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Abstract: This article deals with Sisko fluid flow exhibiting peristaltic mechanism in an asymmetric
channel with sinusoidal wave propagating down its walls. The channel walls in heat transfer
process satisfy the convective conditions. The flow and heat transfer equations are modeled and
non-dimensionalized. Analysis has been carried out subject to low Reynolds number and long
wavelength considerations. Analytical solution is obtained by using the regular perturbation method
by taking Sisko fluid parameter as a perturbed parameter. The shear-thickening and shear-thinning
properties of Sisko fluid in the present nonlinear analysis are examined. Comparison is provided
between Sisko fluid outcomes and viscous fluids. Velocity and temperature distributions, pressure
gradient and streamline pattern are addressed with respect to different parameters of interest.
Trapping and pumping processes have also been studied. As a result, the thermal analysis indicates
that the implementation of a rise in a non-Newtonian parameter, the Biot numbers and Brinkman
number increases the thermal stability of the liquid.

Keywords: Sisko fluid; asymmetric channel; pumping and trapping; convective conditions

1. Introduction

Peristaltic transportation of fluid via distensible tubes/channels is a crucial problem in modern
fluid dynamics because of its strong role in physiological and technological processes, such as,
intra-urine fluid motion, blood circulation in blood vessels, food swallowing via the esophagus, chyme
motion through the intestines, semen transfer through efferentes, toxic and hygienic liquid transport,
finger and roller pumps, etc. Since the initial investigations of Latham [1] and Shapiro et al. [2],
several theoretical and experimental attempts regarding peristalsis have been made through abrupt
changes in geometry and realistic assumptions including long wavelength, low Reynolds number,
small wave number, small amplitude ratio etc. Jaffrin and Shapiro [3] arranged review of much
of the early literature on the peristaltic transport. Rath [4] documented important literature on the
peristaltic transport up to 1978. Since then abundant literature exists on peristalsis of viscous and
non-Newtonian fluids in channels/tubes through different aspects. Mention may be made to some
relevant works [5-11] and many refs. therein.

Analysis of bioheat is related to the heat transfer in the human body, therefore biomedical
engineers has investigated the bioheat transfer in tissues recently. No doubt heat transfer in living
being’s tissue involves metabolic heat generation, conductive heat transfer in tissues, pumping of
arterial blood across tissue pores and external interaction such as radiation emitted from mobile
phones. Motivated by such facts, various researchers have analyzed the peristaltic flow of different
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fluids models in a channel/tube with heat transfer. A conceptual structure is given by Javed [12] for
peristaltically driven non-Newtonian liquid in heated channel with the Hall effects. Ahmed et al. [13]
investigated flow of Sisko nanomaterial with mixed convection and Joule heating effects. Heat
transfer in CNTs based nanomaterial is described by Nadeem et al. [14] with electro-magnetized
plate. A comparative study of different types of peristaltically driven nanoparticle fluid flow with
temperature dependent effects are scrutinized by Abbasi et al. [15]. Nisar et al. [16] has demonstrated
the significance of activation energy in radiative peristaltic transport of Eyring-Powell nanofluid.
Khan et al. [17] explored the thermal radiation and heat source/sink on MHD time-dependent
thin-film flow of Oldroyed-B, Maxwell, and Jeffrey fluids. MHD peristaltic flow in porous medium
with heat and mass transfer is addressed by Reddy [18]. Some other relevant studies in this direction
may include the works given in the attempts [19-25].

