
Mathematical

and Computational

Applications

Article

Half-Space Relaxation Projection Method for Solving
Multiple-Set Split Feasibility Problem

Guash Haile Taddele 1,2 , Poom Kumam 1,3,4,* , Anteneh Getachew Gebrie 2 and
Kanokwan Sitthithakerngkiet 5

1 Department of Mathematics, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
guashhaile79@gmail.com

2 Department of Mathematics, College of Computational and Natural Science, Debre Berhan University,
Debre Berhan P.O. Box 445, Ethiopia; antgetm@gmail.com

3 Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building,
King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod,
Thrung Khru, Bangkok 10140, Thailand

4 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

5 Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of
Applied Science, King Mongkut’s University of Technology North Bangkok (KMUTNB), Wongsawang,
Bangsue, Bangkok 10800, Thailand; kanokwan.s@sci.kmutnb.ac.th

* Correspondence: poom.kumam@mail.kmutt.ac.th

Received: 3 June 2020; Accepted: 21 July 2020; Published: 24 July 2020
����������
�������

Abstract: In this paper, we study an iterative method for solving the multiple-set split feasibility
problem: find a point in the intersection of a finite family of closed convex sets in one space such
that its image under a linear transformation belongs to the intersection of another finite family of
closed convex sets in the image space. In our result, we obtain a strongly convergent algorithm by
relaxing the closed convex sets to half-spaces, using the projection onto those half-spaces and by
introducing the extended form of selecting step sizes used in a relaxed CQ algorithm for solving the
split feasibility problem. We also give several numerical examples for illustrating the efficiency and
implementation of our algorithm in comparison with existing algorithms in the literature.

Keywords: multiple-set split feasibility problem; relaxed CQ algorithm; subdifferential; strong convergence;
Hilbert space

MSC: 47H09; 47J25; 65K10; 49J52

1. Introduction

1.1. Split Inverse Problem

Split Inverse Problem (SIP) is an archetypal model presented in ([1], Section 2), and it is stated as
find x∗ ∈ X that solves IP1
such that
y∗ = Ax∗ ∈ Y and solves IP2

where A is a bounded linear operator from a space X to another space Y, and IP1 and IP2 are two
inverse problems installed in X and Y, respectively. Real-world inverse problems can be cast into this
framework by making different choices of the spaces X and Y (including the case X = Y), and by choosing
appropriate inverse problems for IP1 and IP2. For example, image restoration, computer tomograph

Math. Comput. Appl. 2020, 25, 47; doi:10.3390/mca25030047 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0002-5954-7321
https://orcid.org/0000-0002-5463-4581
https://orcid.org/0000-0001-7368-8713
https://orcid.org/0000-0002-8496-7803
http://dx.doi.org/10.3390/mca25030047
http://www.mdpi.com/journal/mca
https://www.mdpi.com/2297-8747/25/3/47?type=check_update&version=2

Math. Comput. Appl. 2020, 25, 47 2 of 24

and intensity-modulated radiation therapy (IMRT) treatment planning generate functions that can be
transformed to have an SIP model; see in [2–5]. The split feasibility problem [6] and multiple-set split
feasibility problem [7] are the first instances of the SIP, where the two problems IP1 and IP2 are of the
Convex Feasibility Problem (CFP) type [8]. In the SIP framework, many authors studied cases for which
IP1 and IP2 are convex feasibility problems, minimization problems, equilibrium problems, fixed point
problems, null point problems and so on; see, for example [2,3,5,9–20].

1.2. Split Feasibility Problem and Multiple-Set Split Feasibility Problem

Let H be a real Hilbert space and let T : H → H be an operator. We say that T is ρ-strongly
quasi-nonexpansive, where ρ ≥ 0, if FixT = {x ∈ H : Tx = x} 6= ∅ and

‖Tx− p‖2 ≤ ‖x− p‖2 − ρ‖Tx− p‖2, ∀(x, p) ∈ H × FixT. (1)

If ρ = 0 in (1), then T is called a quasi-nonexpansive operator. If ρ > 0 in (1), then we say
that T is strongly quasi-nonexpansive. Obviously, a nonexpansive operator having a fixed point is
quasi-nonexpansive. If T is quasi-nonexpansive, then FixT is closed and convex. For ν ≥ 0 denote by
Tν := (1− ν)I + νT, the ν-relaxation of T, where I is the identity operator and ν is called relaxation
parameter. If T is quasi-nonexpansive, then usually one applies a relaxation parameter ν ∈ [0, 1].

Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a bounded linear operator.
Given a nonempty closed convex subsets {C1, . . . , CN} and {Q1, . . . , QM} of H1 and H2, respectively.
The Multiple-Set Split Feasibility Problem (MSSFP), which was introduced by Censor et al. [7],
is formulated as finding a point

x̄ ∈
N⋂

i=1

Ci such that Ax̄ ∈
M⋂

j=1

Qj. (2)

Denote by Ω the set of solutions for (2). The MSSFP (2) with N = M = 1 is known as the Split
Feasibility Problem (SFP), which is formulated as finding a point

x̄ ∈ C such that Ax̄ ∈ Q, (3)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively.
The SFP was first introduced in 1994 by Censor and Elfving [6] for modeling inverse problems in
finite-dimensional Hilbert spaces for modeling inverse problems that arise from phase retrievals and
in medical image reconstruction. SFP plays an important role in the study of signal processing,
image reconstruction, intensity-modulated radiation, therapy, etc. [2,3,5,11]. Several iterative
algorithms were presented to solve the SFP and MSSFP provided the solution exists; see, for example,
in [3,6,21–32]. The algorithm proposed by Censor and Elfving [6] for solving the SFP involves the
computation of the inverse of A per each iteration assuming the existence of the inverse of A, a fact
that makes the algorithm nonapplicable in practice. Most methods employ the Landweber operators,
see the definition and its property in [33]. In general, all of these methods produce sequences that
converge weakly to a solution. Byrne [3] proposed the following iteration for solving the SFP, and called
it the CQ-algorithm or the projected Landweber method:

xn+1 = PCVν(xn), (4)

where x1 ∈ H1 is arbitrary, Vν is a ν-relaxation of the Landweber operator V (corresponding to PQ), i.e.,

V = I − 1
‖A‖2 A∗(I − PQ)A,

Math. Comput. Appl. 2020, 25, 47 3 of 24

where ν ∈ (0, 2), A∗ denotes the adjoint of A, and ‖A‖2 is the spectral norm of AA∗. It is well
known that the CQ algorithm (4) does not necessarily converge strongly to the solution of SFP in the
infinite-dimensional Hilbert space. An important advantage of the CQ algorithm by Byrne [3,21] is that
computation of the inverse of A (matrix inverses) is not necessary. The Landweber operator is used for
a more general type of problem called the split common fixed point problem of quasi-nonexpansive
operators (see, for example, [10,34,35]), but the implementation of the Landweber-type algorithm
generated requires prior knowledge of the operator norm. However, the operator norm is a global
invariant and is often difficult to estimate; see, for example, the Theorem of Hendrickx and Olshevsky
in [36]. To overcome this difficulty, Lopez et al. [2] introduced a new way of selecting the step sizes
for solving the SFP (3) such that the information of the operator norm is not necessary. To be precise,
Lopez et al. [2] proposed

xn+1 = PC(I − γn A∗(I − PQ)A)xn,

where γn = ρn f (xn)
‖∇ f (xn)‖2 , ∀n ≥ 1, ρn ∈ (0, 4), f (xn) =

1
2‖(I − PQ)Axn‖2 and ∇ f (xn) = A∗(I − PQ)Axn.

