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Abstract: This article aims to study the schemes of forecasting the volatilities of Chinese futures
markets and sector stocks. An improved method based on the cyclical two-component model (CTCM)
introduced by Harris et al. in 2011 is provided. The performance of CTCM is compared with the
benchmark model: Heterogeneous Autoregressive model of Realized Volatility type (HAR-RV type).
The impact of open interest for futures market is included in HAR-RV type model. We employ
3 different evaluation rules to determine the most efficient models when the results of different
evaluation rules are inconsistent. The empirical results show that CTCM is more accurate than
HAR-RV type in both estimation and forecasting. The results also show that the realized range-based
tripower volatility (RTV) is the most efficient estimator for both Chinese futures markets and
sector stocks.

Keywords: high frequency; mean absolute percentage error; non-parametric filter; open interest;
volatility forecasting

1. Introduction

The performance of financial markets is a keen signal for economic development worldwide [1].
From this respect, analyzing and forecasting the trend of financial market is crucial. In recent decades,
volatility as the second moment structure of price is the most concerned by mathematicians and
economists, due to its influence on assets pricing, risk management, portfolio construction and financial
derivatives’ pricing models such as Black-Scholes-Merton Model. Therefore, better measurement and
model of volatility will contribute to more accurate pricing for academics and market investors,
which is helpful for the different interested parties, for instance, managers, investors, and policy
maker to adopt miscellaneous financial measures such as raising or reducing capital, investment
allocation, etc.

Various factors impact on the effectiveness of volatility model [2]. One is the fitness of the proxy
for unobserved volatility which is adopted in the model. Traditional volatility proxies based on
the squared demeaned return are unbiased estimators of the latent integrated variance because the
integrated volatility is, by construction, the expectation of the squared demeaned return. Nevertheless,
proxies constructed by the squared return employ only a single measurement of the price each period
and contain no information about the intra-period trajectory of the price, which causes inefficiency.
An improvement in efficiency is using intraday data, such as 5-min high-frequency data. In this view,
academics come up with several volatility estimators. Another important factor that influences the
effectiveness of a volatility model is the specification of the process that governs volatility dynamics.
Academics build various kinds of models concentrated on different characteristics, such as long
memory [3], cycling jumps [4], autoregression [5], etc.

Math. Comput. Appl. 2020, 25, 59; doi:10.3390/mca25030059 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0002-3938-8108
http://dx.doi.org/10.3390/mca25030059
http://www.mdpi.com/journal/mca
https://www.mdpi.com/2297-8747/25/3/59?type=check_update&version=2


Math. Comput. Appl. 2020, 25, 59 2 of 21

However, several volatility models failed to forecast immature markets, due to its sharp jumps
and falls. Chinese market is still one of the emerging financial environments but plays a key role in
global economics development. China’s Gross Domestic Product has been the second largest since
2010. By the end of 2017, the total market value of the Shanghai and Shenzhen stock markets had
reached more than 8 trillion U.S. dollars, ranking as the second largest in the world [6]. In March,
2018, Chinese crude oil futures came into the market, which increased the influence of Chinese futures
markets. At the same time, an extreme market fluctuation appeared in 2015. The Shanghai Composite
Index fell rapidly by 32% in the 17 trading days after June 12 with market capitalization down by a
third [6]. Therefore, to obtain a model that works effectively in immature markets, it is of good values
to investigate China’s financial markets.

This article aims to forecast the volatilities of Chinese futures markets and sector stocks based on
cycling model. As a comparison, Heterogeneous Autoregressive model of Realized Volatility (HAR-RV)
type [5] originated by Corsi in 2009 and its improved models [7] introduced by Christensen K. et al. in
2012 are chosen as benchmark. To find a better volatility proxy, 3 realized ranged-based estimators
are introduced. The empirical data sample is a set of 3 years 5-min high-frequency data downloaded
from WIND database. The futures’ sample are: silver, aluminum, copper traded in Shanghai Futures
Exchange (SHFE); ironstone, coke, coking coal, soybean meal traded in Dalian Commodity Exchange
(DCE); and rapeseed meal traded in Zhengzhou Commodity Exchange (CZCE). The sector stocks’ data
sample are energy index, raw materials index, medical hygiene index, and financial real estate index
listed in Shanghai Stock Exchange.

Volatility problem initiated from random walk. In 1980s, it was generally accepted that the price of a
common stock followed a random walk. The volatility thus became a key variable to calculate. Parkinson
[8] provided a method to estimate the volatility called realized range (volatility) (RRV), which was shown
that 2–5 times better than squared return, the traditional volatility, in 1980. This method used the scaled
difference of intraday highest and lowest price of stock to measure the volatility. Recently, RRV attracted
attention again. Some literature [9] showed that it was not only significantly more efficient than the
squared return, but also more robust than realized volatility, another volatility estimator provided by
Andersen and Bollerslev in 1998 [10] to market microstructure noise.

In 2012, Christensen and Podolskij [7] based on the multipower variance measures introduced
a complete realized range-based multipower variance (RMV) approach. Rather than employing the
variance, RMV calculates volatility estimator with absolute returns in ranges. RMV provides considerable
efficient results even though the high-frequency data provide sparse information. RMV provides an
asymptotic efficient estimation, which is also robust to jumps. Another advantage of RMV is outstanding
in the presence of market microstructure noise. Evidence [7] shows that higher-order RMV will usually get
better estimation behavior; however, the third order is efficient enough in practice. Therefore, this paper
employs realized range-based bipower volatility (RBV) and realized range-based tripower volatility (RTV)
to model Chinese data.

Besides the development of various volatility estimators, academics also paid attention to the
volatility models themselves. Muller et al. [11] presented the presence of heterogeneity across investors
in 1993. In 1997, Andersen and Bollerslev [12] claimed the volatility process also contained multiple
components. Corsi [5] concentrated on the heterogeneity that originates from the difference in the
trading frequency and introduced HAR-RV model in 2009. Corsi separated the traders into 3 main
parts: daily traders, weekly traders, and monthly traders. HAR-RV model led to a simple AR-type
model was considered to have different volatility components based on time horizons, which had
a good estimation and forecasting performance. In 2012, Christensen and Podolskij [7] provided
a realized range-based multipower variation approach, which eliminated the bias by constructing
a hybrid range-based estimator. Replacing the weekly and monthly RV by RBV or RTV, the model
called HAR-RRV-RMV model revealed the better efficiency than traditional HAR-RV model.

Some academics suggested that volatility could be divided into two components, processes
governing long-term or short-term dynamics [4]. In 1998, Engle and Lee [13] originated a component
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GARCH model, which separated volatility into a constant long-run trend component and a temporary
short-run component, i.e., mean reverting towards the long-run trend. Empirical evidence [2,9]
revealed that the two-factor model had better performance than a one-factor model. The forecasting
horizon of two-factor model is up to 1 year [2]. Harris et al. [4] provided a cyclical two-component
model to estimate and forecast volatility over both short and long horizons. The long-term trend
volatility was estimated by a non-parametric filter, while the short-term component was modelled
by a stationary AR process based on the long-term component. The results gave reliable estimation
and forecasting, compared with one-factor and two-factor range-based EGARCH model and the
range-based FIEGARCH model [2] introduced by Brandt and Jones in 2006.

Motivated by Tianlun [14] who tried to find a reasonable volatility forecasting method for Chinese
individual stocks by comparing 6 volatility estimators applied in 3 models, this paper employs
3 estimators in 2 models to estimate and forecast volatility of Chinese futures market and sector stocks.
The estimators contain HRV, HBV, and HTV. While the models cover HRV-RV type and 3 kinds of
cyclical two-component models (CTCM).

The contributions of this paper are concluded in 3 main points.
First, this paper is the first paper to comprehensively study the volatility models of Chinese

futures markets and sector stocks. The volatility estimators and volatility models are popular and
show good predictability for recent years. This paper also considers the impact of Open Interest,
which is important but less studied.