In prior studies on peristalsis, heat conversion was primarily addressed via the prescribed wall
heat flux. In addition, the flow of convection heat is defined as the mechanism through which the
transmission of heat happens by the transfer of mass. The change in heat flow is attributed to the
bulk motion of the fluid in different physical systems, such as between the fluid and the solid surface.
Heat transfer among the solid boundary and the static fluid takes place on the basis of conduction.
These problems lead directly to boundary conditions by Fourier ’s thermal conduction law. Besides
that, the flow of heat among the solid boundary and the dynamic fluid is subjected to convection
and conduction. The boundary condition in such a dilemma is that of Newton ’s cooling law and
Fourier’s heat conduction law. Such type of boundary conditions is referred to as the convective type.
Convective conditions play a vital role to maintain the fresh air ventilation and membrane-based
heat mass exchangers. These are also essential in the process of heat transfer such as hemodialysis,
Cancer treatment and so forth. Heat transfer with convective boundary conditions is implicated in
mechanisms like gas turbines, thermal energy storage, nuclear power plants etc.. In this context, some
recent studies [26-31] are observed in which the study of non-Newtonian fluid flows with peristalsis
are conducted in the vicinity of convective conditions.

The present research article is different from published data in the sense of convective boundary
conditions. The peristaltically driven Sisko fluid flow with convective heat transfer conditions is not
addressed so far. Therefore, the purpose of present study is to address the peristaltic transport of Sisko
fluid in an asymmetric channel with convective conditions. Asymmetric nature of channel is important
with regard to application in intrauterine fluid flow in a non-pregnant uterus. The governing equations
of momentum and energy subject to low Reynolds number and long wavelength are solved for series
solutions. Flow and heat transfer characteristics are examined by displaying graphs. A detailed
discussion around sundry parameters involved in the flow and temperature equations is presented.

2. Formulation of Problem with Constitutive Equations

We interpret the movement of Sisko fluid through an asymmetric channel with incompressibility
(see Figure 1). The fluid flow is taken along X-axis and Y axis is taken normal to the channel walls.
The flow deformed is due to the following sinusoidal waves:

hi(X,f) = di+ajcos 2777:()_( —cf), upperwall,
hy(X,f) = —dp—apcos <2;(X —cf)+ (,b> , lowerwall. 1)

In these expressions, c denotes the wave speed, a1, a4, are amplitudes of the upper and lower
waves, respectively, A is the wavelength, the width of the asymmetric channel is dy + d;, the phase
difference ¢ (the range of ¢ is between 0 and 77 as ¢ = 0 corresponds to waves out of phase whereas
¢ = 7 refers to the waves that are in phase). Furthermore, a1, a3, d1, d2 and ¢ fulfill the requirement
given as:

a3 + a3 + 2a1ay cos ¢ < (dy + do)*. )
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The definition of incompressibility is specified by
divV = 0. ®)

The laws of linear momentum and energy for the present model are

pc{%/ = —gradp + divS, (4)
T _
0 cp% = kV2T + .(gradV), (5)

where the velocity is denoted by v, density of the Sisko fluid is p, d/dt is material time derivative,
T represents the temperature of fluid, k the thermal conductivity of the material, ¢, the specific heat
of fluid. Body forces are not taken into account for the presented problem. Moreover, the Cauchy
stress tensor is denoted by 8 = —pI + S, the pressure with p, the extra stress tensor with S and

2 2 ey
V2= a‘% + aa? (Here, the overbar corresponds to the vector quantities).

a o
kg =—m(I-Ty)

a _
kg =—m(T-To)

A

Figure 1. Geometry of the problem.

The transfer of heat with the surrounding of the walls through Newton ’s cooling law is
accompanied by

oT -

ka?— = —m(T—T) at §=h, (6)
oT _

kafy = —172(T — T[)) at 7y = hy, )

where 1and 75, T and T are the heat transfer coefficients and the temperatures at the upper and the
lower channel walls respectively.
For two-dimensional flow of Sisko fluid, we have the velocity V and extra stress tensor S [6,13] in

the forms:
V = (U(X,Y,0),V(X,Y,0),0), ®)
_ —n—1] _
S—{oc—i—/ﬂ’ f }Al, )
Ay =L+ L, L= grad¥, 11 = r(A}). (10)

Here the fluid parameters 1, x and f are defined differently for specific fluids, the second invariant
of the symmetrical portion of the velocity gradient is IT and A;is the deformation tensor rate. It is
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worth mentioning that forn =1, 8 =y, « = 0 or f = 0, « = y the Newtonian fluid model is obtained,
and also for & = 0 the power-law model can be recovered.