In addition, the computation of the projection on a closed convex set is not easy. In order to overcome
this drawback, Yang [37] considered SFPs in which the involved sets C and Q are given as sub-level
sets of convex functions, i.e.,

C = {x ∈ H1 : c(x) ≤ 0} and Q = {y ∈ H2 : q(y) ≤ 0}, (5)

where c : H1 → R and q : H2 → R are convex and subdifferentiable functions on H1 and H2,
respectively, and that ∂c and ∂q are bounded operators (i.e., bounded on bounded sets). It is known
that every convex function defined on a finite-dimensional Hilbert space is subdifferentiable and its
subdifferential operator is a bounded operator (see [38]). In this situation, the efficiency of the CQ
method is extremely affected because, in general, the computation of projections onto such subsets is
still very difficult. Motivated by Fukushima’s relaxed projection method in [39], Yang [37] suggested
calculating the projection onto a half-space containing the original subset instead of the latter set
itself. More precisely, Yang introduced a relaxed CQ algorithm using a half-space relaxation projection
method for solving SFP. The proposed algorithm by Yang is given as follows:

xn+1 = PCn(xn − γ fn(xn)),

where fn = A∗(I − PQn)A, for each n ∈ N the set Cn is given by

Cn = {x ∈ H1 : c(xn) ≤ 〈ξn, xn − x〉}, (6)

where ξn ∈ ∂c(xn), and the set Qn is given by

Qn = {y ∈ H2 : q(Axn) ≤ 〈εn, Axn − y〉}, (7)

where εn ∈ ∂q(Axn). Obviously, Cn and Qn are half-spaces and C ⊂ Cn and Q ⊂ Qn for every n ≥ 1.
More important, since the projections onto Cn and Qn have the closed form, the relaxed CQ algorithm
is now easily implemented. The specific form of the metric projections onto Cn and Qn can be found
in [38,40,41].

For solving the MSSFP (2), many methods have been developed; see, for example, in [7,26,42–49]
and references therein. We aim to propose a strongly convergent algorithm with high efficiency that
is easy to implement in solving the MSSFP. Motivated by Yang [37], we are interested in solving the
MSSFP (2) in which the involved sets Ci (i ∈ {1, . . . , N}) and Qj (j ∈ {1, . . . , M}) are given as sub-level
sets of convex functions, i.e.,

Ci = {x ∈ H1 : ci(x) ≤ 0} and Qj = {y ∈ H2 : qj(y) ≤ 0}, (8)

Math. Comput. Appl. 2020, 25, 47 4 of 24

where ci : H1 → R and qj : H2 → R are convex functions for all i ∈ {1, . . . , N}, j ∈ {1, . . . , M}.
We assume that each ci and qj are subdifferentiable on H1 and H2, respectively, and that ∂ci and ∂qj are
bounded operators (i.e., bounded on bounded sets). In what follows, we define N + M half-spaces at
point xn by

Ci,n = {x ∈ H1 : ci(xn) ≤ 〈ξi,n, xn − x〉}, (9)

where ξi,n ∈ ∂ci(xn), and

Qj,n = {y ∈ H2 : qj(Axn) ≤ 〈ε j,n, Axn − y〉}, (10)

where ε j,n ∈ ∂qj(Axn).
The paper contributes to developing the algorithm for the MSSFP in the direction of half-space

relaxation (assuming Ci and Qj are given as a sub-level sets of convex functions (8)) and parallel
computation of projection onto half-spaces (9) and (10) without prior knowledge of the operator norm.

This paper is organized in the following way. In Section 2, we recall some basic and useful facts
that will be used in the proof of our results. In Section 3, we introduce the extended form of the way of
selecting step sizes used in the relaxed CQ algorithm for solving the SFP by [37] and Lopez et al. [2] to
work for the MSSFP framework, and we analyze the strong convergence of our proposed algorithm.
In Section 4, we give some numerical examples to discuss the performance of the proposed algorithm.
Finally, we give some conclusions.

2. Preliminary

In this section, in order to prove our result, we recall some basic notions and useful results in a real
Hilbert space H. The symbols ” ⇀ ” and ”→ ” denote weak and strong convergence, respectively.

Let C be a nonempty closed convex subset of H. The metric projection on C is a mapping
PC : H → C defined by

PC(x) = arg min{‖y− x‖ : y ∈ C}, x ∈ H.

Lemma 1. [50] Let C be a closed convex subset of H. Given x ∈ H and a point z ∈ C, then z = PC(x) if and
only if

〈x− z, y− z〉 ≤ 0, ∀y ∈ C.

The mapping T : H → H is firmly nonexpansive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ||(I − T)x− (I − T)y‖2, ∀x, y ∈ H,

which is equivalent to
‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, ∀x, y ∈ H.

If T is firmly nonexpansive, I − T is also firmly nonexpansive. The metric projection PC on
a closed convex subset C of H is firmly nonexpansive.

Definition 1. The subdifferential of a convex function f : H → R at x ∈ H, denoted by ∂ f (x), is defined by

∂ f (x) = {ξ ∈ H : f (z) ≥ f (x) + 〈ξ, z− x〉, ∀z ∈ H}.

If ∂ f (x) 6= ∅, f is said to be subdifferentiable at x. If the function f is continuously differentiable then
∂ f (x) = {∇ f (x)}, this is the gradient of f .

Definition 2. The function f : H → R is called weakly lower semi-continuous at x0 if the sequence {xn}
weakly converges to x0 implies

lim inf
n→∞

f (xn) ≥ f (x0).

Math. Comput. Appl. 2020, 25, 47 5 of 24

A function that is weakly lower semi-continuous at each point of H is called weakly lower semi-continuous
on H.

Lemma 2. [3,51] Let H1 and H2 be real Hilbert spaces and f : H1 → R is given by f (x) = 1
2‖(I − PQ)Ax‖2

where Q is closed convex subset of H2 and A : H1 → H2 be a bounded linear operator. Then

(i) The function f is convex and weakly lower semi-continuous on H1;
(ii) ∇ f (x) = A∗(I − PQ)Ax for x ∈ H1;
(iii) ∇ f is ‖A‖2-Lipschitz, i.e., ‖∇ f (x)−∇ f (y)‖ ≤ ‖A‖2‖x− y‖, ∀x, y ∈ H1.

Lemma 3. [27,52] Let C and Q be closed convex subsets of real Hilbert spaces H1 and H2, respectively,
and f : H1 → R is given by f (x) = 1

2‖(I − PQ)Ax‖2, where A : H1 → H2 be a bounded linear operator.
Then for λ > 0 and x̄ ∈ H1 the following statements are equivalent.

(i) The point x̄ solves the SFP (3), i.e., x̄ ∈ {x ∈ C : Ax ∈ Q};
(ii) The point x̄ is the fixed point of the mapping PC(I − λ∇ f), i.e.,

PC(x̄− λ∇ f (x̄)) = x̄.

Lemma 4. [53] Let H be a real Hilbert space. Then, for all x, y ∈ H and α ∈ [0, 1], we have

(i) ‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2;
(ii) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉;
(iii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Lemma 5. [54] Let {an} be the sequence of nonnegative numbers such that

an+1 ≤ (1− αn)an + αnδn,

where {δn} is a sequence of real numbers bounded from above and 0 ≤ αn ≤ 1 and
∞
∑

n=1
αn = ∞. Then it

holds that
lim sup

n→∞
αn ≤ lim sup

n→∞
δn.