Secondly, this paper finds a common model to estimate Chinese futures and sector stocks,
no matter the distributions and fluctuations of the products. Improved CTCM introduced in this paper
shows robust estimation results.

Finally, this article employs different evaluation rules and provides an idea to determine the most
efficient model when the evaluation rules are not consistent.

The remainder of this paper is separated in 4 parts. Section 2 is the methodology; Section 3 is the
empirical results; Section 4 is the discussion; and Section 5 concludes the study.

2. Data and Methods

2.1. Data

This paper employs the data downloaded from WIND database including around 1000 day 5-min
interval intraday data for the period from 14 December 2015 to 11 August 2020, totally 4.75-year data.
The data contains date, time, opening price, closing price, highest price, lowest price and open interest
(for futures only), which is used to calculate the volatility estimators and construct volatility models.
The futures’ trading time is from 9:00 a.m. to 11:30 a.m., 1:30 p.m. to 3:00 p.m. and 9:00 p.m. to the
next day 2:30 a.m., while the sector stock’s trading time is from 9:30 a.m. to 11:30 a.m. and 1:00 p.m. to
3:00 p.m. In particular, if the data in some time are missing, it will be replaced by the same data as
the last time.

To avoid the interplay of upstream-downstream industries, data from different areas are selected
as experimental sample. The metals area contains silver (code: AG.SHF, hereafter, Ag(SHFE)),
aluminum (code: AL.SHF, hereafter Al(SHFE)), copper (code: CU.SHF, hereafter Cu(SHFE)) and
ironstone (code: I.DEC, hereafter I(DEC)). The non-renewable energy resource area contains coke
(code: J.DCE, hereafter J(DCE)) and coking coal (code: JM.DCE, hereafter JM(DCE)). The agricultural
and sideline products area contains soybean meal (code: M.DCE, hereafter M(DCE)) and rapeseed
meal (code: RM.CZC, hereafter RM(CZCE)). The sector stocks’ sample contains energy index
(code: 000032.SH, hereafter ENG), raw materials index (code: 000033.SH, hereafter MTR), medical
hygiene index (code: 000037.SH, hereafter MDC), and financial real estate index (code: 000038.SH,
hereafter FINRE).

The efficiency of model depends on sample size, thus most of articles used 10-year high-frequency
data to investigate the effectiveness of models, and set the forecast period as 1 year. Due to the limit
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of practice, the database provides 5-min data covering only latest 3 years in China. Our data start
from 14 December 2015 and end on 11 August 2020, around 1000 days in total. During forecasting,
this paper employs 124 days data as out of sample forecasting period and other days as estimation
period to construct models. There are two reasons for such a choice. First, the futures contracts usually
have half-a-year holding period. Secondly, most papers employed 9-year data to construct model and
1-year data to forecast due to the evidence that the volatility estimators have 1-year predictability,
therefore the predictive proportion is 1 over 10. Hence, we choose predictive and training proportions
as around 1 over 9.

Before constructing models, the summary statistics of volatility estimators for each product
(Tables 1–3) are shown below, containing minimum, maximum, median, mean, variance, kurtosis,
and skewness. These numbers describe the distribution and the fluctuation of estimators, which may
be a cause of the estimation’s or the model’s poor performance.

Table 1. Summary statistics of RRV for each product.

Ag Al Cu I J JM M RM ENG MTR MDC FINRE

Minimum 0.0016 0.0023 0.0028 0.0168 0.0066 0.0123 0.0039 0.0044 0.0049 0.0042 0.0019 0.0033
Maximum 0.4644 0.5194 0.6362 1.0039 0.8519 0.9947 0.3985 0.6752 0.1428 0.1352 0.1556 0.1510

Median 0.0127 0.0179 0.0154 0.1292 0.0953 0.0944 0.0230 0.0355 0.0140 0.0131 0.0131 0.0117
Mean 0.0240 0.0250 0.0223 0.1464 0.1210 0.1291 0.0306 0.0461 0.0177 0.0180 0.0179 0.0157

Variance 0.0013 0.0007 0.0010 0.0086 0.0082 0.0129 0.0008 0.0016 0.0002 0.0002 0.0003 0.0002
Kurtosis 37.190 105.47 158.89 14.420 13.082 13.204 38.401 65.167 20.271 13.469 10.513 21.577

Skewness 5.1229 7.3240 10.348 2.7295 2.7589 2.8546 3.6390 5.4334 3.6420 2.9280 2.6337 3.6954

Table 2. Summary statistics of RBV for each product.

Ag Al Cu I J JM M RM ENG MTR MDC FINRE

Minimum 0.0013 0.0021 0.0021 0.0155 0.0105 0.0118 0.0035 0.0040 0.0050 0.0042 0.0019 0.0033
Maximum 0.3612 0.4923 0.5504 0.8902 0.7433 0.9807 0.3179 0.5522 0.1226 0.0941 0.1308 0.1263

Median 0.0114 0.0158 0.0136 0.1183 0.0825 0.0829 0.0205 0.0305 0.0133 0.0121 0.0109 0.0106
Mean 0.0205 0.0220 0.0192 0.1322 0.1064 0.1155 0.0266 0.0396 0.0164 0.0160 0.0151 0.0139

Variance 0.0009 0.0006 0.0006 0.0065 0.0063 0.0105 0.0006 0.0011 0.0001 0.0001 0.0002 0.0001
Kurtosis 35.256 134.73 214.82 13.532 13.568 13.429 31.000 60.914 20.154 8.0308 10.137 20.694

Skewness 5.0448 8.2504 11.358 2.5689 2.7784 2.8763 4.0837 5.1672 3.5481 2.4790 2.6025 3.5600

Table 3. Summary statistics of RTV for each product.

Ag Al Cu I J JM M RM ENG MTR MDC FINRE

Minimum 0.0012 0.0020 0.0016 0.0150 0.0099 0.0116 0.0031 0.0037 0.0050 0.0042 0.0018 0.0032
Maximum 0.2491 0.4644 0.4998 0.8474 0.7100 0.9538 0.2756 0.4952 0.1104 0.0855 0.1199 0.1128

Median 0.0107 0.0148 0.0128 0.1129 0.0775 0.0790 0.0191 0.0286 0.0130 0.0117 0.0100 0.0100
Mean 0.0190 0.0207 0.0181 0.1260 0.1003 0.1096 0.0250 0.0369 0.0158 0.0152 0.0138 0.0132

Variance 0.0007 0.0005 0.0005 0.0059 0.0056 0.0095 0.0005 0.0009 0.0001 0.0001 0.0002 0.0001
Kurtosis 26.834 138.98 199.71 13.639 13.078 13.355 25.989 54.450 18.898 7.3582 10.270 18.801

Skewness 4.5599 8.3728 10.922 2.5773 2.7257 2.8670 3.7829 4.8830 3.4398 2.3910 2.6114 3.4223

2.2. Volatility Estimators

This part introduces equations of volatility estimators, containing RRV, RBV and RTV.
Let Ht denote the highest price at an intraday time t, Lt denote the lowest price at the same time t,

and T denote the amount of an intraday data. The Lambda function is defined as

λ(r) =
4√
π

(
1− 4

2r

)
2r/2Γ((r + 1)/2)ζ(r− 1), (1)

where Γ(·) is Gamma function, and ζ(·) is Zeta function. In particular, λ(2) = 4 log 2.
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Then the RRVi representing the ith day volatility estimator is defined as

RRVi =
1

λ(2)

T

∑
t=1

(log Ht,i − log Lt,i)
2, (2)

where t = 1, 2, 3, · · · , T is the order of the intraday price.
The RBVi representing the ith day volatility estimator is defined as

RBVi =
T

T − 1

(
1

λ(1)

)2 T

∑
t=2

(log Ht,i − log Lt,i)(log Ht−1,i − log Lt−1,i), (3)

where t = 1, 2, 3, · · · , T is the order of the intraday price.
The RTVi representing the ith day volatility estimator is defined as

RTVi =
T

T−2

(
1

λ(2/3)

)3 T
∑

t=3
(log Ht,i − log Lt,i)

2
3 (log Ht−1,i − log Lt−1,i)

2
3 (log Ht−2,i − log Lt−2,i)

2
3 , (4)

where t = 1, 2, 3, · · · , T is the order of the intraday price.