If in wave-frame of reference, (%,7) represents the coordinates and (i, 7) represents velocity
components then we can describe

x=X—cf, y=Y, a(x,y7) =U(X,Y,{) —¢c, o(x,7) = V(X,Y, i), T(x,7) = T(X,Y,§), (11)

where (X,Y) are the coordinates in the fixed-frame of reference. Using the above Galilean
transformations and incorporating the aforementioned dimensionless variables

S VR P S N
D Y A A T b= a(dy/c)n1’
oy g g, T-T
hy = dl'hzidl'ti)\'Silucs'eiTl—To' (12)
and the stream function ¢(x, y) by
_9% 599
u= 5 U= 5@’ (13)
Equation (3) is satisfied identically and Equations (4) and (5) yield
dapd  dY d\ (I dSxx  9Sxy
oRe Kay dx  ox ay) <8y>} +8x 0 ax dy ’ (14)
op d  JdP 0 oY ap 0Sy aS
_ 53 e RS 9% 9F _ 277 vy
oRe [(ayax 8x8y> <8x +8y 0 ox o ay ’ (15
oY 0  JYP 0 1 (5, 82
92 2 2
Y Y 207
+EC{ axdy (Sxx Syy) + (ayz 02 Sxy ’ (16)
where the extra stress tensor components come from Equation (9). These are given by
2(n-1)/2
oty Ly o Py o
Syx =26 [1 +b Er 1 +46 <8y8x> ayax’ (17)
2(n-1)/2
L AT AR Py 29y
212(n—1)/2
__ 2y 2P p(FE G
Syy =26 |1+0b e -0 522 + 46 Syox ayax (19)

According to the above equations, the Reynolds number Re, the dimensionless wavenumber J,
the Eckert Ec and the Prandtl Pr numbers are specified by

Re="~—,6=—, Ec= ——+—, Pr=—". 20
r A T = Tojey k (20)

Now Equations (6) and (7) give
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26 .

@+B11(9—1) = Oaty:hl, (21)
06 .
@ + Bi = Oaty=hy, (22)

where Bi; = #1d1/k and Biy = 1,d1 /k are the symbols used to denote the Biot numbers.
Upon taking into consideration the assumptions of Re — 0 (low Reynolds number) and § < 1
(long wavelength) [2], Equations (14) and (15) become

dp _ 95y
ap _
@ =0. (24)

The above calculation reveals that p is independent of y. Eradicating the pressure p in
Equations (23) and (24) one can obtain

82 Sxy
W 0. (25)
Furthermore, Equation (16) reduces to
926 9%y
o+ (58 ) =0 0
where the Brinkman number Br is defined by
Br = PrEg, (27)
and Syy is given by
. 821’[] (}'171) azlp
. . . . « | 0%y (n-1) i .
Here apparent viscosity is written as { 1+b e . Whenever increasing shear rate

decreases the apparent viscosity, then fluid is supposed to have shear thinning effects. On the other
hand, subject to the higher shear rate, if the apparent viscosity increases, then fluid is called shear
thickening fluid. Therefore, Equation (28) describes that when n < 1, fluid exhibits shear thinning
effects whereas when n > 1, it shows shear thickening effects. But when n = 1 one can obtain the case
of Newtonian fluid.

In the fixed-frame, the instant volume flow rate is represented as

h(XEH
Q= _  UXY,bady. (29)
Jhy(%7)
The volume flow rate g in moving frame is

(%) _(_ _) B (30)
= u(x,7)dy.
q Fa(%) y)ay

From Equations (11), (29) and (30) we can write

Q=g+ chy(x) — chy(x). 31)
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Over a period 7, the time-mean flow denoted by Q is calculated as

- 1t
0= - / QdF. (32)
TJo
Merging Equations (31) and (32) and integrating the subsequent expression, one can get
Q=g +cdy + cdy. (33)

