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Abstract: In this work, a generalization of a synchronization methodology applied to a pair of chaotic
systems with heterogeneous dynamics is given. The proposed control law is designed using the error
state feedback and Lyapunov theory to guarantee asymptotic stability. The control law is used to
synchronize two systems with different number of scrolls in their dynamics and defined in a different
number of pieces. The proposed control law is implemented in an FPGA in order to test performance
of the synchronization schemes.
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1. Introduction

Dynamical systems that exhibit chaotic behavior have proven to be very useful in science and
engineering, for this same reason it is important to look for implementation alternatives that are fast
and reliable. FPGAs are a very useful technology for these types of needs, due to their flexibility and
the user friendly programming approach.

Since the discovery of systems with chaotic behavior, multiple analysis have been carried out [1–4],
and the topic of synchronization of this class of systems has been a highly studied topic during the last
30 years [5]. This is due to the mistaken perception that this class of systems cannot be synchronized
due to the complexity of their dynamics. This myth vanished in 1983 thanks to Yamada and Fujisaka [6]
where a methodology for the synchronization of two chaotic systems using bidirectional coupling is
presented, meanwhile in 1990 Pecora and Carroll [7] proposed the synchronization of the drive
and response systems with different initial conditions. Since then, a wide series of alternative
methodologies for the synchronization of chaotic systems have been developed [8–16] and thanks to
this methodologies, a vast quantity of possible applications have been found in science and engineering,
from physics [17,18], optics [19,20], biology [21–23], chemistry [24,25] and specially in the branch of
secure communications [26–28].

A wide variety of chaotic systems have been implemented in circuits [29–33], this class of circuit
implementations have certain disadvantages, such as the fact that they need very large changes in
case the system wants to be modified. FPGAs have shown great flexibility in this regard [34–36] and
although the original system changes, the only significant change is the reprogramming of the FPGA,
which represents a great advantage when working on prototyping of new applications, a situation that
represents cost savings and implementation times.
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The aim of this work is to generalize a master–slave synchronization methodology in order to
synchronize two chaotic systems with heterogeneous dynamics, which means that the master system
and the slave system do not need to present the same behavior through time and it is not necessary that
they are defined in the same number of parts, for example, the master system can be a system defined
as a piecewise system, with n parts, while the slave system can be defined in a single part, with a single
domain. In addition to this, the implementation of the most representative synchronization scheme is
carried out in an FPGA, which allows these schemes to be used in multiple different applications.

The rest of this work is divided in the following way: in Section 2 the systems with which
we will work are presented and a brief description of them is given; in Section 3, four different
synchronization schemes are presented, including the methodology; in Section 4 the implementation
of one of the schemes in an FPGA is presented and the results obtained are shown; finally, in Section 5
the conclusions are presented.

2. Preliminaries

This section presents in a non exhaustive way the dynamical systems that will be used in the rest
of the paper.

2.1. The Generalized Lorenz System

Consider the generalized Lorenz system (GLS) defined in [37] as

ẋ =

a11 a12 0
a21 a22 0
0 0 a33

 x + x1

0 0 0
0 0 −1
0 1 0

 x, (1)

where x = (x1, x2, x3)
T . Four typical chaotic systems can be specified from (1): (i) Classical Lorenz

system with a12 = −a11 = a, a21 = c, a22 = −1 and a33 = −b; (ii) Chen system with a12 = −a11 = a,
a21 = c− a, a22 = c and a33 = −b; (iii) Lü system using a12 = −a11 = a, a21 = 0, a22 = c and a33 = −b;
(iv) Unified chaotic system with a12 = −a11 = 25 + η, a21 = 28− 35η, a22 = 29η − 1 and a33 = − 8+η

3 ,
where a, b, c ∈ R+ and η ∈ [0, 1].

2.2. Unstable Dissipative Systems

Now consider a unstable dissipative system (UDS) defined in [38] as

χ̇ = Aχ + B, (2)

where χ = (χ1, χ2, χ3)
T , A = (αij)

3
j=1 and B contains the switching law of the form

B =


B1 i f χ ∈ D1,
B2 i f χ ∈ D2,
...

...
...

Bk i f χ ∈ Dk,

(3)

with Bk = (bk1, bk2, bk3)
T . It is possible to define two types of UDS, and two types of correspond

equilibria.

Definition 1 (Campos-Cantón et al. [39]). A system given by (2) with eigenvalues λi, i = 1, 2, 3,
satisfying ∑3

i=1 λi < 0. Then, the system is said to be:

(i) An UDS Type I, if one eigenvalue is negative real and the other two are complex conjugate with a positive
real part.