2.3. Volatility Models

This part introduces the volatility models including HAR-RV type and CTCM type.

2.3.1. HAR-RV Type Models

The basic HAR-RV type model is HAR-RV. This model only considers the relation between
estimator and its past moving average. Let σ̂t denote the volatility estimator, σ̄n,t denote the nth
moving average at time t which is calculated by

σ̄n,t = (σ̂t + σ̂t−1 + · · ·+ σ̂t−n+1)/n. (5)

Noting that n = 5 represents weekly data and n = 22 represents monthly data. Then HAR-RV
model is defined by

σ̂t = β + βdσ̂t−1 + βwσ̄5,t−1 + βmσ̄22,t−1 + εt, (6)

where β is constant term, βd, βw, βm are the coefficients of daily term, weekly term and monthly term,
respectively, and εt is the residual at time t.

Besides the basic type, following [7], this paper also considers HAR-RRV-RBV and HAR-RRV-RTV
model. To eliminate the bias, the HAR-RRV-RBV model replays RRVt by R̂RVt = λ(2)RRVt +

(1 − λ(2))RBVt, and gets

R̂RVt = β + βdRBVt−1 + βwRBV5,t−1 + βmRBV22,t−1 + εt, (7)

where RBVn,t is the nth moving average at time t.
The HAR-RRV-RTV model replays RRVt by R̂RVt = λ(2)RRVt + (1− λ(2))RTVt, and gets

R̂RVt = β + βdRTVt−1 + βwRTV5,t−1 + βmRTV22,t−1 + εt, (8)

where RTVn,t is the nth moving average at time t.
Ripple and Moosa [15] argued that the futures markets differ from the stock markets in many

respects and the OI provides additional information due to the complex relationship between open
interest and trading volume. This paper adds the daily difference of logarithm of OI as a variable in
HAR-RV type model for futures data. To research whether OI has influence on Chinese futures price,
above models are chosen as benchmark. Then HAR-RV-OI models are defined by
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σ̂t = β + βdσ̂t−1 + βwσ̄5,t−1 + βmσ̄22,t−1 + βod∆OIt−1 + εt, (9)

R̂RVt = β + βdRBVt−1 + βwRBV5,t−1 + βmRBV22,t−1 + βod∆OIt−1 + εt, (10)

R̂RVt = β + βdRTVt−1 + βwRTV5,t−1 + βmRTV22,t−1 + βod∆OIt−1 + εt, (11)

respectively, where
∆OIt−1 = log OIt−1 − log OIt−2. (12)

Whether the basic HAR-RV model or the HAR-RV-OI model, the assumption is that there are
linear relationships between the volatility estimator and its moving average or open interest. Besides
the performance, this paper also considers the p-value of the models’ coefficients. Since the HAR-RV
type model employs moving average, it will trend to a horizontal line when forecasting.

2.3.2. Cyclical Two-Component Models

Let Lt denote the long trend component of the square root of volatility estimator, and St denote
the short-run component. Then the square root of volatility estimator σt is the sum of Lt and St by the
definition. Constructing a CTCM type model follows 3 steps.

First, calculate the long component, Lt. This paper uses low-pass filter of Hodrick and Prescott [16]
to the price following [4]. Then we employ the filtered price in volatility estimator to calculate Lt.
Harris et al. [4] employed filter in price rather than volatility estimator, due to the fact that the intraday
prices are more likely to satisfy the assumptions of the non-parametric filters and thus provides
reasonable estimations of the underlying long-run trends in volatility. This process is implemented by
a MATLAB built-in function, hpfilter().

Secondly, estimate an AR(1) model for St = σt − Lt, i.e.,

St = αSt−1 + β, (13)

where β is a non-zero number. It differs from the assumption of [4], which set the constant term as
a zero-mean random error. This change is based on the following reasons. The figures show that
the short component is near zero, but its mean is non-zero. Considering the magnitude of volatility
estimator is small, the result near zero cannot be seen as zero. On the other hand, in an AR(1) model,
the constant term is usually a non-zero number. If the constant term is zero, that means the St will
be zero when St−1 is zero. On the other hand, the zero constant term means that today’s short-run
component is times or a percentage of the last day’s short-run component. That does not satisfy the
definition, which hints that the short-run component is a mean-reverting process.

Finally, given the α̂ estimated in the last step, the n-step ahead forecast of the square root of
volatility estimator in CTCM is defined by

σF,t+n = LF,t+n + SF,t+n = LF,n+t + α̂n(σt − Lt) + β · α̂n − 1
α̂− 1

, (14)

where LF,t+n = Lt for any n ≥ 1, for convenience. This follows [4], which claimed that the long-term
component was a random walk.

This paper considers CTCM daily forecasting (n = 1), weekly forecasting (n = 5), monthly
forecasting (n = 22), and totally 3 kinds of CTCM models.

As a comparison, we construct a CTCM type model with random walk term et.

σF,t+1 = Lt + E[St] + et, (15)

where Lt is the long-term component calculated by the same way as above, E[St] is the mean of
short-term component, and et is white noise with zero-mean and Var(et) = Var(St).
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2.4. Estimation and Forecasting Methods

This paper employs in-sample estimation method to evaluate whether a model captures the
characteristics of all data efficiently or not. Usually, effective estimation is essential to obtain quality
forecasting results.

During forecasting, the data are divided into 2 groups. The first group is used to calculate the
parameter of the model, and the second group is used to evaluate the performance of the model.
We employ out of sample forecasting method with rolling windows.

2.5. Evaluation Rules

We employ Mincer–Zarnowitz regression test to evaluate the performance of estimation, and uses
mean absolute percent error , root mean square error(RMSE), and Theil’s U decomposition (Theil’s U)
to evaluate the forecasting results. In addition, we use modified Diebold–Mariano test (MDM-test) to
diagnose whether the most efficient model has similar performance to other models.

2.5.1. Mincer–Zarnowitz Regression Test

Since CTCM is a non-linear regression model, goodness of fit R2 is not a proper evaluation
rule. Mincer–Zarnowitz regression test, which constructs a linear relationship between the estimation
results and the original values, is a good replacement here.

Let σ̂t denote the t-th day’s volatility estimator calculated by the intraday data, and σEt denote the
estimation result for t-th day. Then the Mincer–Zarnowitz regression is defined as

σ̂t = α1 + α2σEt + εt, (16)

where α1 and α2 are the coefficients, and εt is the white noise with zero-mean. To evaluate the
performance of model estimation, the value of goodness-of-fit R2 of Mincer–Zarnowitz regression is
used. The model with the highest MZ-R2 is the best estimation for the products.

2.5.2. Root Mean Square Error

The RMSE is a method to describe the difference between forecasting value and real data.
If a model has least value of RMSE, we can conclude that its value is nearest to the actual value.
Then we can claim it is the most efficient model.

Let σ̂t denote the volatility estimator calculated by the data and σFt denotes the forecasting result.
Then the RMSE is defined as

RMSE =

√√√√ 1
T

T

∑
t=1

(σFt − σ̂t)2 (17)

2.5.3. Mean Absolute Percent Error

When the volatility estimators are all small, a smallest RMSE cannot be evidence that a model
has the most accurate forecasting results. Then other evaluations can be used in practice. MAPE is
a method to describes the percentage difference between the forecasting results and the original value.
Suppose the tolerance error is α%, which means only the model with the MAPE lower than α% can
be used in practice, and the forecasting results for this model is lower or higher α% than the actual
value, averagely.