Classifying the dimensionless time-mean flows as F and © in the wave and laboratory frames
respectively by

_ 4 5_ 9
F_cd1’®_cd1’ (34)
Equation (33) becomes
with
F= " 4y — () — p(ia()) (36)
() ayyilplx i)

The dimensionless forms of h; (i = 1, 2) are
h(x) =1+acos(2rtx), hy(x) = —d — beos(2mtx + ¢), (37)
where a = a1/dq1, b = ay/dy, d = dp/dy and ¢ obey the following relationship
a* + b +2abcosp < (1+d)>. (38)

In moving frame, the dimensionless stream function has the following conditions at the walls:

F o

vo= 5 %Z_l’ aty = h(x), 39
F 0

v= % %Z_lf aty = hy(x). (40)

3. Systematic Solution Process

The resultant Equation (25) is an exceptionally non-linear. The exact solution in closed form
appears unlikely for arbitrary values of parameters included in this equation. To solve the highly
nonlinear differential equations, we have used the regular perturbation method based on a small
parameter as exact solution is not possible. This method is useful for finding an approximate solution
to the problem, by starting from the exact solution of a related and simpler problem. This method is
more effective as it gives the solution in form of convergent series. Priority is therefore based on the
small parameter b* which will give series solutions. That is why we are going to expand ¢, 0, Sy, p
and F as:

v o= o+ ()1 + ...,

0 = 6o+ ()0 + ...,

Sy = Soxy+ (b")S1y+ (41)
p = po+(b")p1+ ...,
F = R+ 0)R+..

Replacement of equations described above into Equations (21)—(26), (28), (31), (39), (40) and then
accumulating the like power terms of b*, we get the following systems of equations:
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3.1. Zeroth Order System

a4
Ty‘/f _ o, (42)
8290 821/)0
dpo 83470
dx o 44
K 26, .
Yo="2, aiyf’ =1, 5 BB~ 1) =0, at y=h(x) (45)
-F 9 6 .
Py = TO, aiyo = -1, afyo-i-Ble():O, at y:hz(x). (46)
3.2. First Order System
32 anJO n alel
a | (a) +5| =0 @
226, o) (P, (Pwo )" _
W+Brz(ay2>(ay2>+(ay2> - 4
dpr 9 | [(Pyo\" Py
dx—ay[(ayz oy @
J) 00 .
P = 31 aiyl =0, aT/l +Biyf; =0, at y = hy(x), (50)
-F 9 0 .
P = Tl, aiyl =0, 87‘1/1 + Bi0; =0, at y = hz(x). (51)

In the subsequent two subsections, we will evolve the solutions of above systems.

3.3. Solution at Zeroth Order
The solutions to the Equations (42) and (43) according to the constraints mentioned in

Equations (45) and (46) are

o = Riy®+Roy? 4+ Ray+ Ry, (52)
O = At + AP+ Azy? + Agy + As, (53)

where the quantities involved in above equations are given in Appendix A.
The longitudinal velocity and pressure gradient are given by

uy = BRyy?+2Roy + Rs, (54)
dpo  _
oo = 6Ri. (55)

The dimensionless form of pressure rise per wavelength is denoted by (AP,,) and obtained by
rd
Po
APy, = [ ——dx.
y 0/ 1045 (56)

We noticed that the solutions presented at this order refer to the solutions of Newtonian fluid flow.
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3.4. Solution at First Order

Using Equation (52) into Equations (47)—-(49), resolving the corresponding equations and
implementing the relevant boundary conditions, the first-order solutions for ¢4, uy, dp;/dx and
01 are obtained in the forms given below.

