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Abstract: The growth of social media in recent years has contributed to an ever-increasing network
of user data in every aspect of life. This volume of generated data is becoming a vital asset for the
growth of companies and organizations as a powerful tool to gain insights and make crucial decisions.
However, data is not always reliable, since primarily, it can be manipulated and disseminated from
unreliable sources. In the field of social network analysis, this problem can be tackled by implementing
machine learning models that can learn to classify between humans and bots, which are mostly
harmful computer programs exploited to shape public opinions and circulate false information
on social media. In this paper, we propose a novel topological feature extraction method for bot
detection on social networks. We first create weighted ego networks of each user. We then encode
the higher-order topological features of ego networks using persistent homology. Finally, we use
these extracted features to train a machine learning model and use that model to classify users as
bot vs. human. Our experimental results suggest that using the higher-order topological features
coming from persistent homology is promising in bot detection and more effective than using classical
graph-theoretic structural features.

Keywords: bot detection; ego network; simplicial complex; persistent homology

1. Introduction

Online social networks have been an excellent platform for exchanging ideas and sharing
information. On the other hand, excessive utilization of social media may cause various types of illegal
activities, such as spam, fake news, and rumor spreading, produced by abnormal users. Most of these
activities have automated behavior patterns made by automated websites or apps, which are called
bots. It is critical to detect and classify humans vs. bots in the social network to maintain community
health, network security and privacy and prevent negative effects on public and individual safety.

Two types of features are used for bot detection on social networks in literature: structural features
and behavioral features. While the users’ activities and profiles on the social media platform such
as tweet content, tweeting behavior, and account properties like external URL ratio are considered
as behavioral features, social network topology such as degree, edge count, average betweenness
centrality and brokerage are considered as structural features. Studies suggest that behavioral and
structural features are different between humans vs. bots.

The identification and suspension of bots are challenging problems for several reasons. First of
all, classical structural features that are employed in bot detection, such as degree and betweenness
centrality, are usually local and mainly based on differences between either vertex or edge information
in networks, or correlations without considering the network topology. On the other hand, other
topological structures, such as the connected components and structural holes, also give important
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information about network topology [1]. As it is mentioned in [2], the existence and distribution of
structural holes in networks can be used as important topological features for network comparison
and classification.

Secondly, the classical structural features employ only pairwise relations between users. However,
since human communication and interactions can occur in groups of three or more nodes as we see in
different real-world applications, we cannot simply describe them as pairwise relations [3]. In social
networks, many connections and relationships do not take place between pairs of nodes, but rather
are multiple interactions at the level of groups of nodes. Likewise, when we look at the behavioral
dynamics of bot and human, we see that humans are constantly exposed to posts and messages by
other users, so their probability of engaging in multiple social interactions is bigger than bots [4].
The higher-order multiple interactions among users should also be investigated for better detection.
Therefore, there is a critical need for the bot detection methods that take both structural holes and
higher-order interactions into consideration.

In this paper, we develop a novel topological method for bot detection problems using both
behavioral features and structural features that employ structural holes and higher-order interactions.
We first represent each user with a weighted ego network of the user in the network where the edge
weights keep the behavioral features. Then, we study the topology of higher-order network structures
of these ego networks to extract the structural features, such as structural holes, using persistent
homology. Persistent homology is a computational topology tool that extracts topological features of
data that persist across multiple scales. The basic idea is giving shape to data by replacing it with a
family of simplicial complexes, which can be considered as a higher dimensional generalization of
graphs, and then studying the topology of the resulted shapes to gain knowledge about it [5]. It has
found applications in many different domains such as biological systems [6], computer vision [7],
social network analysis [8] and signal processing [9]. Finally, we employ machine learning algorithms
on these features to first reduce the dimension of the features and then classify the users as bot
vs. human. To the best of our knowledge, there is no study that uses persistent homology in bot
detection in the literature, thus our study first examines how to use persistent homology for the bot
detection problem.

The paper is structured as follows. In Section 2, we give the necessary background for our
method. We first give a formal definition to network and ego network of a vertex in the network,
then define simplicial complexes and persistent homology. We also provide related work in this section.
In Section 3, we introduce the proposed bot detection model by explaining our weighted ego network
representation and topological feature extraction method. In Section 4, we present our results on a
Twitter data set and compare our results with classical centrality measures. Our final remarks with
future work directions are found in Section 5.