3. Half-Space Relaxation Projection Algorithm

In this section, we propose an iterative algorithm to solve the MSSFP (2). To make our algorithm
more efficient and the implementation of the algorithm more easy, we assume that the convex sets Ci
and Qj are given in the form of (8) and we use projections onto half-spaces Ci,n and Qj,n defined in (9)
and (10), respectively, instead of onto Ci and Qj, just as the relaxed or inexact methods in [5,37,39,55].
Moreover, in order to remove the requirement of the estimated value of the operator norm and solve
the MSSFP when finding the operator norm is not easy, we now introduce a new way of selecting
the step sizes for solving the MSSFP (2) given as follows for x ∈ H1, and Ci,n and Qj,n are half-spaces
defined in (9) and (10).

(i) For each i ∈ {1, . . . , N} and n ≥ 1, define

gi,n(x) =
1
2
‖(I − PCi,n)x‖2 and so ∇gi,n(x) = (I − PCi,n)x.

(ii) gn(x) and ∇gn(x) are defined as gn(x) = ginx ,n(x) and so ∇gn(x) = ∇ginx ,n(x) where inx ∈
{1, . . . , N} such that for each n ≥ 1,

inx ∈ arg max{gi,n(x) : i ∈ {1, . . . , N}}.

Math. Comput. Appl. 2020, 25, 47 6 of 24

(iii) For each j ∈ {1, . . . , M} and n ≥ 1, define

f j,n(x) =
1
2
‖(I − PQj,n)Ax‖2 and ∇ f j,n(x) = A∗(I − PQj,n)Ax.

From Aubin [51], gi,n and f j,n are convex, weakly lower semi-continuous and differentiable for
each i ∈ {1, . . . , N} and j ∈ {1, . . . , M}. Now, using ∇gi,n, gi,n, gn, ∇gn, f j,n and ∇ f j,n given in (i)–(iii)
above, and assuming that the solution set Ω of the MSSFP (2) is nonempty, we propose and analyze
the strong convergence of our algorithm, called the Half-Space Relaxation Projection Algorithm.

Note that, the iterative scheme in Algorithm 1 (HSRPA) is established in away that ∇gn(zn) and
∇ f j,n(zn) are computed, i.e., the projections PCi,n and PQj,n are computed, in parallel setting under
simple assumptions on step sizes.

Algorithm 1: Half-Space Relaxation Projection Algorithm (HSRPA).
Initialization: Choose u, x1 ∈ H1. Let the positive real constants λ1, λ2 and δj (j = 1, . . . , M),
and the real sequences {αn}, {βn} and {ρn} satisfy the following conditions:

(C1) λ1, λ2 ∈ (0, 1) and λ1 + λ2 = 1.

(C2) 0 < δj < 1 for all j ∈ {1, . . . , M}, and
M
∑

j=1
δj = 1.

(C3) 0 < αn < 1, lim
n→∞

αn = 0 and
∞
∑

n=1
αn = ∞.

(C4) 0 < a ≤ βn ≤ b < 1 for all n ∈ N.
(C5) 0 < λρn < 4λ̄ and lim inf

n→∞
ρn(4λ̄− λρn) > 0, where λ = max{λ1, λ2} and

λ̄ = min{λ1, λ2}.

Iterative Step: Proceed with the following computations:
zn = (1− αn)xn + αnu,

yn = zn −
M
∑

j=1
δjτj,n(λ1∇gn(zn) + λ2∇ f j,n(zn)),

xn+1 = (1− βn)zn + βnyn

where

τj,n = ρn
f j,n(zn) + gn(zn)

dj(zn)
,

for

dj(zn) =

{
1, if ‖∇gn(zn)‖2 + ‖∇ f j,n(zn)‖2 = 0
‖∇gn(zn)‖2 + ‖∇ f j,n(zn)‖2, otherwise.

.

Lemma 6. If {j ∈ {1, . . . , M} : ‖∇gn(zn)‖2 + ‖∇ f j,n(zn)‖2 6= 0} = ∅ at some iterate n in HSRPA,
then zn is the solution of MSSFP (2).

Proof. {j ∈ {1, . . . , M} : ‖∇gn(zn)‖2 + ‖∇ f j,n(zn)‖2 6= 0} = ∅ implies

‖∇gn(zn)‖2 + ‖∇ f j,n(zn)‖2 = 0, ∀j ∈ {1, . . . , M},
⇔ ‖∇gn(zn)‖ = 0 = ‖∇ f j,n(zn)‖, ∀j ∈ {1, . . . , M},
⇔ ‖∇gi,n(zn)‖ = 0 = ‖∇ f j,n(zn)‖, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , M},
⇔ (I − PCi,n)(zn) = 0 = A∗(I − PQj,n)A(zn), ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , M}.

Thus, one can get PCi,n(zn− λ∇ f j,n(zn)) = zn for all i ∈ {1, . . . , N} and j ∈ {1, . . . , M}. Since Ci ⊂
Ci,n, we get zn ∈ Ci,n for all i ∈ {1, . . . , N}. Combined with the fixed point relation Lemma 3 (ii),

Math. Comput. Appl. 2020, 25, 47 7 of 24

we also get that Azn ∈ Qj,n for all j ∈ {1, . . . , M}. Following the representations of the sets Ci,n
and Qj,n in (9) and (10) we obtain that ci(zn) ≤ 0 for all i ∈ {1, . . . , N} and qj(Azn) ≤ 0 for all
i ∈ {1, . . . , N}, and this implies that zn ∈ Ci for all i ∈ {1, . . . , N} and Azn ∈ Qj for all j ∈ {1, . . . , M},
which completes the proof.

By Lemma 6, we can conclude that the HSRPA terminates at some iterate n when {j ∈ {1, . . . , M} :
‖∇gn(zn)‖2 + ‖∇ f j,n(zn)‖2 6= 0} = ∅. Otherwise, if the HSRPA does not stop, then we have
the following strong convergence theorem for the approximation of the solution of the problem
of MSSFP (2).

Theorem 1. The sequence {xn} generated by HSRPA converges strongly to the solution point x̄ of MSSFP (2)
(xn → x̄ ∈ Ω) where x̄ = PΩu.

Proof. Let x̄ ∈ Ω. Since I− PCi,n and I− PQj,n are firmly nonexpansive, and since x̄ verifies (2), we have
for all x ∈ H1

〈∇gi,n(x), x− x̄〉 = 〈(I − PCi,n)x, x− x̄〉
≥ ‖(I − PCi,n)x‖2 = 2gi,n(x),

(11)

and
〈∇ f j,n(x), x− x̄〉 = 〈A∗(I − PQj,n)Ax, x− x̄〉

= 〈(I − PQj,n)Ax, Ax− Ax̄〉
≥ ‖(I − PQj,n)Ax‖2 = 2 f j,n(x).

(12)

Using definition of yn and Lemma 4 (ii), we have

‖yn − x̄‖2 =
∥∥zn −

M
∑

j=1
δjτj,n(λ1∇gn(zn) + λ2∇ f j,n(zn))− x̄

∥∥2

≤ ‖zn − x̄‖2 +
∥∥∥ M

∑
j=1

δjτj,n(λ1∇gn(zn) + λ2∇ f j,n(zn))
∥∥∥2

−2
〈 M

∑
j=1

δjτj,n(λ1∇gn(zn) + λ2∇ f j,n(zn)), zn − x̂
〉

.