P = M [3F By (316 — 6hpy? + 4y> + 3hy (h3 — 4hoy + 2y2)>
+2" " {2R3By7y® — 3h5Ry*(B1g — 3nRy Bysy) — 3haRoy* (Bao — Bary)
+h3 (3R Roy(Bo — 2(Ra 4+ 3Ryy)") + R3(Bia — (R2 4+ 3Ryy)")
—9R3Y*(By + (Ry +3R1y)")) + 11} (Bas — 3R1Ray(Bas — 2(Ry +3Ry)")
+9RTY*(Bas + (R + 3R1y)") + R3(~Bus + (R + 3R1y)") — 3haRi(Bary
+n(Bos + Baoy))) — 3h7(Bso — h5R1B17(Bs1 + Bazy) + Riy*(Bss + Basy)
+ha(~3RTy* (B3s — 3(Ra + 3R1y)") + R3(~Biz + (R2 + 3Ryy)")
+RyRyy(Bss + 6(Ra + 3Ryy)"))) + 3h1 (—Ray* (Bao + Bazy) + haBy7y(Bag
+Bagy + Baoy?) + I3R1(—Bazy + n(Ba1 + Baay)) + h5(—3R7y*(Bas
—3(Ry +3R1y)") + R3(—Biz + (Ry + 3Ryy)")

+R1Roy(Bas + 6(R2 +3R1y)"))) }], (57)
W = M+ My + Msy* + My(Ry + 3Ryy)" 1, (58)
d 2
% = _m[“ﬁn +2"{Bi4 + 2R3(B1z — Bi3) + 3haRy Ry((n +2) By
+(n —2)By3) + 31 R1(B1s — Rp((n — 2)B1a + (n +2)By3)) }, (59)

where the quantities described in the above calculations are displayed in Appendix A. Furthermore,
61 = L1(Ry +3R1y)" "> + Loy* + Lsy® + Lay” + Lsy + Le, (60)
in which the values (L; — Lg) are being conveniently obtained by algebraic calculations.
Over a period 277, the pressure rise per wavelength is denoted by (AP), ) and calculated as follows:

27'[d
AP, = / %dx. 61)
0

The perturbation expressions of ¢, 6, APy and dp/dx upto O(b*)! are

v o= o+ (")

0 = 6o+ (b")6.
dp _ dPO * dPl
i e i e
APy = APy, + (b*)APy,. (62)

4. Results and Discussion

4.1. Pumping Characteristics

In this section the perturbed results of the Sisko fluid model are illustrated in Figures 2-7.
The variability of pressure gradient (%) for particular values of the sundry parameters are seen in
the Figures 2—4. The alteration of the pressure gradient Z—i for non-identical values of the Sisko fluid
parameter b* is sketched in Figure 2. The material parameter b* for Sisko fluid shows the ratio of a
power-law component to a viscous partif n # 1. Whenn # 1, b* = 0 denotes a viscous fluid. Therefore,
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Figure 2 predicts that Z—Z across the narrow part of the channel is constructive and therefore prevents

the flow. But in the wider part of the channel, % is negative which facilitates the passage of fluid. For
such a case the peristaltic pumping is more dominant and movement is in the peristaltic direction.
Figure 3 reflects the influence of various values of the phase difference ¢ on Z—i. The Figure 3 clearly
shows that the longitudinal distribution of Z—fi dissipates as the phase difference ¢ rises. In Figure 4
the axial distribution of % is depicted for three non-identical values of n. The fascinating phenomena
(found in Figure 4) is that, generally, the difference of Z—Z for the shear-thickening fluid (n > 1) is
much higher than that for the shear-thinning fluid (n < 1) although these phenomena described
above are same in a qualitative sense for the Newtonian fluid (n = 1), a shear-thickening fluid and a
shear-thinning fluid. The difference between all these cases is easily identified when total pressure
rise over a wavelength is considered. Notice that determining pressure rise requires the integration
of %' The integral which emerges is non-analytically solvable. Consequently, the associated integral
is determined numerically. Figures 5-7 illustrate the relation between pressure rise per wavelength
(Apy) versus flow rate (©) for several values of b*, ¢ and n, respectively. It is perceived that Ap,
increases with an increase in b* and n (Figures 5 and 7) and decreases with increasing ¢ (Figure 6).
Effects of various Sisko fluid parameter and phase differences are displayed in the Figures 5 and 6
only for a shear-thickening fluid (n = 1.5). From Figure 7, for a Newtonian fluid (n = 1), a linear
relationship is observed between Ap, and ©. Physically, the positive values of flow rate assists the
peristaltic pumping whereas the negative values of flow rate opposes the peristaltic pumping which is
called retrograde pumping. For a shear-thickening fluid (n > 1), quite higher j—i is required than for a
shear-thinning fluid. (n < 1). That is indeed in-between for the Newtonian fluid (n = 1).