2. Background

In this section, we discuss the preliminary concepts for networks, centrality measures, simplicial
complexes, and persistent homology. We also elaborate on related work with a particular focus on bot
detection and persistent homology in network mining.

2.1. Preliminaries

2.1.1. Graphs

Graphs are structured data representing relationships between objects [10,11]. They are formed
by a set of vertices (also called nodes) and a set of edges that are connections between pairs of vertices.
We can see the applications of graph data in many different areas such as (1) social networks consisting
of individuals and their interconnections such as Facebook, coauthorship and citation networks
of scientists [12–14], (2) protein interaction networks from biological networks that link proteins,
which work together to perform some particular biological functions [15,16].



Math. Comput. Appl. 2020, 25, 58 3 of 16

In a formal definition, a graph (network) G is a pair of sets G = (V, E) where V is the set of vertices
and E ⊂ V ×V is the set of edges of the network. There are various types of networks that represent
the differences in the relations between vertices. While in an undirected network, edges link two vertices
symmetrically, in a directed network, edges link two vertices asymmetrically. If there is a score for the
relationship between vertices that could represent the strength of interaction, it is represented as a
weighted network. In a weighted network, a weight function W : E→ R on edges is defined to assign
a weight for each edge. Furthermore, if vertices of a graph have a set of attributes describing their
properties, such as gender, education, language in social network graphs, we call this graph as an
attributed graph. In many different real world applications, graphs are modeled in the form of attributed
graphs. For example, in social networks such as Facebook and Twitter networks, user nodes have
multiple attributes (e.g., education degree, mother tongue, number of followers/followees).

Lastly, we define ego network of a vertex in a given network, which is the crucial network structure
that we employ for bot detection in this paper.

Definition 1. For a given graph G = (V, E), k-hop ego network of a vertex v in G is the subgraph S =

(VS, ES) ⊆ G where VS includes the ego node v and all other nodes in V that can be reached in k steps from v
and ES includes all the edges between the vertices in VS in G.

Example 1. In Figure 1, we present an ego network of the ego vertex, red node. The subgraph in the green
region is the 1-hop ego network, the blue region is the 2-hop ego network and the purple region is the 3-hop
ego network.

Figure 1. Ego networks of the ego vertex, the red node.

In this paper, we only use the 1-hop ego networks of vertices. Hence, in the rest of the paper,
when we say ego network, we actually mean 1-hop ego network.

2.1.2. Centrality Measures

After obtaining an ego network for each user, we can obtain structural features of the ego using
the classical centrality measures. The centrality measures are useful for the evaluation of the node
importance in networks. Here, we list the commonly used centrality measures in the literature that we
later employ to compare with our method in Section 4.3.

1. In-degree and out-degree centrality [17]: While the in-degree centrality is the number of
incoming edges to each node, the out-degree centrality is the number of outgoing edges from
each node.
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2. Betweenness centrality [17]: This centrality measures how often each graph node appears on the
shortest path between two nodes in the graph. Since there can be several shortest paths between
two graph nodes s and t, the centrality of node u is

bc(u) = ∑
s,t 6=u

nst(u)
Nst

where nst(u) is the number of shortest paths from s to t that pass through node u, and Nst is the
total number of shortest paths from s to t.

3. In-closeness and out-closeness centrality [17]: The in-closeness and out-closeness centralities
use the inverse sum of the distance from a node to all other nodes in the graph. The centrality of
a node i is

cc(i) =
(

Ai
N − 1

)2 1
Ci

where Ai is the number of reachable nodes from node i (not counting i), N is the number of nodes
in the graph and Ci is the sum of the distances from node i to all reachable nodes. For in-closeness,
the distance measure is from all nodes to node i whereas for out-closeness, it is from node i to all
other nodes.

4. Pagerank centrality [18]: This centrality uses the random walks on the graph. At each node in
the graph, the next node is chosen with the probability from the set of successors of the current
node. The centrality score is the average time spent at each node during the random walk.

5. Hubs and authorities centrality [19]: These centrality scores are two linked centrality measures
that are recursive. The hubs score of a node is the sum of the authorities scores of all its successors.
Similarly, the authorities score is the sum of the hubs scores of all its predecessors. The sum of all
hubs scores is 1 and the sum of all authorities scores is 1. These scores can be interpreted as the
left (hubs) and right (authorities) singular vectors corresponding to the largest singular value of
the adjacency matrix.