(ii) An UDS Type II, if one eigenvalue is positive real and the other two are complex conjugate with a negative
real part.
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For the equilibria, their two types are defined accordingly. In Definition 1, item (i) implies that the
UDS Type I is dissipative in one of its components but oscillatory unstable in the other two, while item
(ii) implies that an UDS Type II is dissipative and oscillatory in two of their components but unstable
in the other one. Some chaotic dynamical systems may relate to these two types of UDS around
equlibria, systems as the ones in [29,40–42] can be characterized through a combination of UDS Type I
and Type II.

3. Synchronization Scheme

The synchronization scheme diagram is depicted the Figure 1. The output X of the master FPGA
is the input of the slave FPGA, the controller takes this input X and the output Y of the slave system
inside of the slave FPGA and compensates the slave system output, which means that lim

t→∞
|Y− X| = 0.

Figure 1. Synchronization scheme diagram.

The rest of this Section presents four master–slave synchronization schemes.

3.1. Master UDS–Slave GLS

Consider the master system as

χ̇ =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 χ +

bk1

bk2
bk3

 , (4)

while the slave system is defined as

ẋ =

a11 a12 0
a21 a22 0
0 0 a33

 x + x1

0 0 0
0 0 −1
0 1 0

 x + u, (5)

where u = (u1, u2, u3)
T . The error vector is defined as e = x− χ, and is possible to obtain

ė =

a11 a12 0
a21 a22 0
0 0 a33

 x + x1

0 0 0
0 0 −1
0 1 0

 x−

α11 α12 α13

α21 α22 α23

α31 α32 α33

 χ−

bk1
bk2
bk3

+ u. (6)

In order to stabilize the error system, the proposed Lyapunov function is

V =
1
2

(
e2

1 + e2
2 + e2

3

)
, (7)

whose derivative is
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V̇ = e1 (a11x1 + a12x2 − α11χ1 − α12χ2 − α13χ3 − bk1 + u1) + e2 (a21x1 + a22x2 − x1x3

−α21χ1 − α22χ2 − α23χ3 − bk2 + u2) + e3 (a33x3 + x1x2 − α31χ1 − α32χ2 − α33χ3

−bk3 + u3) ,
(8)

which allows to design the control law u as

u = −Pe−

α11 α12 α13

α21 α22 α23

α31 α32 α33

 χ−

bk1
bk2
bk3

+

a11 a12 0
a21 a22 0
0 0 a33

 x + x1

0 0 0
0 0 −1
0 1 0

 x, (9)

where e = (e1, e2, e3)
T is the error vector, and P = PT = diag{p2

1, p2
2, p2

3} is a diagonal matrix of
parameters selected to ensure negativeness of (8).

3.2. Master GLS–Slave UDS

For this scheme the master system is considered as

ẋ =

a11 a12 0
a12 a22 0
0 0 a33

 x + x1

0 0 0
0 0 −1
0 1 0

 x, (10)

while the slave system is

χ̇ =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 χ +

bk1
bk2
bk3

+ u. (11)

The error vector is defined as e = χ− x, consequently the error dynamics are represented by

ė =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 χ +

bk1
bk2
bk3

−
a11 a12 0

a12 a22 0
0 0 a33

 x− x1

0 0 0
0 0 −1
0 1 0

 x + u. (12)

Similarly to the previous scheme, the proposed Lyapunov function is

V =
1
2

(
e2

1 + e2
2 + e2

3

)
, (13)

while in this scheme the derivative results in

V̇ = e1 (α11χ1 + α12χ2 + α13χ3 + bk1 − a11x1 − a12x2 + u1) + e2 (α21χ1 + α22χ2 + α23χ3

−a21x1 − a22x2 + x1x3 + bk2 + u2) + e3 (α31χ1 + α32χ2 + α33χ3 − a33x3 − x1x2 + bk3
+u3 ) .

(14)

Under the before considerations, the proposed control law is

u = −Pe−

α11 α12 α13

α21 α22 α23

α31 α32 α33

 χ−

bk1
bk2
bk3

+

a11 a12 0
a12 a22 0
0 0 a33

 x + x1

0 0 0
0 0 −1
0 1 0

 x, (15)
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where, in the same form as before P = PT = diag{p2
1, p2

2, p2
3} is a matrix of parameters selected to

ensure the negativeness of (14).