Let σ̂t denote the volatility estimator calculated by the data, and σFt denote the forecasting result.
Then the MAPE is defined as

MAPE =
1
T

T

∑
t=1

|σFt − σ̂t|
|σ̂t|

. (18)
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This paper follows that the model with the MAPE lower than 35% is feasible in practice, and the
model with the lowest MAPE has the best forecast for those products.

2.5.4. Theil’s U Decomposition

Theil’s U statistic is a relatively accurate measure that compare the forecasted results with the
results of forecasting with minimal historical data.

Let σ̂t denote the volatility estimator calculated by the data, σFt denote the forecasting result.
Then the MAPE is defined as

U =

√√√√∑n−1
t=1 (

σFt+1−σ̂t+1
σ̂t

)2

∑n−1
t=1 (

σ̂t+1−σ̂t
σ̂t

)2
(19)

If the U value is less than 1, the forecasting method is better than guessing.

2.5.5. Modified Diebold–Mariano Test

MDM-test calculates a measure of predictive accuracy. The hypothesis is that two model have the
same forecasting performance.

Let eit and ejt be the forecasting error of model i and model j at time t, respectively.
Define dt = e2

it − e2
jt as the loss function. If model i and model j have the same forecasting behavior,

E[dt] = 0. Thus, the modified Diebold–Mariano test is defined as

[
T + 1− 2h + T−1h(h− 1)

T

]1/2

d̄/Vh(
ˆ̄d)1/2, (20)

where Vh(
ˆ̄d) = T−1[γ0 + 2 ∑h−1

k=1 γk], γk is kth-order covariance of sequence dt, and h is the order of out
of sample forecasting.

In our experiments, h is 1. If the p-value is less than −1.96 or greater than 1.96, we reject the
hypothesis and conclude that the model has different forecasting performance.

3. Results

This paper aims to use cyclical two-component model (CTCM) with an appropriate volatility
estimator to describe and forecast the Chinese futures markets as well as sector stocks. 3 kinds of
CTCM type models are provided and tested. There are 21 CTCM type models (see Table 4) employed
in experiment, which are: improved CTCM with RRV (denoted as CTCM-RRV-D, CTCM-RRV-W,
CTCM-RRV-M, respectively), improved CTCM with RBV (denoted as CTCM-RBV-D, CTCM-RBV-W,
CTCM-RBV-M, respectively), improved CTCM with RTV (denoting as CTCM-RTV-D, CTCM-RTV-W,
CTCM-RTV-M, respectively), Harris’ CTCM [4] with RRV (denoting as TWO-RRV-D, TWO-RRV-W,
TWO-RRV-M, respectively), Harris’ CTCM with RBV (denoting as TWO-RBV-D, TWO-RBV-W,
TWO-RBV-M, respectively), Harris’ CTCM with RTV (denoting as TWO-RTV-D, TWO-RTV-W,
TWO-RTV-M, respectively), daily CTCM Random Walk model with RRV (denoting as TOWRW-RRV),
daily CTCM Random Walk model with RBV (denoting as TWORW-RBV), daily CTCM Random
Walk model with RTV (denoting as TWORW-RTV). As a benchmark, the performance of HAR-RV
type models is compared with CTCM’s. There are 10 HAR-RV type models used to be benchmark.
They are: HAR-RRV, HAR-RRV-OI, HAR-RBV, HAR-RBV-OI, HAR-RTV, HAR-RTV-OI, HAR-RRV-RBV,
HAR-RRV-RBV-OI, HAR-RRV-RTV, and HAR-RRV-RTV-OI. There are 12 products, covering 8 futures
and 4 sector stocks.

The experiment has 3 parts. The first is using all the data to test the fitness of models. The results
are represented by MZ-R2, whose range is from 0 to 1. The higher value means the better estimation.
The second is out of sample forecasting to check the forecasting fitness of models. The results are
represented by MAPE, RMSE, and Theil’s U statistics which have lower values mean they have better
performance. The last is the summary of experiment results.
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Table 4. The results of estimation.

Ag Al Cu I J JM M RM ENG MTR MDC FINRE

CTCM-RRV-D 0.5034 0.5095 0.3556 0.5055 0.5807 0.6913 0.5045 0.5223 0.6917 0.6571 0.6625 0.6879
CTCM-RRV-W 0.1910 0.1930 0.0978 0.2486 0.2874 0.3982 0.2218 0.2444 0.2558 0.2524 0.3218 0.2485
CTCM-RRV-M 0.0221 0.0604 0.0085 0.0826 0.0845 0.1532 0.1123 0.1081 0.2412 0.3304 0.3404 0.1081
CTCM-RBV-D 0.5763 0.5548 0.5189 0.5336 0.6032 0.7026 0.5717 0.5618 0.7494 0.7104 0.7205 0.7469
CTCM-RBV-W 0.2134 0.2089 0.1399 0.2762 0.3018 0.4037 0.2422 0.2615 0.2828 0.2857 0.3567 0.2758
CTCM-RBV-M 0.0263 0.0661 0.0180 0.0901 0.0850 0.1524 0.1160 0.1160 0.1961 0.3007 0.2942 0.0804
CTCM-RTV-D 0.6166 0.5750 0.5520 0.5438 0.6201 0.7181 0.6016 0.5765 0.7562 0.7121 0.7375 0.7532
CTCM-RTV-W 0.2296 0.2188 0.1484 0.2806 0.3109 0.4082 0.2580 0.2708 0.2897 0.2918 0.3756 0.2840
CTCM-RTV-M 0.0296 0.0710 0.0202 0.0937 0.0871 0.1542 0.1230 0.1195 0.1871 0.2886 0.2723 0.0817
TWO-RRV-D 0.4667 0.4161 0.2950 0.3854 0.4816 0.5809 0.3991 0.4187 0.6524 0.6168 0.6123 0.6405
TWO-RRV-W 0.1915 0.2109 0.1006 0.2657 0.3193 0.4343 0.2332 0.2574 0.2534 0.2495 0.3171 0.2454
TWO-RRV-M 0.0198 0.0571 0.0089 0.0723 0.0790 0.1456 0.1036 0.0986 0.2526 0.3420 0.3479 0.1159
TWO-RBV-D 0.5556 0.4895 0.4522 0.4359 0.5244 0.6149 0.4729 0.4750 0.7487 0.7094 0.7160 0.7456
TWO-RBV-W 0.2122 0.2137 0.1412 0.2920 0.3287 0.4387 0.2501 0.2713 0.2825 0.2853 0.3555 0.2754
TWO-RBV-M 0.0251 0.0639 0.0180 0.0835 0.0817 0.1468 0.1103 0.1104 0.1974 0.3026 0.2969 0.0812
TWO-RTV-D 0.6065 0.5345 0.5136 0.4651 0.5556 0.6440 0.5224 0.5122 0.7539 0.7098 0.7368 0.7512
TWO-RTV-W 0.2283 0.2168 0.1456 0.2955 0.3314 0.4374 0.2623 0.2752 0.2902 0.2923 0.3760 0.2846
TWO-RTV-M 0.0288 0.0692 0.0201 0.0885 0.0844 0.1494 0.1185 0.1154 0.1850 0.2859 0.2713 0.0808
TWORW-RRV 0.3852 0.4434 0.3160 0.3644 0.3963 0.5680 0.4190 0.3448 0.5753 0.5488 0.5079 0.5705
TWORW-RBV 0.5392 0.4956 0.4708 0.4535 0.4532 0.6137 0.4673 0.4858 0.6670 0.5989 0.6205 0.6278
TWORW-RTV 0.5703 0.5207 0.5063 0.4992 0.5160 0.6581 0.5285 0.5299 0.6742 0.6148 0.6471 0.6403