2.1.3. Simplicial Complex

Simplicial complexes are topological objects in which building blocks are simplices (plural for
simplex). In Euclidean space, an n-dimensional simplex (in short n-simplex) is a convex hull of n + 1
affinely independent points. For example, a 0-simplex is a point, a 1-simplex is two points connected
with an edge, a 2-simplex is a filled triangle and a 3-simplex is a filled tetrahedron.

A simplicial complex K is a topological object built from a finite collection of simplices satisfying
the following two properties

1. Every face of a simplex in K must also be in K
2. For any two simplices σ1 and σ2 in K, if σ1 ∩ σ2 6= ∅, then σ1 ∩ σ2 is a common face of both σ1 and σ2.

Since graph vertices do not have embedding in any Euclidean space necessarily, here we also give
the definition of the abstract simplicial complex.

Definition 2. An abstract simplicial complex is a pair A = (V, Σ) where V is the set of vertices of A and Σ is
a subset (called the simplices) of the collection of all non-empty subsets of V, satisfying the conditions that if
σ ∈ Σ, and ∅ 6= τ ⊆ σ, then τ ∈ Σ. Simplices consisting of exactly two vertices are called edges.

In this paper, we represent networks as an abstract simplicial complex and employ the topological
properties of the simplicial complex for bot detection. The properties we study in a simplicial complex
are n-dimensional holes. An n-dimensional hole can be considered as voids surrounded by n-simplices.
For example, 0-dimensional holes are connected components, 1-dimensional holes are loops bounded
by 1-simplicies (i.e., edges), 2-dimensional holes are voids surrounded by 2-simplices (i.e., triangles).
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The simplicial homology is the area in algebraic topology that extracts the holes in any dimension in
simplicial complexes by associating algebraic structures, such as vector spaces, to them. For a given
simplicial complex K, simplicial homology associates vector spaces Hi(K) for i = {0, 1, 2, . . .} where
the dimension of H0(X) gives the number of connected components, H1(X) gives the number of
holes, H2(X) gives the number of voids and so on. We refer readers to [20] for the details of the
simplicial homology.

Furthermore, we use the clique complex structure to represent undirected networks as
simplicial complexes.

Definition 3. The clique complex Cl(G) of an undirected graph G is a simplicial complex where vertices
of G are its vertices and each k-clique, i.e., the complete subgraphs with k vertices, in G corresponds to a
(k− 1)-simplex in Cl(G).

Example 2. In Figure 2, we present a toy graph G (a) and its clique complex (b). The graph has a 4-clique on
the left, 2-clique in the middle and 3-clique on the right. Hence, its clique complex has a 3-simplex (tetrahedron)
on the left, a 1-simplex (edge) in the middle and a 2-simplex (triangle) on the right.

(a) A graph G (b) The clique complex Cl(G) of the graph on the left

Figure 2. An example for constructing the clique complex of a graph (borrowed from [21]).

2.1.4. Persistent Homology

For a given undirected network G = (V, E), the homology of its clique complex may not give
interesting information. For example, if we would like to compare two connected graphs, the number
of connected components (0-dimensional holes) is 1 for both, hence this information is inadequate
for comparison. As a solution, instead of working the clique complex of the whole graph, we can
induce a family of simplicial complexes out of the clique complex of the subgraphs of G and track how
homology changes in this family. This nested family of simplicial complexes is called filtration, here is
the formal definition of the filtration of a graph.

Definition 4. Let G = (V, E) be a graph and Gδ ⊆ G be a nested family of subgraphs for δ ∈ R≥0 where
Gδi ⊆ Gδj for 0 ≤ δi ≤ δj. Then the nested induced family of simplicial complexes out of the clique complex of Gδ

{Cl(Gδi ) ↪→ Cl(Gδj)}0≤δi≤δj .

is called filtration of G.