(13)

Using convexity of ‖.‖2, we have

∥∥∥ M
∑

j=1
δjτj,n(λ1∇gn(zn) + λ2∇ f j,n(zn))

∥∥∥2

≤
M
∑

j=1
δj(τj,n)

2
∥∥∥λ1∇gn(zn) + λ2∇ f j,n(zn)

∥∥∥2

≤
M
∑

j=1
δj(τj,n)

2(λ1‖∇gn(zn)‖2 + λ2‖∇ f j,n(zn)‖2)

≤
M
∑

j=1

{
λδj

(
ρn

f j,n(zn)+gn(zn)

dj(zn)

)2
(‖∇gn(zn)‖2 + ‖∇ f j,n(zn)‖2)

}
≤

M
∑

j=1

{
λδj

(
ρn

f j,n(zn)+gn(zn)

dj(zn)

)2
dj(zn)

}
= λρ2

n
M
∑

j=1

{
δj

(f j,n(zn)+gn(zn))2

dj(zn)

}
.

(14)

Math. Comput. Appl. 2020, 25, 47 8 of 24

From (11) and (12), we have〈 M
∑

j=1
δjτj,n(λ1∇gn(zn) + λ2∇ f j,n(zn)), zn − x̂

〉
=

M
∑

j=1
δjτj,n

〈
(λ1∇gn(zn) + λ2∇ f j,n(zn), zn − x̂

〉
=

M
∑

j=1
δjτj,n(λ1〈∇gn(zn), zn − x̂〉+ λ2〈∇ f j,n(zn), zn − x̂〉)

≥
M
∑

j=1
δjτj,n(2λ1gn(zn) + 2λ2 f j,n(zn))

=
M
∑

j=1

{
δjρn

f j,n(zn)+gn(zn)

dj(zn)
(2λ1gn(zn) + 2λ2 f j,n(zn))

}
≥ 2λ̄ρn

M
∑

j=1

{
δj

(f j,n(zn)+gn(zn))2

dj(zn)

}
.

(15)

In view of (13), (14) and (15), we have

‖yn − x̄‖2 ≤ ‖zn − x̄‖2 + λρ2
n

M
∑

j=1

{
δj

(f j,n(zn)+gn(zn))2

dj(zn)

}
−4λ̄ρn

M
∑

j=1

{
δj

(f j,n(zn)+gn(zn))2

dj(zn)

}
= ‖zn − x̄‖2 + ρn(λρn − 4λ̄)

M
∑

j=1

{
δj

(f j,n(zn)+gn(zn))2

dj(zn)

}
.

(16)

From (16) and (C5), we have
‖yn − x̄‖ ≤ ‖zn − x̄‖. (17)

Using (17), Lemma 4 (i) and the definition of xn+1, we get

‖xn+1 − x̄‖2 = ‖(1− βn)zn + βnyn − x̄‖2

= ‖(1− βn)(zn − x̄) + βn(yn − x̄)‖2

= (1− βn)‖zn − x̄‖2 + βn‖yn − x̄‖2 − βn(1− βn)‖zn − yn‖2

≤ ‖zn − x̄‖2 − βn(1− βn)‖zn − yn‖2.

(18)

From (18) and the definition of zn, we get

‖xn+1 − x̄‖ ≤ ‖zn − x̄‖= (1− αn)‖xn − x̄‖+ αn‖u− x̄‖
≤ max{‖xn − x̄‖, ‖u− x̄‖}

...
≤ max{‖x1 − x̄‖, ‖u− x̄‖},

which shows that {xn} is bounded. Consequently, {zn}, {Azn} and {yn} are all bounded.
Now,

1
βn
(xn+1 − zn) =

1
βn

(
(1− βn)zn + βnyn − zn

)
= yn − zn, (19)

and
‖yn − zn‖2 = 1

β2
n
‖xn+1 − zn‖2 = αn

βn

(
‖xn+1−zn‖2

αn βn

)
. (20)

Using (18) and (19), we have

‖xn+1 − x̄‖2≤ ‖zn − x̄‖2 − 1−βn
βn
‖xn+1 − zn‖2. (21)

Math. Comput. Appl. 2020, 25, 47 9 of 24

From the definition of zn, we have

‖zn − x̄‖2 = ‖(1− αn)xn + αnu− x̄‖2

= (1− αn)2‖xn − x̄‖2 + α2
n‖u− x̄‖2 + 2αn(1− αn)〈xn − x̄, u− x̄〉

≤ (1− αn)‖xn − x̄‖2 + α2
n‖u− x̄‖2 + 2αn(1− αn)〈xn − x̄, u− x̄〉.

(22)

Thus, (21) and (22) gives

‖xn+1 − x̄‖2≤ (1− αn)‖xn − x̄‖2 + α2
n‖u− x̄‖2

+2αn(1− αn)〈xn − x̄, u− x̄〉 − 1−βn
βn
‖xn+1 − zn‖2.

(23)

That is,
‖xn+1 − x̄‖2≤ (1− αn)‖xn − x̄‖2 − αnΓn, (24)

where
Γn = −αn‖u− x̄‖2 + 2(1− αn)〈x̄− xn, u− x̄〉+ 1− βn

αnβn
‖xn+1 − zn‖2.

We know that {xn} is bounded and so it is bounded below. Hence, Γn is bounded below.
Furthermore, using Lemma 5 and (C3), we have

lim sup
n→∞

‖xn − x̄‖ ≤ lim sup
n→∞

(−Γn) = − lim inf
n→∞

Γn. (25)

Therefore, lim inf
n→∞

Γn is a finite real number and by (C3), we have

lim inf
n→∞

Γn = lim inf
n→∞

(
2〈x̄− xn, u− x̄〉+ 1−βn

αn βn
‖xn+1 − zn‖2).

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that xnk ⇀ p for some
p ∈ H1 and

lim inf
n→∞

Γn = lim inf
k→∞

(
2〈x̄− xnk , u− x̄〉+ 1−βnk

αnk βnk
‖xnk+1 − znk‖2). (26)

Since {xn} is bounded and lim inf
n→∞

Γn is finite, we have that
1−βnk
αnk βnk

‖xnk+1− znk‖2 is bounded. Also,

by (C4), we have 1−βn
αn βn

≥ 1−b
αn βn

> 0 and so we have that 1
αnk βnk

‖xnk+1 − znk‖2 is bounded.
Observe from (C3) and (C4), we have

0 <
αnk

βnk

≤
αnk

a
→ 0, k→ ∞.

Therefore, we obtain from (20) and
αnk
βnk
→ 0, k→ ∞ that

‖ynk − znk‖ → 0, k→ ∞. (27)

From the definition of xn+1, we have

‖xnk+1 − znk‖ = βnk‖ynk − znk‖ → 0, k→ ∞,

and
‖znk − xnk‖ = αnk‖u− xnk‖ → 0, k→ ∞. (28)

Hence,
‖xnk+1 − xnk‖ ≤ ‖xnk+1 − znk‖+ ‖znk − xnk‖ → 0, k→ ∞.

Math. Comput. Appl. 2020, 25, 47 10 of 24

Now, using (16), we obtain

ρnk (4λ̄− λρnk)
M
∑

j=1

{
δj

(f j,nk
(znk)+gnk (znk))

2

dj(znk)

}
≤ (‖znk − x̄‖ − ‖ynk − x̄‖)(‖znk − x̄‖+ ‖ynk − x̄‖)
≤ ‖znk − ynk‖(‖znk − x̄‖+ ‖ynk − x̄‖).