HAR-RRV 0.4493 0.4295 0.3128 0.5105 0.4834 0.6091 0.3835 0.4145 0.5682 0.5110 0.5154 0.4743
HAR-RBV 0.5206 0.4634 0.4436 0.5766 0.5378 0.6466 0.4683 0.4808 0.5514 0.5263 0.5355 0.5062
HAR-RTV 0.5543 0.4702 0.4596 0.5778 0.5602 0.6593 0.5029 0.4946 0.5411 0.5070 0.5385 0.5120

HAR-RRV-OI 0.4518 0.4304 0.3129 0.5145 0.4834 0.6091 0.3851 0.4145
HAR-RBV-OI 0.5208 0.4643 0.4436 0.5795 0.5380 0.6466 0.4700 0.4808
HAR-RTV-OI 0.5543 0.4712 0.4596 0.5806 0.5605 0.6593 0.5042 0.4946

HRA-RRV-RBV 0.3666 0.3684 0.1728 0.4119 0.4238 0.5825 0.2990 0.3393 0.4510 0.4226 0.4222 0.3959
HAR-RRV-RTV 0.3667 0.3422 0.1673 0.4031 0.4065 0.5642 0.2831 0.3273 0.4188 0.3928 0.3883 0.3797

HAR-RRV-RBV-OI 0.3674 0.3687 0.1731 0.4178 0.4242 0.5826 0.3010 0.3393
HAR-RRV-RTV-OI 0.3671 0.3425 0.1677 0.4097 0.4071 0.5642 0.2855 0.3273

3.1. Estimation Results

The numerical results of estimation are listed in the following table (Table 4). The results are
between 0 and 1, and the model with highest value is the most efficient one for the product. Besides
the product I, most products are best estimated by the improved daily cyclical two-component model
with realized range-based tripower volatility (CTCM-RTV-D).

For space saving, figures of the best estimation for some products are shown below (Figures 1–3).
The blue line is the actual value, while the orange one is the estimated value. We can find that all the
estimation lines are near the actual line.

3.2. Out of Sample Forecasting Results

The non-negative results of out of sample forecast are listed in the following tables (Table 5).
The first table is based on the MAPE evaluation rule. Notice that the values in the following table
are percentage. The model with the lowest value is the most efficient one for the product. Based on
MAPE, Ag, Cu, ENG, FINRE, MDC, and MTR are best forecasted by the improved daily cyclical
two-component model with realized range-based tripower volatility (CTCM-RTV-D). However, Al, Fe,
J, JM, M, and RM are best forecasted by the Harris’ daily cyclical two-component model with realized
range-based tripower volatility (TWO-RTV-D).
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Figure 1. Model CTCM-RTV-D Estimation for Ag(SHFE). The horizontal line is the timeline, and
the perpendicular line is the volatility estimator. The actual values are represented by the blue line,
while the estimated values are represented by the orange line. During the Day 400 and the Day
800, when the volatility is smooth, the estimated values are almost consistent with the actual values.
The CTCM-RTV-D model also captures the characteristics of the volatility when it is volatile.

Figure 2. Model CTCM-RTV-D Estimation for FINRE. The horizontal line is the timeline, and the
perpendicular line is the volatility estimator. The actual values are represented by the blue line, while the
estimated values are represented by the orange line. We find that the estimated values are close to the actual
values, although the volatility is high throughout the whole period.
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Figure 3. Model HAR-RTV-OI Estimation for I(DCE). The horizontal line is the timeline, and the
perpendicular line is the volatility estimator. The actual values are represented by the blue line,
while the estimated values are represented by the orange line. The estimated values are close to the
actual values, and the trend of volatility is smooth, especially after Day 300.

Table 5. The results of out of sample forecast MAPE(%).

Ag Al Cu I J JM M RM ENG MTR MDC FINRE

CTCM-RRV-D 42.611 37.118 36.896 37.157 52.675 75.013 42.325 37.479 18.452 27.870 23.336 22.944
CTCM-RRV-W 55.424 50.458 45.927 45.130 60.902 86.047 59.738 47.992 30.167 42.531 36.054 38.187
CTCM-RRV-M 78.429 65.030 63.463 55.813 78.117 108.360 58.274 55.912 55.637 78.366 54.552 76.276
CTCM-RBV-D 40.601 33.249 34.663 36.300 52.131 65.151 40.468 36.380 13.608 23.962 20.288 17.906
CTCM-RBV-W 58.794 49.793 48.622 45.749 61.200 76.912 60.355 48.297 27.909 41.301 36.250 35.076
CTCM-RBV-M 82.288 67.086 68.418 56.514 81.740 102.061 57.122 56.580 52.265 80.512 59.894 74.046
CTCM-RTV-D 39.551 31.975 34.142 35.846 51.528 62.371 40.532 37.046 12.610 22.613 18.899 16.694
CTCM-RTV-W 60.519 49.687 51.307 45.982 61.039 75.099 61.460 49.563 27.295 41.180 36.745 34.568
CTCM-RTV-M 84.146 68.991 71.135 56.716 82.881 101.152 57.538 57.877 50.716 80.686 63.876 72.891
TWO-RRV-D 52.334 43.885 43.398 30.888 34.064 36.034 34.674 34.085 17.179 27.310 33.893 22.400
TWO-RRV-W 58.568 46.670 44.945 34.009 35.854 40.231 43.444 37.173 25.006 38.034 38.873 31.701
TWO-RRV-M 76.951 57.535 61.493 38.685 44.478 49.981 41.816 40.537 46.754 68.464 53.255 63.425
TWO-RBV-D 44.635 35.085 36.039 25.243 26.138 29.361 31.183 26.876 13.088 22.955 21.392 17.179
TWO-RBV-W 59.039 45.867 42.634 30.794 33.205 36.006 44.153 34.095 27.062 40.145 35.218 33.866
TWO-RBV-M 80.792 59.026 63.745 38.341 48.804 54.229 42.039 40.730 51.278 78.614 58.313 72.019
TWO-RTV-D 41.241 31.971 34.283 23.772 25.707 27.429 30.700 26.091 13.735 24.161 19.294 18.350
TWO-RTV-W 60.118 46.659 45.337 31.329 33.773 36.366 46.313 36.089 28.728 42.829 37.694 36.694
TWO-RTV-M 83.300 61.257 66.801 40.441 52.412 58.784 43.901 43.141 52.511 83.153 64.795 76.251
TWORW-RRV 48.449 51.589 46.472 40.854 61.856 94.345 59.848 45.150 32.954 39.390 35.181 31.552
TWORW-RBV 45.608 44.364 44.858 39.802 59.905 82.709 42.998 40.597 26.663 37.195 31.732 34.054
TWORW-RTV 44.373 42.951 41.727 42.107 63.824 75.523 44.505 38.382 23.621 35.229 30.228 30.307

HAR-RRV 51.652 51.840 65.125 28.763 43.740 44.772 40.432 32.969 23.352 41.176 33.403 32.964
HAR-RBV 49.818 48.391 50.490 25.188 38.635 40.434 36.717 28.603 20.943 36.257 29.415 28.959
HAR-RTV 48.261 46.940 50.407 24.755 36.800 39.582 36.251 28.778 19.887 34.464 27.594 27.655

HAR-RRV-OI 50.684 52.740 65.369 29.968 44.401 44.593 41.586 32.964
HAR-RBV-OI 50.073 49.229 50.853 26.717 38.698 40.325 37.775 28.586
HAR-RTV-OI 48.671 48.349 50.793 26.192 36.525 39.453 37.088 28.765

HRA-RRV-RBV 48.558 47.817 45.511 30.135 42.792 50.593 44.795 35.178 39.400 46.742 38.448 44.660
HAR-RRV-RTV 48.037 48.009 44.392 30.788 42.461 52.919 45.405 35.288 46.497 47.920 38.631 48.097

HAR-RRV-RBV-OI 48.320 48.898 45.642 31.811 44.304 50.273 46.434 35.355
HAR-RRV-RTV-OI 48.018 49.015 44.303 32.621 44.282 52.575 47.345 35.606

By the evaluation rule of this paper, the models can be employed in practice if and only if the
MAPEs are less than 35%. Thus, all the most efficient models above satisfy the rule, except for
Ag(SHFE).
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For space saving, figures of the best forecast for some products are shown below (Figures 4–6).
The blue line is the actual value, while the orange one is the forecasted value.