One of the popular filtration methods defined on undirected weighted networks is called
weight rank clique filtration. This filtration, first defined in [22], uses weights as threshold values
δ. The authors first rank the edge weights from wmin to wmax (it can also be done in other direction,
from wmax to wmin as well) and let the parameter increase from wmin to wmax. At each step δ, they just
consider the thresholded subgraph Gδ ⊆ G that is the subgraph with edges of weight larger than δ.
Then, they create the clique complex of Gδ to obtain the filtration.
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Example 3. Figure 3 depicts an example for the weight rank clique filtration. For the given weighted network
on the left, we first add its vertices for δ = 0 to the filtration. Then, we add the edges with weight 1 when δ = 1
and keep adding other edges when δ equals to their weights. We further add higher-dimensional simplices to the
filtration, such as triangles, whenever all their edges are added.

Figure 3. The weight rank clique filtration of the weighted network on the left.

While ranging the δ value in a filtration, some holes (i.e., homological features) may appear and
then disappear and the intervals for δ where each hole is persistent are the topological features of the
network. We record the birth of a hole, i.e., the δ value when the hole appears, and the death of the hole,
i.e., the δ value when the hole disappears. The persistent homology just tracks the birth and death of the
holes in a filtration for a fixed dimension. For a given network and a filtration, we can encode the birth
and death of the holes in a persistent barcode as a multiset of intervals bounded below [23].

Example 4. Figure 4 has the 0- and 1-dimensional persistence barcodes of the filtration in Figure 3. For the
0-dimensional persistent barcode, when δ = 0, there are five disconnected vertices, which means there are
five connected components in the simplicial complex. That results in five bars are born at the beginning.
When δ = 1, the five edges with weight 1 are added that decreases the total number of connected components
to one, hence four bars die at δ = 1. After this point, the number of connected components does not change
although we add more edges. Hence, the top bar lives forever (arrowhead at the right of that bar implies this fact).

For the 1-dimensional persistent barcode, since the first 1-dimensional hole (loop) surrounded with five
edges appears when δ = 1, there is a bar born at this value in the 1-dimensional barcode. When δ = 2, this loop
splits into two loops, but one of them is filled with a triangle. Hence, that bar still lives. When δ = 3, we add an
edge that splits the loop with four edges into two triangles, but triangles are automatically filled as they appear
since we use the clique complex. That kills the loop with four edges hence the bar born at δ = 1 dies at δ = 3.
Hence, we finalize the persistent barcodes for both dimensions.

Figure 4. 0-dimensional and 1-dimensional persistent barcodes of the filtration in Figure 3.
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Lastly, we can compare two networks by comparing their persistent barcodes using the bottleneck
distance. The bottleneck distance is a stable and robust distance [24]. If we consider each interval in a
persistent diagram as a point (birth, death) in the extended real plane R̄2 [25], the bottleneck distance
measures the distance between two persistence barcodes by the maximum distance between two
points (intervals) in a matching from one persistent diagram to the other one. We refer readers to the
survey paper [21] for more details of persistent homology on networks.

2.2. Related Work

In this section, we briefly discuss the related work in the areas of bot detection and persistent
homology in network mining.

2.2.1. Bot Detection

The malicious activity of bots has led to the necessity of bot detection techniques [26,27]. Most bot
detection methods are based on supervised machine learning with different types of extracted features
from labeled data [28,29]. Mainly two types of features are used for bot detection on social networks in
literature [30,31]: structural features and behavioral features. While the users’ activities and profiles on
the social media platform such as tweet content, tweeting behavior, and account properties like external
URL ratio are considered as behavioral features, social network topology such as number of followers,
number of friends, and the follower ratio are considered as structural features [32–34]. Studies suggest
that behavioral and structural features are different between humans vs. bots, hence using both of
them improves the accuracy of the model [35].

RTbust [36] extract features from retweeting behaviors of users and cluster the users with these
features. Accounts belonging to large clusters characterized by malicious retweeting patterns are
labeled as bots. Davis et al. [35] propose the BotorNot technique that applies more than one thousand
different features including structural features and behavioral features based on account recent
activities. They categorized their features into six groups; (1) network features to capture various
dimensions of information diffusion patterns; (2) user features related to the account of users; (3) friends
features related to an account’s social contacts; (4) temporal features to capture timing patterns of
content generation and consumption; (5) content features and (6) sentiment features extracted from
posts of users.