4 F ‘ ‘ :
v — b*=0.0 [’
sl ‘\\ - b*=0.4 ]
\ ---b*=0.8 It
2 L
=X
o
o 1}
©
0 |
1}
T
-0.6 -04 -0.2 0 0.2 04

Figure 2. Variation in dp/dx for b* witha =1.0,b =07, d =12,n=15,¢ =n/2and © = 1.

e rf):O
80 f --—- p=7/6
---p=m/4
60}
P
L
540
20t
ot e

> o

Figure 3. Variation in dp/dx for ¢ witha =1.0,b=0.7,d =12, n =15,b* =02and ©® = 1.
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dp/dx

-0.6 -04 -0.2 0 0.2 04

Figure 4. Variation in dp/dx forn witha =1.0,06 =0.7,d =12,0* =02, ¢ = 1/2and ©® = 1.

~ "
\ s
~ ---- b*=0.
40
~o ~ ---b"=0.8
20t
&
<]
ot
~20 ¢+

-1 0 1 2 3

®

-1.2 -1 -08 -0.6 -04 -0.2 0

®

Figure 6. Variation in Ap, versus © for ¢ witha =1.0,b =0.7,d =12, n = 1.5and b* = 0.2.
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30

20t

10 +

Apy

10}

Figure 7. Variation in Ap, versus © for n witha =1.0,b =0.7,d =1.2,b* =02 and ¢ = /4.
4.2. Velocity Profile

As the peristaltic flows in channel are considered as Poiseuille flow, therefore, the maximum
velocity is at the center of the channel. This subsection is dealt to observe this phenomenon. Figure 8a,b
display the influence of b* on the fluid velocity u for two different values of the power-law exponent
n = 0.5 and n = 1.5, respectively. It is perceived that increasing b* strengthens the power-law effect
of Sisko fluid under investigation. In the case of n = 0.5, increasing b* originates the thin boundary
layers. In contrast, when n = 1.5, increasing b* is a source of thicker boundary layers. Figure 9 shows
the velocity profile with three different power values n. Here, for better understanding of fluid’s
rheology, we explore the shear-thickening (n = 1.5) and shear-thinning (n = 0.5) fluids and then make
a comparison with Newtonian fluid (n = 1). Obviously, for a shear-thickening fluid (n = 1.5), no sharp
boundary layers are emerged along the surface of the wall. Conversely, for a shear-thinning fluid
(n = 0.5), two thin boundary layers can be observed just next to both walls. Behavior in Newtonian
fluid (n = 1) resides between the two cases.

-1 -05 0 05 1 1.5

y

Figure 8. Cont.

()



Math. Comput. Appl. 2020, 25, 52 12 of 19

-0.2¢}

-04 ¢}

-06¢

-08¢}

-1 -05 0 05 1 1.5

y (b)

Figure 8. (a) Plot of u for b* witha =0.6,b =03,d =1.0,¢ = /4,0 =1, x = 0and n = 0.5; (b) Plot
of u for b* witha =0.6,0=03,d=10,¢ =7/4,0=1,x=0andn = 15.