Figure 4. Model CTCM-RTV-D Forecast for Cu(SHFE). The horizontal line is the timeline, and the
perpendicular line is the volatility estimator. The forecasted period is the last 124 days. The actual
values are represented by the blue line, while the forecasted values are represented by the orange line.
The forecasted values are closed to the actual values, although there is a sharp jump around the Day 1000.

Figure 5. Model TWO-RTV-D Forecast for M(DCE). The horizontal line is the timeline, and the
perpendicular line is the volatility estimator. The forecasted period is the last 124 days. The actual
values are represented by the blue line, while the forecasted values are represented by the orange line.
The forecasted values are closed to the actual values, except for a sharp jump around the Day 920.
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Figure 6. Model CTCM-RTV-D Forecast for MTR. The horizontal line is the timeline, and the
perpendicular line is the volatility estimator. The forecasted period is the last 124 days. The actual
values are represented by the blue line, while the forecasted values are represented by the orange line.
The forecasted values are closed to the actual values, except for a sharp jump around the Day 1100.

The second table is based on the RMSE evaluation rule (Table 6). The model with the lowest value
is the most efficient one for the product. Based on RMSE, Ag, Al, Cu, Fe, and M are best forecasted
by the improved daily cyclical two-component model with realized range-based tripower volatility
(CTCM-RTV-D). However, J, JM, ENG, FIN, MDC and MTR are best forecasted by the Harris’ daily
cyclical two-component model with realized range-based tripower volatility (TWO-RTV-D). RM is
best forecasted by cyclical two-component model with random walk term with realized range-based
tripower volatility (TWORW-RTV).

For space saving, figures of the best forecast for some products are shown below (Figures 7–9).
The blue line is the actual value, while the orange one is the forecasted value.
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Table 6. The results of out of sample forecast RMSE.

Ag Al Cu I J JM M RM ENG MTR MDC FINRE

CTCM-RRV-D 2.3× 10−4 9.9× 10−5 2.0× 10−4 2.3× 10−4 1.6× 10−4 1.4× 10−4 6.7× 10−5 1.1× 10−4 3.7× 10−5 5.3× 10−5 6.9× 10−5 5.6× 10−5

CTCM-RRV-W 2.9× 10−4 1.1× 10−4 2.2× 10−4 2.8× 10−4 1.8× 10−4 1.6× 10−4 9.1× 10−5 1.4× 10−4 5.9× 10−5 8.6× 10−5 9.8× 10−5 8.0× 10−5

CTCM-RRV-M 3.6× 10−4 1.3× 10−4 2.4× 10−4 3.5× 10−4 2.2× 10−4 2.1× 10−4 9.4× 10−5 1.6× 10−4 8.0× 10−5 1.1× 10−4 1.4× 10−4 1.1× 10−4

CTCM-RBV-D 1.8× 10−4 5.3× 10−5 5.8× 10−5 1.9× 10−4 1.3× 10−4 1.1× 10−4 5.3× 10−5 7.9× 10−5 2.7× 10−5 3.5× 10−5 4.4× 10−5 3.5× 10−5

CTCM-RBV-W 2.4× 10−4 6.9× 10−5 7.9× 10−5 2.5× 10−4 1.6× 10−4 1.3× 10−4 7.8× 10−5 1.1× 10−4 5.1× 10−5 6.9× 10−5 7.8× 10−5 6.3× 10−5

CTCM-RBV-M 3.0× 10−4 8.0× 10−5 9.4× 10−5 3.1× 10−4 1.9× 10−4 1.7× 10−4 7.8× 10−5 1.3× 10−4 7.2× 10−5 9.4× 10−5 1.2× 10−4 9.4× 10−5

CTCM-RTV-D 1.4 × 10−4 4.0 × 10−5 4.6 × 10−5 1.8 × 10−4 1.2× 10−4 9.6× 10−5 4.9 × 10−5 7.5× 10−5 2.3× 10−5 2.9× 10−5 3.7× 10−5 3.0× 10−5

CTCM-RTV-W 2.0× 10−4 5.7× 10−5 6.8× 10−5 2.4× 10−4 1.4× 10−4 1.2× 10−4 7.3× 10−5 1.0× 10−4 4.7× 10−5 6.4× 10−5 7.0× 10−5 5.8× 10−5

CTCM-RTV-M 2.6× 10−4 6.7× 10−5 8.2× 10−5 3.0× 10−4 1.8× 10−4 1.6× 10−4 7.3× 10−5 1.2× 10−4 6.8× 10−5 8.8× 10−5 1.1× 10−4 9.0× 10−5

TWO-RRV-D 2.6× 10−4 1.1× 10−4 2.2× 10−4 3.1× 10−4 1.9× 10−4 1.4× 10−4 8.8× 10−5 1.5× 10−4 4.4× 10−5 6.3× 10−5 8.7× 10−5 6.5× 10−5

TWO-RRV-W 3.0× 10−4 1.2× 10−4 2.2× 10−4 3.3× 10−4 2.0× 10−4 1.5× 10−4 9.7× 10−5 1.6× 10−4 6.1× 10−5 8.8× 10−5 1.1× 10−4 8.5× 10−5

TWO-RRV-M 3.7× 10−4 1.4× 10−4 2.5× 10−4 3.8× 10−4 2.2× 10−4 1.9× 10−4 1.0× 10−4 1.8× 10−4 8.1× 10−5 1.1× 10−4 1.5× 10−4 1.1× 10−4

TWO-RBV-D 1.8× 10−4 6.2× 10−5 6.8× 10−5 2.2× 10−4 1.3× 10−4 9.1× 10−5 6.2× 10−5 9.4× 10−5 2.8× 10−5 3.5× 10−5 4.6× 10−5 3.6× 10−5

TWO-RBV-W 2.4× 10−4 7.2× 10−5 8.1× 10−5 2.5× 10−4 1.4× 10−4 1.0× 10−4 7.5× 10−5 1.1× 10−4 5.1× 10−5 6.9× 10−5 7.9× 10−5 6.3× 10−5

TWO-RBV-M 3.1× 10−4 8.5× 10−5 9.7× 10−5 3.1× 10−4 1.7× 10−4 1.4× 10−4 8.0× 10−5 1.3× 10−4 7.2× 10−5 9.4× 10−5 1.2× 10−4 9.4× 10−5

TWO-RTV-D 1.4× 10−4 4.5× 10−5 5.2× 10−5 1.8× 10−4 1.1 × 10−4 7.5 × 10−5 5.4× 10−5 8.0× 10−5 2.3 × 10−5 2.9 × 10−5 3.6 × 10−5 3.0 × 10−5

TWO-RTV-W 2.0× 10−4 5.8× 10−5 6.9× 10−5 2.2× 10−4 1.2× 10−4 9.1× 10−5 6.9× 10−5 1.0× 10−4 4.7× 10−5 6.4× 10−5 7.0× 10−5 5.8× 10−5

TWO-RTV-M 2.7× 10−4 7.1× 10−5 8.3× 10−5 2.8× 10−4 1.5× 10−4 1.3× 10−4 7.2× 10−5 1.2× 10−4 6.8× 10−5 8.8× 10−5 1.1× 10−4 9.0× 10−5

TWORW-RRV 2.3× 10−4 1.0× 10−4 2.1× 10−4 2.7× 10−4 2.0× 10−4 1.9× 10−4 8.0× 10−5 1.3× 10−4 4.6× 10−5 5.3× 10−5 7.8× 10−5 5.9× 10−5