Although state-of-the-art bot detection models show promising performance, they still face
generalization [37] and scalability challenges, which greatly limit their applications. Since Twitter bots
are constantly changing their behavior to evade detection and supervised methods are non-adaptive
and thus they may not be able to identify novel bot behaviors. Juan et al. [37] evaluate bot classifiers
by testing them on unseen bot classes and find out that they do not generalize well to unseen bot
classes. Yang et al. [38] propose an efficient method that uses minimal account metadata. They collect
all available datasets and combine their features to build a rich model. Moreover, the BotWalk [39]
method is proposed as an unsupervised approach to identify evolving bots. They use behavioral
features consisting of metadata, content, temporal, and network-based features.

For other bot detection methods, we refer readers to the survey paper [40].

2.2.2. Persistent Homology in Network Mining

Nowadays, persistent homology has found applications in different network mining problems.
We can categorize these applications into two groups: single graph analysis and multiple graphs
analysis. In the first group, persistent homology helps to detect global structural features of a
single network such as the complexity and distributions of strongly connected regions. While some
applications use the edge weights for evaluation of a single graph, others analyze the evaluation of
a single graph over time. For example, persistent homology is used to analyze brain networks to
examine the abnormal white matter in maltreated children [41] and to show that the sparse correlation
gets a huge group separation between normal and stress-exposed children [42]. As another example,
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the authors in [43] use persistent homology to propose that cancer therapy can be guided by changes
in the complexity of protein–protein interaction networks.

In multi graph settings, persistent homology features of graphs are used to compare and classify
the graphs. For example, the authors in [44] use persistent homology to find the collaboration patterns
in collaboration networks. They first create the networks using five journals from the mathematics
community and six journals from the engineering community. They show that they can lower bound
distance between two higher-order networks, which is in general computationally expensive, with a
computationally less expensive distance, namely the bottleneck distance, between their persistence
barcodes. They use these lower bounds to classify the networks, distinguish the collaboration patterns
of the engineering and mathematics community, and also discriminate engineering communities with
different research interests. In [21], the authors classify ego networks of vertices in a social network
using their persistent barcodes as features. In this paper, they study the Amazon purchasing network
and classify the ego networks of purchased items based on their category, such as book, music, video.
They first define diffusion Fréchet function on vertices to measure the node importance and use
sub-level filtration on these function values for persistent barcode creation. Also, in [45], the authors
introduce a new weighted-kernel for persistence images and a metric-learning framework to learn
the best weight-function for these kernels from labeled data. They apply this learned kernel for the
graph classification problem. In [46,47], the authors define a new filtration, called Dowker filtration,
which is also sensitive to edge directions on directed networks and use this filtration to classify the
hippocampal networks. Horak et al. study random graphs using the clique complex [48]. In [49],
the authors use persistent homology for metric graph comparison. In [50], persistent homology is
employed to quantify structural changes in time-varying (dynamic) graphs.

For other methods and applications of persistent homology on networks, we refer readers to the
survey paper [21].

3. Methodology

In this section, we introduce the main parts of our method. We first show how to create a weighted
ego network of a user. In the second part, we explain how we encode and extract the topological
features of ego networks using weight rank clique filtration in persistent homology computation.
Finally, we outline our bot detection algorithm that employs these topological features.

3.1. Weighted Ego Network Representation

In this paper, we study the social network defined on Twitter where vertices represent users
and edges represent follower/followee relation. This network is a directed network since there is a
direction in the follower/followee relation. We create an ego network for each user. An ego network of
a vertex in a network represents the connection of each vertex to the rest of the network and hence
can be used as a distinct feature for each observation. In this study, the ego network of each user is
constructed based on the follower-followee relation and initial weight of each edge is calculated by the
number of followers and followees possessed by users. Then, we update edge weights based on the
strength of the relation. First, we define the degree of strength between two vertices as the strength of
the relation.

Definition 5. For any direct edge e = A → B from the source node A to the target node B, the degree of
strength is measured as

s(e) = ln
(

Bpre

Asuc

)
where Bpre is the number of B’s followers (i.e., in-coming edges) and Asuc is the number of A’s followees (i.e.,
outgoing edges).
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The degree of strength reflects how potentially strong a relationship based on the number of
incoming and outgoing edges inherently. A positive degree of strength indicates a strong attractive
connection to the end node, while a negative degree of strength shows a potentially weak attractive
connection between the two nodes.

Using the degree of strength, we can now define the edge weight.

