3, 3.4, 3.7, 4.4, 4.9, 4.9, 5.

Table 9 shows the MLEs of the parameters of the considered models, with their standard errors.

Table 9. Estimates and standard errors (in parentheses) of the parameters for Data set 2.

Model α β

MOLBM 1.4870 (0.0649) 14.0943 (5.3469)
MOLBE 568.6299 (330.1662) 0.5089 (0.0364)
MOEL 1208.9799 (742.3799) 1.9306 (0.1382)
GR 4.9728 (0.7871) 0.3370 (0.0139)
Weibull 4.7131 (0.0914) 4.9649 (0.3562)
LBM 2.2213 (0.0719) -

Table 10 indicates the −log L, AIC, CAIC, BIC, HQIC, A∗, W∗, KS and p-value of the
considered models.

Table 10. Some criteria and goodness of fit measures for Data set 2.

Model −log L AIC CAIC BIC HQIC A∗ W∗ KS p-Value

MOLBM 167.6899 339.3799 339.4832 344.9381 341.6368 0.2935 0.0424 0.0482 0.9445
MOLBE 170.0202 344.0405 344.1438 349.5987 346.2974 0.5320 0.0573 0.0530 0.8918
MOEL 170.1588 344.3176 344.4210 349.8759 346.5746 0.5478 0.0586 0.0534 0.8860
GR 176.9805 357.9610 358.0644 363.5193 360.2180 2.3203 0.3972 0.1285 0.0391
Weibull 168.7069 341.4137 341.5172 346.9720 343.6708 0.5431 0.0839 0.0720 0.5665
LBM 189.1835 380.3669 380.4012 383.1460 381.4955 7.0059 1.3320 0.2037 0.0001

Data set 3: The data are taken from [29]. These data represent the monthly taxes revenue in Egypt.
They are given as follows: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1, 6.7, 17,
8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1,
7.7, 18.1, 16.5, 11.9, 7, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8.

Table 11 shows the MLEs of the parameters of the considered models, with their standard errors.
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Table 11. Estimates and standard errors (in parentheses) of the parameters for Data set 3.

Model α β

MOLBM 15.4189 (4.0534) 0.0308 (0.0314)
MOLBE 2.5119 (1.3294) 4.7696 (0.9069)
MOEL 3.5707 (1.8257) 0.2221 (0.0380)
GR 1.0310 (0.1844) 0.0644 (0.0056)
Weibull 15.3060 (1.1511) 1.8406 (0.1711)
LBM 7.8367 (0.3607) -

Table 12 indicates the −log L, AIC, CAIC, BIC, HQIC, A∗, W∗, KS and p-value of the
considered models.

Table 12. Some criteria and goodness of fit measures for Data set 3.

Model −log L AIC CAIC BIC HQIC A∗ W∗ KS p-Value

MOLBM 190.5571 385.1141 385.3285 389.2692 386.7362 0.9461 0.1326 0.0994 0.6044
MOLBE 196.8304 397.6609 397.8751 401.8159 399.2828 1.6284 0.2241 0.1261 0.3050
MOEL 198.1121 400.2241 400.4385 404.3792 401.8462 1.7622 0.2402 0.1302 0.2696
GR 197.6964 399.3927 399.6071 403.5478 401.0148 2.2879 0.3971 0.1764 0.0507
Weibull 197.2905 398.5811 398.7953 402.7361 400.2030 1.8404 0.2803 0.1431 0.1778
LBM 209.4001 420.8002 420.8704 422.8777 421.6112 9.3091 1.5012 0.2898 0.0000

Data set 4: The data are taken from [30]. They represent the strengths of 1.5 cm glass fibers. They are
given as follows: 0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28, 1.29, 1.48,
1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63,
1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89,
1.81, 1.82, 1.84, 1.84, 2.00, 2.01, 2.24.

Table 13 shows the MLEs of the parameters of the considered models, with their standard errors.

Table 13. Estimates and standard errors (in parentheses) of the parameters for Data set 4.

Model α β

MOLBM 0.4646 (0.0253) 39.4015 (23.2301)
MOLBE 1977.1222 (1.8 × 103) 0.1544 (1.5× 10−2)
MOEL 6400.3238 (6682.1222) 6.2326 (0.6538)
GR 5.4848 (1.1848) 0.9868 (0.0539)
Weibull 1.6281 (0.0371) 5.7793 (0.5759)
LBM 0.7703 (0.0343) -

Table 14 indicates the −log L, AIC, CAIC, BIC, HQIC, A∗, W∗, KS and p-value of the
considered models.

Table 14. Some criteria and goodness of fit measures for Data set 4.

Model −log L AIC CAIC BIC HQIC A∗ W∗ KS p-Value

MOLBM 12.6613 29.3226 29.5226 33.6089 31.0084 0.7307 0.1023 0.1052 0.4873
MOLBE 15.5968 35.1936 35.3936 39.4799 36.8794 1.2144 0.1653 0.1235 0.2912
MOEL 15.8503 35.7006 35.9006 39.9869 37.3864 1.2587 0.1699 0.1247 0.2810
GR 23.9287 51.8575 52.0575 56.1437 53.5433 3.1284 0.5829 0.2150 0.0059
Weibull 15.2068 34.4136 34.6136 38.6999 36.0994 1.2412 0.2152 0.1522 0.1077
LBM 31.9066 65.8133 65.8789 67.9565 66.6562 6.1291 1.2265 0.2648 0.0002

Data set 5: The data are taken from [31]. These data represent the survival times of injected guinea
pigs with different doses of tubercle bacilli. They are given as follows: 34, 38, 38, 43, 44, 48, 52, 53, 54,
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54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87,
91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.