(29)

Therefore, (27), (29) and (C5) gives

ρnk (4λ̄− λρnk)
M

∑
j=1

{
δj
(f j,nk (znk) + gnk (znk))

2

dj(znk)

}
→ 0, k→ ∞. (30)

Again using (C5) together with (30) yields

M

∑
j=1

{
δj
(f j,nk (znk) + gnk (znk))

2

dj(znk)

}
→ 0, k→ ∞. (31)

Hence, in view of (31) and restriction condition (C2), we have

(f j,nk (znk) + gnk (znk))
2

dj(znk)
→ 0, k→ ∞, (32)

for all j ∈ {1, . . . , M}.
For each i ∈ {1, . . . , N} and for each j ∈ {1, . . . , M},∇ f j,n(.) and∇gi,n(.) are Lipschitz continuous

with constant ‖A‖2 and 1, respectively. Since the sequence {zn} is bounded and

‖∇ f j,n(zn)‖ = ‖∇ f j,n(zn)−∇ f j,n(x̄)‖ ≤ ‖A‖2‖zn − x̄‖, ∀j ∈ {1, . . . , M},

‖∇gi,n(zn)‖ = ‖∇gi,n(zn)−∇gi,n(x̄)‖ ≤ ‖zn − x̄‖, ∀i ∈ {1, . . . , N},

we have the sequences {‖∇gi,n(zn)‖}∞
n=1 and {‖∇ f j,n(zn)‖}∞

n=1, which are bounded. Hence, we have
{dj(zn)}∞

n=1 bounded and hence {dj(znk)}∞
k=1 is bounded. Consequently, from (32), we have

lim
k→∞

f j,nk (znk) = lim
k→∞

gnk (znk) = 0, ∀j ∈ {1, . . . , M}. (33)

From the definition of gnk (znk), we can have

gi,nk (znk) ≤ gnk (znk), ∀i ∈ {1, . . . , N}. (34)

Therefore, (33) and (34) gives

lim
k→∞

f j,nk (znk) = lim
k→∞

gi,nk (znk) = 0, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , M}.

That is, for all i ∈ {1, . . . , N}, j ∈ {1, . . . , M}, we have

lim
k→∞
‖(I − PQj,nk

)Aznk‖ = lim
k→∞
‖(I − PCi,nk

)znk‖ = 0. (35)

Therefore, since {zn} is bounded and from the boundedness assumption of the subdifferential
operator ∂qj, the sequence {ε j,n}∞

n=1 is bounded. In view of this and (35), for all j ∈ {1, . . . , M}we have

qj(Aznk)≤ 〈ε j,nk , Aznk − PQj,nk
(Aznk)〉

≤ ‖ε j,nk‖‖(I − PQj,nk
)Aznk‖ → 0, k→ ∞.

(36)

Math. Comput. Appl. 2020, 25, 47 11 of 24

Similarly, from the boundedness of {ξi,n}∞
n=1 and (35), for all i ∈ {1, . . . , N} we obtain

ci(znk)≤ 〈ξi,nk , znk − PCi,nk
(znk)〉

≤ ‖ξi,nk‖‖(I − PCi,nk
)znk‖ → 0, k→ ∞.

(37)

Since xnk ⇀ p and using (28), we have znk ⇀ p and hence Aznk ⇀ Ap.
The weak lower semi-continuity of qj(.) and (36) implies that

qj(Ap) ≤ lim inf
k→∞

qj(Aznk) ≤ lim sup
k→∞

qj(Aznk) ≤ 0, ∀j ∈ {1, . . . , M}.

That is, Ap ∈ Qj for all j ∈ {1, . . . , M}.
Likewise, the weak lower semi-continuity of ci(.) and (37) implies that

ci(p) ≤ lim inf
k→∞

ci(znk) ≤ 0, ∀i ∈ {1, . . . , N}.

That is, p ∈ Ci for all i ∈ {1, . . . , N}. Hence, p ∈ Ω.
Take x̄ = PΩu. Then, we obtain from (26) and Lemma 1 that

lim inf
n→∞

Γn= lim inf
k→∞

(
2〈x̄− xnk , u− x̄〉+ 1−βnk

αnk βnk
‖xnk+1 − znk‖2)

≥ 2 lim inf
k→∞

〈x̄− xnk , u− x̄〉

≥ 2〈x̄− p, u− x̄〉 ≥ 0.

Then we have from (25) that

lim sup
n→∞

‖xn − x̄‖2 ≤ lim sup
n→∞

(−Γn) = − lim inf
n→∞

Γn ≤ 0.

Therefore, ‖xn − x̄‖ → 0 and this implies that {xn} converges strongly to x̄. This completes
the proof.

Remark 1.
i. When the point u in HSRPA is taken to be 0, from Theorem 1, we see that the limit point x̄ of the sequence
{xn} is the unique minimum norm solution of the MSSFP, i.e., ‖x̄‖ = min

x∈Ω
‖x‖.

ii. In the algorithm (HSRPA), the stepsize τj,n can also be replaced by

τ∗j,n = ρn
f j,n(zn) + gn(zn)

d2
j (zn)

, (38)

where

dj(zn) =

{
1, if max{‖∇gn(zn)‖, ‖∇ f j,n(zn)‖} = 0
max{‖∇gn(zn)‖, ‖∇ f j,n(zn)‖}, otherwise.

The proof for the strong convergence of the HSRPA using the stepsize τ∗j,n defined in (38) is almost
the same as the proof of Theorem 1. To be precise, only slight rearrangement in (14) is required in the
proof of Theorem 1.

If M = N = 1, we have the following algorithm as a consequence of HSRPA concering SFP (3)
assuming that C and Q are given as sub-level sets of convex functions (5) and by constructing
half-spaces (6) and (7), and defining gn(x) = 1

2‖(I − PCn)x‖2, ∇gn(x) = (I − PCn)x, fn(x) =
1
2‖(I − PQn)Ax‖2 and ∇ fn(x) = A∗(I − PQn)Ax.

Math. Comput. Appl. 2020, 25, 47 12 of 24

Corollary 1. Assume that x̄ ∈ C ∩ A−1(Q) 6= ∅. Then, the sequence {xn} generated by Algorithm 2
converges strongly to the solution x̄ = PC∩A−1(Q)(u) of SFP (3).

Algorithm 2: Algorithm for solving the SFP.
Initialization: Choose u, x1 ∈ H1. Let the positive real constants λ1 and λ2, and the real
sequences {αn}, {βn} and {ρn} satisfy the following conditions:

(A1) λ1, λ2 ∈ (0, 1) and λ1 + λ2 = 1.

(A2) 0 < αn < 1, lim
n→∞

αn = 0 and
∞
∑

n=1
αn = ∞.

(A3) 0 < a ≤ βn ≤ b < 1 for all n ∈ N.
(A4) 0 < λρn < 2λ̄ and lim inf

n→∞
ρn(4λ̄− λρn) > 0 where λ = max{λ1, λ2}

and λ̄ = min{λ1, λ2}.

Iterative Step: Proceed with the following computations:
zn = (1− αn)xn + αnu,
yn = zn − τn(λ1∇gn(zn) + λ2∇ fn(zn)),
xn+1 = (1− βn)zn + βnyn,

where

τn = ρn
fn(zn) + gn(zn)

d(zn)
,

for

d(zn) =

{
1, if ‖∇gn(zn)‖2 + ‖∇ fn(zn)‖2 = 0
‖∇gn(zn)‖2 + ‖∇ fn(zn)‖2, otherwise.