Definition 6. Given an ego network E of a vertex in a network, the weight of any directed edge e = A→ B is
assigned as

w(e) = L ·
(

1− 1
1 + e(−s(e)+µE )/σE

)
where s(e) is e’s degree of strength, L is the scaling parameter, µE and σE are the mean and the standard
deviation of the degree of strength of the edges in the ego network E respectively.

For the persistent homology computation, we need to scale the degree of strength within the
scope of each ego network. We achieve this by implementing the logistic function using the mean and
standard deviation for the degree of strength of each ego network. This results in the edge weights
defined locally for each ego network, and as a whole can be used as a distinct feature for bot detection.

In our persistent homology computation, we do not take the direction of the edges into
consideration and represent the network as an undirected network. In this representation, if there
is only one directed edge in the directed network between two vertices, for example A → B,
then its corresponding edge weight in the undirected network is the weight of this directed edge.
However, if there are edges in both directions in the directed network, for example A→ B and B→ A,
then we simply take the maximum of these weights as the edge weight in the undirected network.
The reason why we take the maximum here is that if there is a strong relation between two users
even in one direction, we consider these users as strongly related. With this definition, we now have
undirected weighted ego networks defined for each user.

3.2. Topological Feature Extraction

Our next task is to compare and classify the weighted ego networks of users as bot vs. human.
For the comparison, we extract topological features of these ego networks using persistent homology.
We compute the persistent homology using the weight rank clique filtration (explained in Section 2.1.4).
At the beginning of the filtration, We add all vertices. Then, we add the edges in the order based on
their weights. Finally, we add any n-simplex at the maximum value of its edge weights for n > 1.
This construction allows us to stress the importance of the edge weights in the filtration. At the end of
the filtration, we encode the topological features of weighted ego networks into persistent barcodes.

Example 5. In Figure 5, we present examples of ego networks and their corresponding persistent barcodes for
a bot user (a) and a human user (c). As we see from the figures, ego networks of a bot and a human user have
different network structure and so their persistent barcodes are different.

After computing persistent homology and creating persistence barcodes for each ego network,
we calculate the bottleneck distance between barcodes for a given dimension to compare and compute
the similarity of them. We create the similarity matrix of barcodes and also for ego networks of users
using the bottleneck distance values between barcodes.
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(d)
Figure 5. Ego network of a bot user (a), a human user (c), and their barcodes for dimension 0 and
dimension 1, (b) and (d), respectively. In each ego network, the ego is colored red and its neighbors are
colored blue. Also, the edges out-going from the ego are colored green, in-going to the ego are red and
other edges between the neighbors are colored blue.

3.3. Bot Detection

In the previous two sections, we first create the weighted ego network for each user and then
compute the similarity between ego networks using the bottleneck distance between their persistent
barcodes. Now, as the last step, we use this similarity matrix to extract features of ego networks in
our detection algorithm. There are two main steps in our detection algorithm: feature extraction
and classification.

For feature extraction, we use the multidimensional scaling (MDS) technique. MDS takes the
similarity matrix of data objects as an input and gives k-dimensional points in Euclidean space as the
output where the pairwise distance between objects is preserved. Hence, after obtaining the similarity
matrix between ego networks, we use MDS to extract features.

For classification, we apply the leave-one-out method to n-dimensional linear discriminant
analysis (LDA) projection of these k-dimensional scores with n ≤ k. LDA is used as a tool for
classification, dimension reduction, and data visualization. The basic idea in LDA is to maximize
the variance of the data and the separation between multiple classes. In the leave-one-out method,
one user is selected and left out from the corpus, and the remaining is used for LDA. Then, we project
the left-out user’s feature vector using this LDA projection. Our main motivation in using LDA is to
use it in the leave-one-out method, not for the dimension reduction. However, we can choose n as 2 or
3 for the data visualization proposed. As the final step, we check the k-nearest neighbors in the LDA
projection to decide the class of the left-out user.
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4. Experiment

In this section, we first introduce the dataset we use in our experiments. Then, we share the
detection results for different persistent barcode dimensions and metrics.

4.1. Dataset

We create our dataset using the dataset in [51] that includes labels of Twitter users as human or
both. However, this dataset does not include network features of each user as well as other useful
predictors such as the number of followers and friends. Also, it does not provide ego networks for
each user as well. From this dataset, we select the users whose number of edges is less than 100 since
downloading large ego networks is taking too much time on Twitter APIs. As a result, we download
the ego networks of 56 users, 37 bots and 19 humans, along with their network features.