Table 15 gives the MLEs of the parameters of the considered models, with their standard errors.

Table 15. Estimates and standard errors (in parentheses) of the parameters for Data set 5.

Model α β

MOLBM 142.5637 (27.6842) 0.0119 (0.0090)
MOLBE 0.5478 (0.3876) 70.2665 (23.7620)
MOEL 0.5837 (0.3842) 0.0144 (0.0044)
GR 0.7176 (0.1162) 0.0065 (0.0006)
Weibull 122.1597 (10.7737) 1.5217 (0.1358)
LBM 67.7747 (3.0177) -

Table 16 presents the −log L, AIC, CAIC, BIC, HQIC, A∗, W∗, KS and p-value of the
considered models.

Table 16. Some criteria and goodness of fit measures for Data set 5.

Model −log L AIC CAIC BIC HQIC A∗ W∗ KS p-Value

MOLBM 340.3010 684.6020 684.8020 688.8883 686.2878 2.6973 0.2383 0.1213 0.3117
MOLBE 346.1912 696.3824 696.5824 700.6687 698.0682 3.0670 0.5144 0.1766 0.0391
MOEL 346.6147 697.2294 697.4294 701.5157 698.9152 3.1350 0.5310 0.1753 0.0416
GR 352.9955 709.9909 710.1910 714.2772 711.6768 5.2559 1.0402 0.2381 0.0015
Weibull 349.7034 703.4067 703.6068 707.6930 705.0926 3.7094 0.6570 0.1821 0.0306
LBM 383.9953 769.9905 770.0562 772.1336 770.8335 27.4030 4.0878 0.4192 0.0000

From Tables 8, 10, 12, 14 and 16, it is clear that the smallest AIC, CAIC, BIC, HQIC, A∗, W∗ and
KS statistics, and largest KS p-value are obtained for the MOLBM model; it is the best model. As the
main illustrations, the plots of the estimated pdfs over the histograms and cdfs over the empirical cdfs
are presented in Figures 3–7 for Data sets 1, 2, 3, 4 and 5, respectively.
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Figure 3. Plots of (a) estimated probability density function (pdf) and (b) estimated cumulative
distribution function (cdf) of the MOLBM model with those of the other competitive models for
Data set 1.
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Figure 4. Plots of (a) estimated pdf and (b) estimated cdf of the MOLBM model with those of the other
competitive models for Data set 2.
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Figure 5. Plots of (a) estimated pdf and (b) estimated cdf of the MOLBM model with those of the other
competitive models for Data set 3.
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Figure 6. Plots of (a) estimated pdf and (b) estimated cdf of the MOLBM model with those of the other
competitive models for Data set 4.



Math. Comput. Appl. 2020, 25, 65 19 of 21

x

D
en

si
ty

0 100 200 300 400

0.
00

0
0.

00
4

0.
00

8
0.

01
2 MOLBM

MOLBE
MOEL
GR
Weibull
LBM

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
n(

x)

MOLBM
MOLBE
MOEL
GR
Weibull
LBM

(a) (b)

Figure 7. Plots of (a) estimated pdf and (b) estimated cdf of the MOLBM model with those of the other
competitive models for Data set 5.

In all the graphs, we see that the red curves fit the empirical objects better than the other colored
curves. From these numerical and visual evidences, we can conclude that the MOLBM model can be
adequate for modeling these data.

6. Conclusion with Perspectives

In this article, we introduced a generalization of the length-biased Maxwell distribution known
as Marshall–Olkin length-biased Maxwell distribution. We studied its statistical properties such
as compounding, stochastic dominance, moments and incomplete moments in detail. In addition,
we estimated the parameter of the distribution via maximum likelihood estimation method and
checked the stability of the parameters using a Monte Carlo simulation study. Five referenced data
sets are used to check the flexibility of the new model and found a better fit than the other five well
known competitive models, namely the Marshall–Olkin length-biased exponential, Marshall–Olkin
extended Lindley, generalized Rayleigh, Weibull and length-biased Maxwell models. The success
of this new model motivates greater possibilities and future prospects. One of these possibilities is
discussed below. First, we can notice that the cdfs of the length-biased exponential and length-biased
Maxwell distributions can be written in the following form:

F(x; τ, m, υ) = 1− e−xτ/υ
m

∑
k=0

(xτ/υ)k

k!
, x > 0, (6)

and F(x; τ, m, υ) = 0 for x ≤ 0, where τ > 0, m denotes a positive integer and υ > 0. This function is
a valid cdf; it corresponds to the cdf of a power version of the Erlang distribution. Thus, a possible
direction of work can be the study of the Marshall–Olkin transformation of (6) in the general case,
or under a “new motivated and simple” configuration for τ and m to reduce the complexity, like in
Marshall–Olkin length-biased exponential and Marshall–Olkin length-biased Maxwell distributions.
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