4. Preliminary Numerical Results and Applications

In this section, we illustrate the numerical performance and applicability of HSRPA by solving
some problems. In the first example, we investigate the numerical performance of HSRPA with
regards to different choices of the control parameters αn, βn and ρn. In Example 2, we illustrate the
numerical properties of HSRPA in comparison with three other strongly convergent algorithms, namely
the gradient projection method (GPM) by Censor et al. ([7], Algorithm 1), the perturbed projection
method (PPM) by Censor et al. ([43], Algorithm 5), and the self-adaptive projection method (SAPM)
by Zhao and Yang ([46], Algorithm 3.2). As mentioned in Remark 1(ii), the stepsize in HSRPA can
be replaced by the stepsize (38). Therefore in Example 3, we analyze the effect of the two stepsizes
in HSRPA for different choices of λ1 and λ2. Additionally, we compare HSRPA with et al. ([48],
Algorithm 2.1). Also, a comparison of Algorithm 2 with the strong convergence result of SFP proposed
by Shehu et al. [56] is given in Example 4. Finally in Section 4.1, we present a sparse signal recovery
experiment to illustrate the efficiency of Algorithm 2 by comparing with algorithms proposed by
Lopez [2] and Yang [37]. The numerical results are completed on a standard TOSHIBA laptop with
Intel(R) Core(TM) i5-2450M CPU@2.5GHz 2.5GHz with memory 4GB. The programme is implemented
in MATLAB R2020a.

Example 1. Consider MSSFP (2) for H1 = Rs, H2 = Rt, A : Rs → Rt given by A(x) = Gt×s(x),
where Gt×s is t× s matrix, the closed convex subsets Ci (i ∈ {1, . . . , N}) of Rs are given by

Ci =
{

x = (x1, . . . , xs)
T ∈ Rs : ci(x) ≤ 0

}
,

where ci(x) = ‖x− x0
i ‖

2 − r2
i such that

• ri = r for all i ∈ {2, . . . , N}, where r is a positive real number,

Math. Comput. Appl. 2020, 25, 47 13 of 24

• x0
i = (x1,i, . . . , xs,i)

T = (0, . . . , 0, i− 1)T ∈ Rs for each i = 1, . . . , N,

and the closed convex subsets Qj (j ∈ {1, . . . , M}) of Rt are given by

Qj =
{

y = (y1, y2, . . . , yt)
T ∈ Rt : qj(y) ≤ 0

}
,

where

qj(y) =
t

∑
k=1

ak,j(yk − yk,j)− bj,

such that for each j ∈ {1, . . . , M};

• ak,j = 2j, ∀k = 1, . . . , t,
• bj = j− 1,

• yt,j = rθ − bj
at,j

, and yk,j = 0, ∀k = 1, . . . , t− 1, where θ is a nonzero real number.

Notice that,
N⋂

i=1
Ci = ∅ for N > 2r + 1,

N⋂
i=1

Ci 6= ∅,
N⋂

i=1
Ci contains infinite points for 0 < N <

2r + 1,
N⋂

i=1
Ci = {(0, . . . , 0, r)T} for N = 2r + 1, and r is a natural number. Moreover,

M⋂
j=1

Qj 6= ∅,

and (0, . . . , 0, rθ)T ∈
M⋂

j=1
Qj.

We consider for s = t, Gt×s = θ Is×s, N = 2r + 1, and M = 4, where r is natural number, and Is×s is
s× s identity matrix. Thus, A((0, . . . , 0, r)T) = (0, . . . , 0, rε)T , and hence the solution set of the MSSFP is
Ω = {(0, . . . , 0, r)T}.

For each i ∈ {1, . . . , N} and j ∈ {1, . . . , M}, the subdifferential is given by

∂ci(zn) =

{

zn−x0
i

‖zn−x0
i ‖

}
, if zn − x0

i 6= 0,

{εi ∈ Rs : ‖εi‖ ≤ 1}, otherwise.

and ∂qj(Azn) = {(a1,j, . . . , at,j)
T}.

Note that the projection

PCi,n(zn) = arg min
{
‖x− zn‖ : x ∈ Ci,n

}
,

where Ci,n = {x ∈ H1 : ci(zn) ≤ 〈ξi,n, zn − x〉}, is solving the following quadratic programming problems
with inequality constraint

minimize 1
2 xT H̄x + B̄T

n x + c̄
subject to D̄i,nx ≤ F̄i,

(39)

where H̄ = 2Is×s, B̄n = −2zn, c̄ = ‖zn‖2, D̄i,n = ξi,n = [ξi,n,1, . . . , ξi,n,s], F̄i = r2
i −‖zn− x0

i ‖
2 + 〈ξn,j, zn〉.

Moreover, the projection PQj,n(Azn) for where Qj,n = {y ∈ H2 : qj(Azn) ≤ 〈ε j,n, Azn − y〉}, is solving the
following quadratic programming problems with inequality constraint

minimize 1
2 wT Ĥw + B̂T

n w + ĉ
subject to D̂j,n(w) ≤ F̂j,

(40)

where Ĥ = 2It×t, B̂n = −2Azn, ĉ = ‖Azn‖2, D̂j,n = ε j,n, F̂j = bj + 〈ε j,n, Azn〉 + 〈aj, y0
j − Azn〉 for

aj = (a1,j, . . . , at,j). The problems (39) and (40) can be effectively solved by its appropriate solver in MATLAB.
In the following our experiments we took

ξi,n =

zn−x0

i
‖zn−x0

i ‖
, if zn − x0

i 6= 0,

0, otherwise,

Math. Comput. Appl. 2020, 25, 47 14 of 24

and ε j,n = (a1,j, . . . , at,j)
T .

We study the numerical behavior of HSRPA for different parameters αn, βn, ρn and for different dimensions
s = t, where r = 2 (i.e., N = 5), λ1 = λ2 = 1

2 , δj =
j
4 for all j ∈ {1, 2, 3, 4} are fixed. Notice that for the

choice of λ1 = λ2 = 1
2 the parameter ρn is chosen in such a way that 0 < ρn < 4 and lim inf

n→∞
ρn(4− ρn) > 0.

The numerical results are shown in Figures 1 and 2.

(a) βn = 0.6, Data 1: αn = 1√
n+1

, Data 2:

αn = 1
n+1 , Data 3: αn = 1

100n+100

(b) αn = 5
5n+1

Figure 1. For t = s = 100, ρn = 2, θ = 10 and for randomly generated starting points x1 and u.

(a) s = t = 50 (b) ρn = 0.5

Figure 2. For αn = 5
5n+1 , βn = 1

2 + 1
n+4 , θ = 150 and for randomly generated starting points x1 and u.

In view of Figures 1 and 2, we see that our algorithm works better for

(i) A sequence {αn} in which the terms are very close to zero;
(ii) A sequence {βn} in which terms are very close to 1;
(iii) A sequence {ρn} in which terms are larger but not exceeding 4.

Example 2. Comparing HSRPA with GPM, PPM and SAPM.
Consider MSSFP (2) for H1 = R3, H2 = R3, A : R3 → R3 given by A = θ I3×3, the closed convex

subsets Ci (i ∈ {1, . . . , N}) of R3 are given by

Ci =
{

x ∈ R3 : ci(x) ≤ 0
}

,

where θ is a real constant, I3×3 is 3× 3 identity matrix and

ci(x) = (−1)i(〈x, w0
i 〉 − γi)

such that w0
i = (i, i + 1, i+2√

2
)T and γi = 5i + 3, and the closed convex subsets Qj (j ∈ {1, . . . , M}) of R3 are

given by
Qj =

{
y ∈ R3 : qj(y) ≤ 0

}
,

where q1(y) = ‖y‖2 − 12θ2, qj(y) = (−1)j(〈y, z0
j 〉 − 3θ(j + j2)) and z0

j = (j, j2,
√

2j2)T for each
j ∈ {2, . . . , M}.