4.2. Results

In our experiments, we compute 0-dimensional and 1-dimensional persistent barcodes of the ego
networks of users using the weight rank clique filtration. In the filtration, we add the edges using their
weight. In the edge weight computation, we select the scale parameter L = 100, i.e., the maximum
filtration value is 100. Actually, changing this parameter value will only scale the similarity matrix,
hence will not change the classification results. For each dimension, we compute the similarity matrix
using the bottleneck distance. We then project barcodes into an 8-dimensional Euclidean space by the
MDS technique. The reason why we choose 8-dimensional MDS is that later in Section 4.3, we will
compare our method with eight different graph-theoretic centrality measures. Furthermore, we create
another set of feature vectors to see the performance of both dimensions when used together. We define
another similarity matrix using the similarity matrices of 0 dimension and 1 dimension. For given two
ego networks, we define this similarity as

Bd01 =
√

Bd2
0 + Bd2

1

where Bd0 and Bd1 are the bottleneck distance between their 0-dimensional and 1-dimensional
persistent barcodes respectively.

After that, we apply the leave-one-out method to 3-dimensional LDA projection of these
8-dimensional scores. The reason we choose a 3-dimensional LDA projection is to be able to visualize
the distribution of each user in 3-D space (Figure 6).

Lastly, we choose k = 5 in the nearest neighbor algorithm, i.e., we check the 5-nearest neighbors
in the LDA projection. The validated leave-one-out experiment results for different dimensions and
evaluation metrics are available in Table 1.

Table 1. Detection results for different metrics and dimensions. The cells for the best result in each
column are colored gray.

Dimension 0 1 0&1
Accuracy 75.00 76.79 78.57
Bot-Recall 89.19 83.78 86.49

Bot-Precision 76.74 81.58 82.05
Human-Recall 47.37 63.16 63.16

Human-Precision 69.23 66.67 70.59

As we see in Table 1, the best results other than the bot-recall metric are obtained when we
use 0-dimension and 1-dimension features together. The reason is that different dimensions capture
different features of bot and human ego networks, hence utilizing these features together in the
classifier provides better results. More precisely, in this combined case, our method could correctly
detect 78.57% of the users. The recall rates for bots suggest that our method is very effective in detecting
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bots. We also observe from the recall rates that while 0-dimension features are the distinct features for
bots (89.19% for 0-dimension and 83.78% for 1-dimension), 1-dimension features are the distinct for
humans (47.37% for 0-dimension and 63.16% for 1-dimension). Hence, having 1-dimensional loops is
an important feature for humans. This is expected since humans tend to have more social interactions
than bots, i.e., they are a part of more social circles than bots. Also, as we see from the recall rates,
our method could detect bots better than detecting humans. In general, these results provide evidence
that the proposed method can be used in the bot detecting problem.

(a) (b)

(c)
Figure 6. Three dimensional projection by linear discriminant analysis (LDA) for 0-dimension
(a), 1-dimension (b) and 0- and 1-dimensions (c). Green points represent bots and pink points
represent humans.

4.3. Comparison

In this section, we compare our method with the classical centrality measures defined in
Section 2.1.2, namely in-degree, out-degree, betweenness, in-closeness, out-closeness, pagerank, hubs,
and authorities centralities. For each ego network, we compute the centrality scores and create an
8-dimensional feature vector for the ego. For a fair comparison, we apply the same classification
methods. We use a 3-dimensional LDA projection for the leave-one-out experiments and check the
5-nearest neighbors in the projection to decide the class of the left-out user. The comparison results are
available in Figure 7.

As we see in the figure, our method performs better than the baseline method for all different
evaluation metrics. The main reason is that these classical centrality measures are usually local and
mainly based on differences between either node or edge measurements, or correlations without
considering the network topology. On the other hand, persistent homology extract the structural
holes and higher-order interactions in networks that can give important information about network
topology [1,2].