0

-0.2

-0.4

-
-0.6

-0.8

-1 -0.5 0 0.5 1 1.5

y

Figure 9. Plot of u for n witha = 0.6, =0.3,d =10, =71/4,0® =1, x =0and b* =0.2.
4.3. Heat Transfer Profile

The results of various evolving parameters on the temperature profile 6 are addressed here.
Figures 10 and 11 indicate the rise in fluid temperature attributed to convective conditions
(for shear-thickening fluid only). It should be noted that the fluid temperature, in general, increases
with an increase in the value of material parameter b* and the Brinkman number Br. Figure 12
portrays the influence of Biot number Bi; on temperature profile 6 (for shear-thickening fluid n = 1.5).
This figure demonstrates that the temperature profile § for the Biot number Bi; reduces at the
upper wall of the channel by rising the Biot number Bi; while it does not show any effect near
the lower channel wall. Figure 13 illustrates the effects of Biot number Bi, on temperature profile 0
(for shear-thickening fluid n = 1.5). It is observed that the temperature 6 increases near the lower wall
by increasing the Biot number Biy. The values of Biot numbers are taken to be larger than 1 which
shows the nonuniform temperature fields within the fluid. It also shows that convection is much
faster than conduction. So the chosen parameters are realistic from practical point of view because
of their application in biomechanics, heat exchangers, gas turbines etc.. The effect of different power
values n on the temperature can also be clearly observed from Figure 14. This figure indicates that the
temperature intensifies for n = 1.5 (shear-thickening fluid) then that of a shear-thinning fluid (n = 0.5).
Moreover for (n = 1) it lies above these two.
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— b*=0.0 -~ ~

12}

08}

06 |

04}

02}

13 of 19

Figure 10. Variation in 6 for b* witha =0.3,0 =0.3,d =06, ¢ =n/4,0=1,x=0,n =15, Br = 0.5,

Bil =1and Biz =10.

—=
i1 [—Br0.0 -~ AN
-~
-~ Br=0.2 Ve ——— - A
ool |---Bro4 s - p
06}
R
04}
0.2}
N | | | | .
Y 0 05 1 1.5
y

Figure 11. Variation in 6 for Br witha = 03,6 =03,d =06,¢ =n/4,0 =1,x=0,n=15,b* =0.2,

Bi; = 1 and Bi, = 10.
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12 F T
— Bi=1
.1 | Bi=2
---Biy=3
08}
< 08 |
04}
02}
oL . . . . ‘
-0.5 0 05 1 1.5

Figure 12. Variation in 6 for Bi; witha = 03,0 =03,d =06, ¢ = /4,0 =1, x =0, n = 15,
Br = 0.5, b* = 0.2 and Bi, = 10.

-0.5 0 05 1

y

Figure 13. Variation in 6 for Bip witha = 03,0 =0.3,d =06, ¢ =7/4,0=1,x=0,n=15,Br =05
and Bi; = 10.



Math. Comput. Appl. 2020, 25, 52 15 0f 19

-0.5 0 0.5 1 1.5
y

Figure 14. Variation in 0 for n witha =0.3,0 =0.3,d =0.6,¢ = 71/4,0=1,x=0,b* =02, Br =0.5,
Bi; = 1 and Bi, = 10.

4.4. Trapping

Usually, in the wave/moving frame, the shape of streamlines is related to the boundary wall
movement. However, some of the streamlines split and surround a bolus under certain conditions
and this bolus moves entirely with the wave. This is a well-known phenomenon called trapping.
Figure 15 shows the streamlines for n = 0.5 (panels (a), (b)), # = 1 (panels (c), (d)) and n = 1.5
(panels (e), (f)) with two values of phase difference, i.e., ¢ = 0 (left panels) and ¢ = 7/2 (right panels).
Near the channel walls, streamlines strictly follow the waves on walls and these waves are generated
due to relative motion of the distensible channel walls. Further, a bolus is formed in the central
region. When we compare the flow fields which are obtained from choosing different values of 1, we
depict that the bolus alteration is slower for shear-thinning fluid (i.e., panels (a) and (b)) than that
for a shear-thickening fluid (i.e., panels (e) and (f)). Furthermore, Newtonian fluid case lies between
these two.