For each choice of θ the solution set of the MSSFP is {(3, 1,
√

2)}, i.e., x̄ = (3, 1,
√

2).

Math. Comput. Appl. 2020, 25, 47 15 of 24

We choose GPM, PPM and SAPM because the problem under consideration is the same and the approach
has some common features with our approach.

GPM: The proposed iterative algorithm solving MSSFP is reduced to

xn+1 = xn + $
(N

∑
i=1

σi(PCi − I)xn +
M

∑
j=1

νj A∗(PQj − I)Axn

)
, (41)

where $ ∈ (0, 2
L), L =

N
∑

i=1
σi + ω

M
∑

j=1
νj and

N
∑

i=1
σi +

M
∑

j=1
νj = 1 for σi > 0, νj > 0 and ω is the spectral radius

of A∗A = At A.
PPM: The proposed algorithm is obtained by replacing the projections on the closed convex subset Ci and

Qj in (41) by the half-space Ci,n and Cj,n.
SAPM: The proposed iterative algorithm for solving the MSSFP is reduced to

yn = xn − $n∇pn(xn),
$n = γςln ,where min{l : ‖∇pn(xn)−∇pn(yn)‖ ≤ µ‖xn−yn‖

γςl , l = 0, 1, 2, . . .},
xn+1 = xn − $n∇pn(yn),

where ∇pn(xn) =
N
∑

i=1
σi(I − PCi,n)xn +

M
∑

j=1
νj A∗(I − PQj,n)Axn,

N
∑

i=1
σi +

M
∑

j=1
νj = 1 for σi > 0, νj > 0,

γ > 0, ς ∈ (0, 1), µ ∈ (0, 1).

In our algorithm we took ξi,n = (−1)ix0
i for each i ∈ {1, . . . , N} and

ε1,n =

zn−z0

1
‖zn−z0

1‖
, if zn − z0

1 6= 0,

0, otherwise,

and ε j,n = (−1)jz0
j for each j ∈ {2, . . . , M}.

For the purpose of comparison we took the following data:

HSRPA: λ1 = λ2 = 1
2 , δj =

j
1+...+M for j ∈ {1, . . . , M}, αn = 1

n+1 , βn = n+2
2n+6 , ρn = 1.

GPM: $ = 1
3 , σi =

i
2(1+...+N)

for i ∈ {1, . . . , N}, νj =
j

2(1+...+M)
for j ∈ {1, . . . , M}.

PPM: $ = 1
3 , σi =

i
2(1+...+N)

for i ∈ {1, . . . , N}, νj =
j

2(1+...+M)
for j ∈ {1, . . . , M}.

SAPM: γ = 1, ς = 1
2 = µ, σi =

i
2(1+...+N)

for i ∈ {1, . . . , N}, νj =
j

2(1+...+M)
for j ∈ {1, . . . , M}.

The numerical results are shown in Table 1 and Figure 3. To permit comparisons between the three
algorithms about the number of iterations (Iter(n)) and the time of execution in seconds (CPUt(s)), we have used
the relative difference ‖xn−xn+1‖

‖x1−u‖ , which is less than ε, as the stopping criteria in Table 1.
From the numerical results in Table 1 and Figure 3 of Example 2, we can see that our algorithm (HSRPA)

has better performance than GPM, PPM and SAPM. To be specific, HSRPA converges faster and requires
less iterations than GPM, PPM and SAPM. In view of CPU time of execution, our algorithm has comparable
performance with GPM, PPM and SAPM.

Math. Comput. Appl. 2020, 25, 47 16 of 24

Table 1. For θ = 3, u = (4,−6, 9) and x1 = (−4, 7,−19).

ε = 10−2, N = 3, M = 2 ε = 10−3, N = 4 = M

Iter(n) 271 359
HSRPA CPUt(s) 2.478534 2.7094060

‖xn − x̄‖ 1.29153127891261× 10−11 3.95548438843874× 10−5

Iter(n) 286 421
GPM CPUt(s) 2.350976 3.0921890

‖xn − x̄‖ 1.32185889807060× 10−11 4.00584274497442× 10−5

Iter(n) 293 368
PPM CPUt(s) 2.462534 2.6903446

‖xn − x̄‖ 1.34325049285599× 10−11 3.97217074806315× 10−5

Iter(n) 277 397
SAPM CPUt(s) 2.192005 2.6393334

‖xn − x̄‖ 1.30707774298130× 10−11 4.0068355895327× 10−5

Figure 3. For N = 50 and starting points u = (−1, . . . ,−1) ∈ RN (in HSRPA) and x1 = −2u.

Example 3. Consider the MSSFP with H1 = Rs, H2 = Rt and Ci = {x ∈ Rs : −5ie1 ≤ x ≤ (N − i)e1}
(i ∈ {1, . . . , N}) and Qj = {y ∈ Rt : (j − M)e1 ≤ y ≤ je1}, (j ∈ {1, . . . , M}) , with a different
number of feasible sets N and M, and dimensions s and t. We randomly generated the operator A = (aij)t×s,
with aij ∈ [0, 10]. In this example, we see the effect of the different choices of λ1 and λ2 for the numerical results of
the HSRPA using both stepsizes τj,n and τ∗j,n (given in (38)), and also we compare the HSRPA with the algorithm
proposed by Zhao et al. ([48], Algorithm 2.1). For the HSRPA we take u = (1, 1, 2)T , x1 = rand[−100, 100],
N = 3, M = 10, s = t = 3, ρn = 3, αn = 1

n+1 , βn = n+5
2n+6 and δj =

j
1+...+M , j ∈ {1, . . . , M}. For ([48],

Algorithm 2.1), we take x0 = rand[−100, 100], t = 3, r = 10, N = M = 3, ωk = 1, αi = (1013
3000)

i,
i = 1, 2, 3, and β j = (1013

3000)
j, j = 1, 2, . . . , 10. We use ‖xn+1 − xn‖ < 10−4 as the stopping criteria.

The results are presented in Table 2 below.

Interestingly, it can be observed from Table 2 that, for λ1 ≤ λ2 HSRPA with the stepsize τj,n
is faster in terms of less number of iterations and CPU-run time than HSRPA with the stepsize τ∗j,n.
On the contrary, HSRPA (τ∗j,n) has better performance for λ1 > λ2 and HSRPA with either of the
stepsizes converges faster and requires less number of iterations than the compared algorithm ([48],
Algorithm 2.1).

Math. Comput. Appl. 2020, 25, 47 17 of 24

Table 2. Comparative result of the Half-Space Relaxation Projection Algorithm (HSRPA) (with two
different stepsizes τj,n and τ∗j,n) with ([48], Algorithm 2.1) for different choices of λ1 and λ2.

Choices of λ1, λ2 HSRPA (τj,n) HSRPA (τ∗
j,n) Algorithm 2.1

Ite. CPUt(s) Ite. CPUt(s) Ite. CPUt(s)

λ1 = 0.9, λ2 = 0.1 56 8.9971 51 7.3628 235 28.7590
λ1 = 0.8, λ2 = 0.2 55 5.8883 37 3.7528
λ1 = 0.7, λ2 = 0.3 45 4.7402 39 3.9150
λ1 = 0.6, λ2 = 0.4 42 4.6510 38 3.9080
λ1 = 0.5, λ2 = 0.5 38 3.9295 45 4.5573
λ1 = 0.4, λ2 = 0.6 36 3.1803 44 4.4400
λ1 = 0.3, λ2 = 0.7 42 4.3067 50 5.0784
λ1 = 0.2, λ2 = 0.8 29 3.4536 36 3.8640
λ1 = 0.1, λ2 = 0.9 32 3.3220 38 4.1409

Example 4. Consider the Hilbert space H1 = H2 = L2([0, 1]) with norm ‖x|| :=
√∫ 1

0 |x(t)|2dt and the

inner product given by 〈x, y〉 =
∫ 1

0 x(t)y(t)dt. The two nonempty, closed and convex sets are C = {x ∈
L2([0, 1]) : 〈x(t), 3t2〉 = 0} and Q = {x ∈ L2([0, 1]) : 〈x, t

3 〉 ≥ −1}, and the linear operator is given
as (Ax)(t) = x(t), i.e., ‖A‖ = 1 or A = I is the identity. The orthogonal projection onto C and Q have
an explicit formula; see, for example, [57]

PC(w(t)) =

w(t)− 〈w(t),3t2〉
‖3t2‖2

L2
3t2, if 〈w(t), 3t2〉 6= 0,

w(t), if 〈w(t), 3t2〉 = 0.