TWORW-RBV 1.8× 10−4 5.7× 10−5 6.2× 10−5 2.3× 10−4 1.6× 10−4 1.5× 10−4 5.8× 10−5 8.5× 10−5 3.6× 10−5 3.7× 10−5 5.3× 10−5 4.3× 10−5

TWORW-RTV 1.5× 10−4 4.7× 10−5 5.2× 10−5 2.1× 10−4 1.5× 10−4 1.3× 10−4 5.7× 10−5 7.3 × 10−5 2.8× 10−5 3.4× 10−5 4.6× 10−5 4.1× 10−5

HAR-RRV 5.6× 10−2 2.5× 10−2 5.1× 10−2 5.2× 10−2 3.6× 10−2 2.5× 10−2 1.7× 10−2 2.9× 10−2 1.1× 10−2 1.6× 10−2 2.0× 10−2 1.6× 10−2

HAR-RBV 4.5× 10−2 1.4× 10−2 1.3× 10−2 4.0× 10−2 2.8× 10−2 1.8× 10−2 1.4× 10−2 2.1× 10−2 9.5× 10−3 1.3× 10−2 1.6× 10−2 1.2× 10−2

HAR-RTV 3.7× 10−2 1.1× 10−2 1.2× 10−2 3.7× 10−2 2.4× 10−2 1.7× 10−2 1.3× 10−2 2.0× 10−2 8.6× 10−3 1.1× 10−2 1.4× 10−2 1.1× 10−2

HAR-RRV-OI 5.6× 10−2 2.5× 10−2 5.1× 10−2 5.3× 10−2 3.7× 10−2 2.5× 10−2 1.8× 10−2 2.9× 10−2

HAR-RBV-OI 4.5× 10−2 1.4× 10−2 1.4× 10−2 4.1× 10−2 2.8× 10−2 1.8× 10−2 1.4× 10−2 2.1× 10−2

HAR-RTV-OI 3.7× 10−2 1.1× 10−2 1.2× 10−2 3.8× 10−2 2.4× 10−2 1.7× 10−2 1.3× 10−2 2.0× 10−2

HRA-RRV-RBV 7.5× 10−2 4.5× 10−2 1.2× 10−1 8.7× 10−2 5.2× 10−2 4.2× 10−2 2.6× 10−2 4.6× 10−2 1.6× 10−2 2.5× 10−2 2.9× 10−2 2.5× 10−2

HAR-RRV-RTV 9.1× 10−2 5.2× 10−2 1.3× 10−1 9.4× 10−2 6.0× 10−2 4.7× 10−2 2.8× 10−2 4.9× 10−2 1.8× 10−2 2.8× 10−2 3.3× 10−2 2.7× 10−2

HAR-RRV-RBV-OI 7.4× 10−2 4.5× 10−2 1.2× 10−1 8.7× 10−2 5.2× 10−2 4.2× 10−2 2.6× 10−2 4.6× 10−2

HAR-RRV-RTV-OI 9.1× 10−2 5.2× 10−2 1.3× 10−1 9.4× 10−2 6.0× 10−2 4.7× 10−2 2.9× 10−2 4.9× 10−2



Math. Comput. Appl. 2020, 25, 59 15 of 21

Figure 7. Model CTCM-RTV-D Forecast for I(DCE). The horizontal line is the timeline, and the
perpendicular line is the volatility estimator. The forecasted period is the last 124 days. The actual
values are represented by the blue line, while the forecasted values are represented by the orange line.
The forecasted values are a bit higher than the actual values in most time.

Figure 8. Model TWORW-RTV Forecast for RM(CZCE). The horizontal line is the timeline, and the
perpendicular line is the volatility estimator. The forecasted period is the last 124 days. The actual
values are represented by the blue line, while the forecasted values are represented by the orange line.
The forecasted values are more volatile than the actual values, since the forecasted model is constructed
by a random walk.
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Figure 9. Model TWO-RTV-D Forecast for MDC. The horizontal line is the timeline, and the
perpendicular line is the volatility estimator. The forecasted period is the last 124 days. The actual
values are represented by the blue line, while the forecasted values are represented by the orange
line. The forecasted values are close to the actual values, although there is a sharp jump around the
Day 1100.

The third table (Table 7) is based on the Theil’s U evaluation rule statistics. The model with the
lowest value is the most efficient one for the product. Based on Theil’s U statistics, Ag, Cu, Fe, J,
and JM are best forecasted by HAR-RV type model. Al, and M are best forecasted by the improved
daily cyclical two-component model with realized range-based tripower volatility (CTCM-RTV-D).
However, ENG, MTR, MDC and FINRE are best forecasted by the Harris’ daily cyclical two-component
model with realized range-based tripower volatility (TWO-RTV-D).

For space saving, figures of the best forecast for some products are shown below (Figures 10–12).
The blue line is the actual value, while the orange one is the forecast value.
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Table 7. The results of out of sample forecast Theil’s U.

Ag Al Cu I J JM M RM ENG MTR MDC FINRE

CTCM-RRV-D 1.0383 0.9644 0.9866 1.0278 0.9293 1.3912 0.9178 0.9111 0.7801 0.7921 0.8451 0.8369
CTCM-RRV-W 1.0230 1.0388 0.9920 1.2798 1.1120 1.7633 1.4224 1.1515 1.1719 1.0197 1.0575 1.1499
CTCM-RRV-M 1.1173 1.0653 1.0061 1.8050 1.4690 2.2495 1.2788 1.2731 2.2661 2.0346 1.5510 2.7378
CTCM-RBV-D 1.0065 0.9348 0.9060 1.1391 1.0356 1.4573 0.9136 0.9330 0.6847 0.6816 0.7309 0.7447
CTCM-RBV-W 0.9965 1.0890 0.9673 1.5315 1.2923 1.9976 1.6910 1.3147 1.2545 1.0708 1.0864 1.2144
CTCM-RBV-M 1.0735 1.1919 1.2515 1.9695 1.7536 2.7428 1.4756 1.5065 2.3416 2.3369 1.7247 2.9496
CTCM-RTV-D 0.9977 0.8893 0.8936 1.1233 1.0725 1.3617 0.8956 0.9198 0.6675 0.6523 0.6681 0.7188
CTCM-RTV-W 0.9945 1.1154 1.0619 1.5546 1.3953 1.9517 1.7589 1.3437 1.2944 1.1154 1.1467 1.2412
CTCM-RTV-M 1.0753 1.2440 1.4152 1.9995 1.9257 2.7181 1.5061 1.5417 2.3890 2.4932 2.0165 3.0257
TWO-RRV-D 1.0822 1.1130 1.0094 1.2233 1.1365 1.1665 1.1639 1.1714 0.9339 0.9442 1.0961 0.9935
TWO-RRV-W 1.0578 1.1251 1.0096 1.2478 1.1365 1.2057 1.2387 1.1903 1.1848 1.0710 1.1952 1.1808
TWO-RRV-M 1.1236 1.1151 1.0189 1.4378 1.1778 1.3050 1.1903 1.2257 2.0016 1.7986 1.5732 2.3850
TWO-RBV-D 1.0294 1.0892 1.0493 1.1246 1.0204 1.0464 1.0558 1.0625 0.6960 0.7024 0.7858 0.7593
TWO-RBV-W 1.0081 1.1407 1.0314 1.2296 1.0552 1.1886 1.3291 1.1559 1.2483 1.0704 1.1023 1.2099
TWO-RBV-M 1.0753 1.1716 1.2243 1.4924 1.2405 1.5442 1.2210 1.2866 2.3075 2.2892 1.6979 2.8975
TWO-RTV-D 1.0107 1.0398 1.0128 1.0434 0.9605 0.9604 0.9907 0.9865 0.6562 0.6352 0.6524 0.7068
TWO-RTV-W 0.9999 1.1436 1.0773 1.2072 1.0468 1.1745 1.4085 1.1582 1.3115 1.1230 1.1490 1.2552
TWO-RTV-M 1.0757 1.1974 1.3490 1.5322 1.3465 1.6374 1.2387 1.3099 2.4567 2.5609 2.0447 3.1148
TWORW-RRV 1.0408 1.0060 0.9884 1.1817 1.2810 1.9023 1.2592 1.1337 1.1834 0.8958 0.9608 1.0207
TWORW-RBV 1.0220 1.0536 0.9860 1.3543 1.2484 2.2352 1.0530 1.1446 1.0351 0.9599 0.9634 1.0584
TWORW-RTV 0.9984 1.0716 0.9802 1.4068 1.4783 1.8851 1.0989 1.0178 0.9803 0.8971 0.9462 1.0632