3.3. Master GLS–Slave GLS

The master system for this synchronization scheme is

ẋ =

a11 a12 0
a21 a22 0
0 0 a33

 x + x1

0 0 0
0 0 −1
0 1 0

 x, (16)

However, in this scheme the slave system is defined as

ẏ =

b11 b12 0
b21 b22 0
0 0 b33

 y + y1

0 0 0
0 0 −1
0 1 0

 y + u, (17)

Once again, u = (u1, u2, u3)
T is the controller. The error is defined as e = y− x, and its dynamics

is given by

ė =

b11 b12 0
b21 b22 0
0 0 b33

 y−

a11 a12 0
a21 a22 0
0 0 a33

 x +

0 0 0
0 0 −1
0 1 0

 (y1y− x1x) + u. (18)

In order to stabilize the error dynamics, the proposed Lyapunov function is

V =
1
2

(
e2

1 + e2
2 + e2

3

)
, (19)

where the derivative is

V̇ = e1 (b11y1 + b12y2 − a11x1 − a12x2 + u1) + e2 (b21y1 + b22y2 − a21x1 − a22x2 − y1y3

+x1x3 + u2) + e3 (b33y3 − a33x3 + y1y2 − x1x2 + u3) ,
(20)

which allows to design the controll law u as

u = −Pe−

b11 b12 0
b21 b22 0
0 0 b33

 y +

a11 a12 0
a21 a22 0
0 0 a33

 x−

0 0 0
0 0 −1
0 1 0

 (y1y− x1x) . (21)

3.4. Master UDS–Slave UDS

Finally, the master system for this scheme is

χ̇ =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 χ +

bk1
bk2
bk3

 , (22)

and the slave system is of the form

ϕ̇ =

β11 β12 β13

β21 β22 β23

β31 β32 β33

 ϕ +

ck1
ck2
ck3

+ u. (23)

The dynamics of the error ϕ− χ is given by
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ė =

β11 β12 β13

β21 β22 β23

β31 β32 β33

 ϕ−

α11 α12 α13

α21 α22 α23

α31 α32 α33

 χ +

ck1
ck2
ck3

−
bk1

bk2
bk3

+ u, (24)

and once again, the proposed Lyapunov function is

V =
1
2

(
e2

1 + e2
2 + e2

3

)
, (25)

with derivative

V̇ = e1 (β11 ϕ1 + β12 ϕ2 + β13 ϕ3 − α11χ1 − α12χ2 − α13χ3 + ck1 − bk1 + u1) + e2 (β21 ϕ1

+ β22 ϕ2 + β23 ϕ3 − α21χ1 − α22χ2 − α23χ3 + ck2 − bk2 + u2) + e3 (β31 ϕ1 + β32 ϕ2

+β33 ϕ3 − α31χ1 − α32χ2 − α33χ3 + ck3 − bk3 + u3) .
(26)

Consequently, the proposed control law is

u = −Pe−

β11 β12 β13

β21 β22 β23

β31 β32 β33

 ϕ +

α11 α12 α13

α21 α22 α23

α31 α32 α33

 χ−

ck1
ck2
ck3

+

bk1
bk2
bk3

 . (27)

4. Results

For the implementation of the synchronization scheme, the selected piecewise UDS given in [43]
presents a four scrolls attractor and it is defined as

χ̇ =

 0 1 0
0 0 1

−35.139 −8.23 −3.7

 χ +

 0
0
Bk

 , (28)

where Bk is given by

Bk =


21.0834 if χ1 > 0.5,
14.055 if 0.3 < χ1 ≤ 0.5,
7.0278 if 0.1 < χ1 ≤ 0.3,
0 if χ1 ≤ 0.1,

(29)

and the slave system is

ẋ =

−16 16 0
45.6 −1 0

0 0 −4

 x + x1

0 0 0
0 0 −1
0 1 0

 x + u. (30)

Using the synchronization scheme described in the Section 3.1, the control law is defined as

u = −Pe−

 0 1 0
0 0 1

−35.139 −8.23 −3.7

 χ−

 0
0
Bk

+

−16 16 0
45.6 −1 0

0 0 −4

 x + x1

0 0 0
0 0 −1
0 1 0

 x, (31)

which will be implemented in a SPARTAN–3AN FPGA Starter Kit board from Xilinx, the general
scheme can be appreciated in the Figure 2. It can be seen that in (a) the SPARTAN–3AN starter kit
board in which the master system is implemented; in (b) the slave system is implemented with the
control law (31); in (c) the Digital to Analog Converter (DAC) can be observed and in (d) the output
data is acquired.
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Figure 2. Synchronization scheme using two SPARTAN–3AN starter kit boards: (a) Master system.
(b) Slave system. (c) DAC. (d) Data acquisition.

In order to implement the synchronization scheme in the SPARTAN–3AN starter kit, the Simulink R©

toolbox: Xilinx System Generator was used. In the Figure 3 can be observed the classical Lorenz
system without any kind of control, implemented in Simulink R© using this toolbox as example.

Figure 3. Classical Lorenz system implemented in Simulink R© using the Xilinx System
Generator toolbox.