0.‘6 0.‘8 1.‘0 1.‘2 1.‘4 (a) 0.‘6 0.‘8 1.‘0 1.‘2 1.‘4 (b)
Figure 15. Cont.
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Dlﬁ DIS IID 1‘2 1‘4 (e) Dlﬁ DIS llﬂ llﬁ 1‘4 (f)
Figure 15. Streamlines for n = 0.5 (panels (a) and (b) shear-thinning fluid), n = 1 (panels (c) and (d)

Newtonian fluid) and n = 1.5 (panels (e) and (f) shear-thickening fluid) with ¢ = 0 (left panels) and
¢ = /2 (right panels). Wherea = 0.5, =0.7,d =1,b* =01and ® = 1.5.

5. Major Outcomes

This article is written to investigate the motion of Sisko fluid under the effects of convective
conditions at the walls if asymmetric channel. Comparison is presented between shear-thickening,
Newtonian and shear-thinning fluids by choosing different values of material parameters. Peristaltic
flow characteristics such as trapping and pumping are reported from the presented perturbed results.
Pressure rise per wavelength increases with an increase in Sisko fluid parameter which assist the fluid
flow. The slower alteration in the size of the trapping bolus is observes for shear-thinning fluid than
that for a shear-thickening fluid. The thermal analysis indicates that the implementation of a rise in a
non-Newtonian parameter, the Biot numbers and Brinkman number increases the thermal stability of
the liquid. To the best of our knowledge, such observations have never been reported for the peristaltic
flow of Sisko fluid.
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Appendix A

Here we provide the quantities appearing in the flow analysis:

Rq

Ry

—2(Fy+hy — hy)

(hy —hp)3 7
3(F0 +h — hz)(l/ll + hz)

(hy — hy)3 ’
—h3 — 6Fyhyhy — 3h2hy + 3hyh + 13
(h — hy)3 ’
—(h1 + ho) (2hiha(—=hy + hy) + Fo(hi — 4hiho + h3))
2(hy — hy)3 ’

Biz + Bil(—l =+ Biz(hl — hz)),
3h3R% 4+ 3h1 Ry Ry + R3, B3 = 3h3R% + 3mR1 R, + R3,
3(ht — h3)RT + 4(h} — h3)RiRy + 2(h] — h3)R3,
1+ Bighy, Bg = —4h1ByBs, By = 913R% 4 8h,R Ry 4 2R3,
B3 + haR Ry + R3,
—3(h7 — 4h3)RT — 4(h] — 3h3)R1Ry — 2(hi — h3)R3,
3(—h} + 13)R2 + 4(—h? + h3)R1Ry + 2(—hy + h2)R3,
—3BrR3, A, = —4BrRiR,, Az = —2BrR3,

Bil (4BiyBriy By + Biy { —4BrhyBs + Bin(1 + BrBy)}],
By

(2+43n+4n*)R3, By = (3h1Ry + Ry)",

(3h3R1 + Ry)", Biy = —9nR3(h3Byy + H5By3),

(n —2)Bip + (14 2)By3, Big = h3 —3hihy + I3,
Bi2 — B13, Big = Bz + By,

R (4B17 +n(B2 + Big)), B = R2Bi7,

Ry(By2 + Bi7 +nByg), Ba = (n+2)Byy,

(n —1)Bi3, By = 9h5R7(—Biy + nBig),

(1 +2)B13, Bas = (n—1)Byy,

1 . .
—[Br{Bg + h2(B7 + BsBg) } + Bii{—1+ BrhBg + Bizha(—1+ BrhiByg) }],

17 of 19
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M, = —— [3B11F1 (hl — hz) + 2"{B17B39h1h2 + Rl(—ng,h%
Bi1(h1 —h2)3
+3BoshiRy — hy(—3BashiRy + hy(Bio + 3(Bashy + Bashz)Ry)))
—Bao(h1 +h2)Ra}],
M; = M[6B11F1 + 2"{3B1;7Byoh1hy — 3B34hRy
+9nB13h%R% - 3337h1R2 + 3B21h2R2 + 2317R%}],
M, — 2”(7’1 + Z)Rl .
By
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