HAR-RRV 0.9521 0.9510 0.9657 0.9229 0.8481 0.9460 0.9193 0.9458 0.9567 0.9082 0.9272 0.9728
HAR-RBV 0.9555 0.9548 0.8704 0.9093 0.8767 0.9495 0.9137 0.9427 0.9754 0.9066 0.9254 0.9804
HAR-RTV 0.9590 0.9522 0.8938 0.9047 0.8859 0.9488 0.9159 0.9388 0.9821 0.9117 0.9471 0.9891

HAR-RRV-OI 0.9521 0.9570 0.9658 0.9283 0.8593 0.9440 0.9962 0.9458
HAR-RBV-OI 0.9555 0.9953 0.8784 0.9493 0.8779 0.9486 1.0016 0.9429
HAR-RTV-OI 0.9589 1.0290 0.9156 0.9527 0.8804 0.9506 0.9775 0.9389

HRA-RRV-RBV 0.9639 0.9689 0.9889 0.9411 0.8268 0.9581 0.9249 0.9555 0.9803 0.9281 0.9255 0.9747
HAR-RRV-RTV 0.9733 0.9800 0.9899 0.9409 0.8370 0.9683 0.9278 0.9555 1.0255 0.9271 0.9233 0.9919

HAR-RRV-RBV-OI 0.9639 0.9672 0.9889 0.9322 0.8326 0.9555 0.9993 0.9543
HAR-RRV-RTV-OI 0.9733 0.9785 0.9899 0.9319 0.8439 0.9656 1.0140 0.9537

Figure 10. Model HAR-RRV Forecast for Ag(SHFE). The horizontal line is the timeline, and the
perpendicular line is the volatility estimator. The forecasted period is the last 124 days. The actual
values are represented by the blue line, while the forecasted values are represented by the orange line.
The forecasted values capture the characteristics of to the actual values, but are not close to the actual
values when there is a sharp jump.
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Figure 11. Model CTCM-RTV-D Forecast for M(DCE). The horizontal line is the timeline, and the
perpendicular line is the volatility estimator. The forecasted period is the last 124 days. The actual
values are represented by the blue line, while the forecasted values are represented by the orange line.
The forecasted values are a bit higher than the actual values except for the values around the Day 920.

Figure 12. Model TWO-RTV-D Forecast for ENG. The horizontal line is the timeline, and the
perpendicular line is the volatility estimator. The forecasted period is the last 124 days. The actual
values are represented by the blue line, while the forecasted values are represented by the orange line.
The forecasted values are close to the actual values, except for a sharp jump around the Day 1110.

3.3. Summary of Results

The following table (Table 8) just lists the name of the models which are most efficient.



Math. Comput. Appl. 2020, 25, 59 19 of 21

Table 8. The most efficient models.

Products Estimation Forecast Forecast Forecast
MZ-R2 MAPE RMSE Theil’s U

Ag(SHFE) CTCM-RTV-D CTCM-RTV-D CTCM-RTV-D HAR-RRV
Al(SHFE) CTCM-RTV-D TWO-RTV-D CTCM-RTV-D CTCM-RTV-D
Cu(SHFE) CTCM-RTV-D CTCM-RTV-D CTCM-RTV-D HAR-RBV

I(DCE) HAR-RTV-OI TWO-RTV-D CTCM-RTV-D HAR-RTV
J(DCE) CTCM-RTV-D TWO-RTV-D TWO-RTV-D HAR-RRV-RBV

JM(DCE) CTCM-RTV-D TWO-RTV-D TWO-RTV-D HAR-RRV-OI
M(DCE) CTCM-RTV-D TWO-RTV-D CTCM-RTV-D CTCM-RTV-D

RM(CZCE) CTCM-RTV-D TWO-RTV-D TWORW-RTV CTCM-RRV-D
ENG CTCM-RTV-D CTCM-RTV-D TWO-RTV-D TWO-RTV-D
MTR CTCM-RTV-D CTCM-RTV-D TWO-RTV-D TWO-RTV-D
MDC CTCM-RTV-D CTCM-RTV-D TWO-RTV-D TWO-RTV-D

FINRE CTCM-RTV-D CTCM-RTV-D TWO-RTV-D TWO-RTV-D

4. Discussion

The empirical results show that the daily improved CTCM with RTV is the best model to describe
the trend for most products, expect for I(DCE).

Based on MAPE and RMSE evaluation rules, all CTCM type models have better forecasting results
than the HAR-RV type models in out of sample forecast, and RTV is the best estimator for all products
in out of sample forecast.

According to Theil’s U statistics, HAR-RV type models do well in Ag(SHFE), Cu(SHFE),
I(DCE), J(DCE), and JM(DCE), and all of 3 volatility estimator RRV, RBV and RTV can be the most
efficient estimators.

However, there is no efficient model which consistently satisfies all the 3 evaluation rules.
We use modified Diebold–Mariano test to check whether the above most efficient model forecasting
performances are similar or not. Experiment results show that most products’ CTCM-RTV-D models
have similar performance to TWO-RTV-D models, except for Al(SHFE). All the most efficient models of
Ag(SHFE), Al(SHFE), Cu(SHFE), J(DCE) and JM(DCE) have different forecasting performance. All the
most efficient models of RM(DCE) have the similar forecasting performance.

One reason the Theil’s U statistics results show the HAR-RV type model more efficient than the
CTCM type model is that the linear model will get a smaller Theil’s U value easily. In this article,
HAR-RV type model is linear model, while CTCM type mode is non-linear. Therefore, even if both
of MAPE and RMSE of CTCM type model are smaller, HAR-RV type model may be more efficient
according to Theil’s U statistics. We do not suggest employing Theil’s U statistics when comparing a
linear model with a non-linear model.

Therefore, the improved CTCM introduced in this paper does not have better forecasting than
CTCM provided by Harris [4]. Moreover, the open interest has a little influence on the performance of
HAR-RV type models in Chinese futures market, so that the HAR-RV-OI type models introduced in
this paper could be an alternative term to improve HAR-RV type models.

5. Conclusions

This paper introduces an improved cyclical to component model (CTCM) to describes and forecast
Chinese futures markets and sector stocks. The main idea is that the volatility is impacted by a long
trend component and a short-run mean-reverting component. The experiment shows that the improved
CTCM is efficient enough to estimate the trend of products in Chinese futures markets and sector
stocks, and is also more efficient than HAR-RV type models.

Moreover, this paper show that an appropriate volatility estimator improves the performance of
models. The RTV employed in CTCM type models are better than RRV introduced by [4]. The empirical
results also show that the open interest in Chinese futures markets has little influence on the trend
of volatility.
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Abbreviations

The following abbreviations are used in this manuscript:

CTCM cyclical two-component model
CZCE Zhengzhou Commodity Exchange
DCE Dalian Commodity Exchange
HAR-RV type Heterogeneous Autoregressive model of Realized Volatility type
MAPE Mean Absolute Percent Error
MZ-R2 the value of goodness-of-fit of Mincer–Zarnowitz Regression
OI open interest
RBV realized range-based bipower volatility
RMSE root mean square error
RMV realized range-based multipower variance
RRV realized range (volatility)
RTV realized range-based tripower volatility
SHFE Shanghai Futures Exchange
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