When implementing the master system in the FPGA, it is possible to acquire the output signal
using the DAC from the National Instruments module NI–6211. With this is possible to obtain the
plane projections (χ1, χ2) and χ1,2 vs t, this can be appreciated in the Figure 4. This is also applicable
to the projection on the plane (χ1, χ3), as can be seen in the Figure 5. The projections (χ2, χ3) are shown
in the Figure 6, and the FPGA resources utilized by the master system is presented in Table 1.
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(a) (b)

Figure 4. Acquired data from the master system: (a) Projection on the plane (χ1, χ2). (b) χ1,2 vs t.

(a) (b)

Figure 5. Acquired data from the master system: (a) Projection on the plane (χ1, χ3). (b) χ1,3 vs t.

(a) (b)

Figure 6. Acquired data from the master system: (a) Projection on the plane (χ2, χ3). (b) χ3,3 vs t.
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Table 1. FPGA utilization summary for the master 4–scrolls UDS.

Resources Used Available Utilization

Number of Slice Flip Flops 159 11,776 1%
Number of 4 input LUTs 4177 11,776 35%
Number of occupied Slices 2473 5888 42%
Total Number of 4 input LUTs 4467 11,776 37%
Number of bounded IOBs 145 372 38%
Number of BUFGMUXs 1 24 4%

For the uncontrolled slave system, both of the projections on the planes (x1, x2) and (x1, x3) were
obtained and they can be seen in Figure 7. The projections on the plane (x2, x3) are depicted in Figure 8.
It is important to highlight that the slave system arises a two-scroll attractor while the master system
presents four scrolls. Consequently, once implemented the control law, the slave system will change its
dynamics undergoing a four-scroll attractor behavior with the shape of the master systems’s phase
portrait. The FPGA utilization summary for the slave system is presented in Table 2.

(a) (b)

Figure 7. Acquired data from the uncontrolled slave system: (a) Projection on the plane (x1, x2).
(b) Projection on the plane (x1, x3).

Figure 8. Projection on the plane (x1, x2) for the uncontrolled slave system.



Math. Comput. Appl. 2020, 25, 51 10 of 13

Table 2. FPGA utilization summary for the uncontrolled Lorenz slave system.

Resources Used Available Utilization

Number of Slice Flip Flops 170 11,776 1%
Number of 4 input LUTs 2373 11,776 20%
Number of occupied Slices 1491 5888 25%
Total Number of 4 input LUTs 2677 11,776 22%
Number of bounded IOBs 53 372 14%
Number of BUFGMUXs 1 24 4%
Number of MULT18X18SIOs 18 20 90%

For the synchronized slave system, both of the projections on the planes (x1, x2) and (x1, x3)

were obtained and they can be observed in the Figure 9. The projections on the plane (x2, x3) are
depicted in the Figure 10. It is easy to see that the two-scroll slave system in fact adopted the master
system behavior presenting four scrolls. The resource utilization of the FPGA is shown in the Table 3,
the utilization increases compared with the master and the uncontrolled slave, this is due to the
integration of the controller u. This proves that in a low cost, entry-level FPGA like the SPARTAN–3AN
the system are possible to implement by taking in consideration that the utilization of the FPGA
exceeds the 60% of the resources. For the MULTI18X18IOs of the system the utilization is 100%, this
problem can be avoided by implementing the synchronization scheme in a more powerful FPGA.

(a) (b)

Figure 9. Acquired data from the slave system: (a) Projection on the plane (x1, x2). (b) Projection on
the plane (x1, x3).

Figure 10. Projection on the plane (x1, x2) for the slave system.
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Table 3. FPGA utilization summary for the controlled Lorenz slave system.

Resources Used Available Utilization

Number of Slice Flip Flops 332 11,776 3%
Number of 4 input LUTs 5550 11,776 56%
Number of occupied Slices 2964 5888 67%
Total Number of 4 input LUTs 7244 11, 776 62%
Number of bounded IOBs 194 372 52%
Number of BUFGMUXs 2 24 8%
Number of MULT18X18SIOs 20 20 100%

5. Conclusions

A synchronization scheme for systems with heterogeneous chaotic behavior was implemented
in an FPGA, this synchronization scheme can synchronize a pair of chaotic systems defined by
a different number of pieces, is possible to apply the scheme to UDSs which is a kind of generalization
for synchronization of piecewise systems with different quantities of pieces on the master and
slave systems, which allows the use in a wide variety of applications in science and engineering.
The synchronization scheme gives to the slave system a the dynamics of the master system.
The synchronization scheme is designed taking into account the error system between the master
and the slave, adding a parameter matrix P that controls the synchronization speed, whenever the
parameter is adequate. The controller guarantees a fast synchronization with a minimum error.
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