To check the significance of our accuracy results compared with the baseline method, we use
the asymptotic McNemar test [52]. McNemar tests are hypothesis tests that compare two population
proportions while addressing the issues resulting from two dependent, matched-pair samples.
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Using this test, we statistically assess the accuracies of given two classification models. This test
first compares their predicted labels against the true labels, and then it detects whether the difference
between the misclassification rates is statistically significant. The test results suggest that the accuracy
results are statistically significant for 1-dim, and 0-dim and 1-dim together with the p-values p = 0.045
and p = 0.02 respectively, and marginally significant for 0-dim with the p-value p = 0.089.
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Figure 7. Detection results for different metrics and dimensions.

5. Conclusions

In this paper, we propose a novel method for bot detection in online social networks. We first
represent each user with a weighted ego network. We then construct the persistent barcodes of
ego networks to encode their higher dimensional topological features as the network features.
Next, we compute the similarity matrix of the ego networks using the bottleneck distance between
persistent barcodes and project them into an 8-dimensional Euclidean space by the MDS technique.
After that, we use the leave-one-out on a 3-dimensional LDA projection of these 8-dimensional MDS
scores, and use the k-nearest neighbor classifier to group each user with k = 5. The validated
leave-one-out experiments show that the proposed method is very effective in bot detection.
Furthermore, we also compare our method with the classical graph-theoretic centrality measures.
We show that our method is more effective than these measures since it also takes the structural holes
and the higher-order interactions in the network into consideration. This paper is the first study in the
literature showing the potential of using persistent homology in the bot detection problem.

As future tasks, we plan to apply our method not only to detect bots vs. humans, but also
detect different bot types, such as automated, fake pages, trolls, and also human types. Furthermore,
we also plan to use other networks on Twitter, such as the retweet network and hashtag network,
to check the effectiveness of our method. Also, we would like to use other filtrations on the ego
network, especially the ones that are sensitive to edge directions, such as the Dowker filtration [47],
for topological feature extraction.
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40. Karataş, A.; Şahin, S. A review on social bot detection techniques and research directions. In Proceedings of
the Interrnational Security and Cryptology Conference, Ankara, Turkey, 20–21 October 2017; pp. 156–161.

41. Chung, M.K.; Hanson, J.L.; Lee, H.; Adluru, N.; Alexander, A.L.; Davidson, R.J.; Pollak, S.D. Persistent
homological sparse network approach to detecting white matter abnormality in maltreated children: MRI
and DTI multimodal study. In Proceedings of the International Conference on Medical Image Computing
and Computer-Assisted Intervention, Nagoya, Japan, 22–26 September 2013; pp. 300–307.

42. Chung, M.K.; Hanson, J.L.; Ye, J.; Davidson, R.J.; Pollak, S.D. Persistent homology in sparse regression and
its application to brain morphometry. IEEE Trans. Med. Imaging 2015, 34, 1928–1939. [CrossRef]

http://dx.doi.org/10.1142/S0218654305000761
http://dx.doi.org/10.1007/s00454-006-1276-5
http://dx.doi.org/10.1002/hbe2.115
http://dx.doi.org/10.1016/j.ins.2018.08.019
http://dx.doi.org/10.1007/s10207-016-0321-5
http://dx.doi.org/10.1145/2872518.2889302
http://dx.doi.org/10.1145/3292522.3326015
http://dx.doi.org/10.1145/3274694.3274738
http://dx.doi.org/10.1145/3110025.3110163
http://dx.doi.org/10.1109/TMI.2015.2416271


Math. Comput. Appl. 2020, 25, 58 16 of 16

43. Benzekry, S.; Tuszynski, J.A.; Rietman, E.A.; Klement, G.L. Design principles for cancer therapy guided by
changes in complexity of protein-protein interaction networks. Biol. Direct 2015, 10, 32. [CrossRef]

44. Huang, W.; Ribeiro, A. Persistent homology lower bounds on high-order network distances. IEEE Trans.
Signal Process. 2017, 65, 319–334. [CrossRef]

45. Zhao, Q.; Wang, Y. Learning metrics for persistence-based summaries and applications for graph
classification. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver,
BC, Canada, 8–14 December 2019; pp. 9855–9866.

46. Chowdhury, S.; Mémoli, F. Persistent homology of directed networks. In Proceedings of the 50th Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016; pp. 77–81.

47. Chowdhury, S.; Mémoli, F. A functorial Dowker theorem and persistent homology of asymmetric networks.
J. Appl. Comput. Topol. 2018, 2, 115–175. [CrossRef]
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