PQ(w(t)) =

w(t)− 〈w(t),−t
3 〉−1

‖−t
3 ‖2

L2
(−t

3), if 〈w(t), −t
3 〉 < −1,

w(t), if 〈w(t), −t
3 〉 ≥ −1.

We consider the following problem

find x∗ ∈ C such that Ax∗ ∈ Q. (42)

It is clear that Problem (42) has a nonempty solution set Ω since 0 ∈ Ω. In this case, the iterative scheme
in Algorithm 2

(
u, x1 ∈ C, with λ1 = λ2 = 1

2 , ρn = 7
2 , αn = 1

n+1 , and βn = n+2
2n+6

)
becomes

zn = (1− 1
n+1)xn +

u
n+1 ,

yn = zn − τn
2 ((I − PCn)zn + A∗(I − PQn)Azn),

xn+1 = (1− n+2
2n+6)zn + (n+2

2n+6)yn,

where

τn =
7(‖(I − PCn)zn‖2 + ‖(I − PQn)Azn‖2)

d(zn)
,

for

d(zn) =

{
1, if ‖(I − PCn)zn‖2 + ‖A∗(I − PQn)Azn‖2 = 0

‖(I − PCn)zn‖2 + ‖A∗(I − PQn)Azn‖2, otherwise.

Math. Comput. Appl. 2020, 25, 47 18 of 24

In this example, we compare Algorithm 2 with the strong convergence result of SFP proposed by
Shehu et al. [56]. The iterative scheme (27) in [56] for u, x1 ∈ C, with αn = 1

n+1 , βn = n
2(n+1) = γn

and tn = 1
‖A‖2 was reduced into the following form

{
yn = [xn − 1

‖A‖2 A∗(Axn − PQn(Axn))]

xn+1 = PC
(u

n+1 + nxn
2(n+1) +

nyn
2(n+1)

)
, n ≥ 1.

(43)

We see here that our iterative scheme can be implemented to solve the problem (42) considered in this
example. We use ‖xn+1− xn‖ < 10−3 as stopping criteria for both algorithms and the outcome of the numerical
experiment is reported in Figure 4. It can be observed from Figure 4 that, for different choices of u and x1,
Algorithm 2 is faster in terms of less number of iterations and CPU-run time than the algorithm proposed by
Shehu et al. [56].

0 10 20 30 40 50 60
Number of iterations

10-4

10-2

100

102

104

106

(a) u = cost, x1 = sint

0 10 20 30 40 50 60
Number of iterations

10-4

10-2

100

102

104

106

(b) u = exp(t), x1 = t3

0 10 20 30 40 50 60
Number of iterations

10-4

10-2

100

102

104

106

(c) u = cost, x1 = cost

10 20 30 40 50 60 70
Number of iterations

10-4

10-2

100

102

104

(d) u = exp(t), x1 = sint.

Figure 4. Comparison of Algorithm 2 and algorithm by Shehu [56] for different choices of u and x1.

4.1. Application to Signal Recovery

In this part, we consider the problem of recovering a noisy sparse signal. Compressed sensing
can be modeled as the following linear equation:

b = Ax + ε, (44)

where x ∈ RN is a vector with L nonzero components to be recovered, b ∈ RM is the measured data
with noisy ε (when ε = 0, it means that there is no noise to the observed data) and A is an M× N
bounded linear observation operator with (N > M). The problem in Equation (44) can be seen as the
LASSO problem, which has wide application in signal processing theory [58].

Math. Comput. Appl. 2020, 25, 47 19 of 24

min
x∈RN

1
2
‖Ax− b‖2

2

subject to ‖x‖1 ≤ t,
(45)

where t > 0 is a given constant. It can be observed that (45) indicates the potential of finding a sparse
solution of the SFP (3) due to the `1 constraint. Thus, we apply Algorithm 2 to solve problem (45).

Let C := {x : ‖x‖1 ≤ t} and Q = {b}, then the minimization problem (45) can be seen as an
SFP (3). Denote the level set Cn by,

Cn = {x ∈ RN : ω(xn) + 〈ςn, x− xn〉 ≤ 0}, (46)

where ςn ∈ ∂ω(xn) with the convex function ω(x) = ‖x‖1 − t.
For a special case where Q = Qn = {b}, Algorithm 2 converges to the solution of (45) and

moreover, since the projection onto the level set has an explicit formula, Algorithm 2 can be easily
implemented. In the sequel, we present a sparse signal recovery experiment to illustrate the efficiency
of Algorithm 2 by comparing with algorithms proposed by Lopez [2] and Yang [37].

The vector x is an L−sparse signal with L non-zero elements that is generated from uniform
distribution in the interval [−2, 2]. The matrix A is generated from a normal distribution with mean
zero and one variance. The observation b is generated by white Gaussian noise with signal-to-noise
ratio SNR = 40. The process is started with t = L, x0 and u are randomly generated N × 1 vectors.
The goal is then to recover the L−sparse signal x by solving (45). The restoration accuracy is measured
by the mean squared error as follows:

MSE =
1
N
‖xn+1 − xn‖ ≤ ε, (47)

where xn is an estimated signal of x, and ε > 0 is a given small constant. We take the stopping
criteria ε = 10−6 and we choose the corresponding parameters ρn = 3.5, λ1 = λ2 = 0.5 for
Algorithm 2. We also choose γ = 1

‖A‖2 and ρn = 2 for the algorithm by Yang [37] and algorithm by
Lopez [2], respectively.

It can be observed from Figures 5–8 that the recovered signal by the proposed algorithm has
less number of iterations and MSE. Therefore, the quality of the signal recovered by the proposed
algorithm is better than the compared algorithms.

Original signal (N = 512, M = 120, L = 30)

50 100 150 200 250 300 350 400 450 500
-1
0
1

Measured values with SNR = 40

10 20 30 40 50 60 70 80 90 100 110 120
-20

0
20

Recovered signal by Yang algorithm (200 Iterations, CPU = 0.0367)

50 100 150 200 250 300 350 400 450 500
-1
0
1

Recovered signal by Lopez algorithm (200 Iterations, CPU = 0.0392)

50 100 150 200 250 300 350 400 450 500
-1
0
1

Recovered signal by Algorithm 2 (17 Iterations, CPU = 0.0031)

50 100 150 200 250 300 350 400 450 500
-1
0
1

Figure 5. The original L−sparse signal versus the recovered sparse signal by Algorithm 2, algorithms
by Lopez [2] and Yang [37] when N = 512, M = 120 and L = 30 .

Math. Comput. Appl. 2020, 25, 47 20 of 24

20 40 60 80 100 120 140 160 180 200

Number of iterations

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Figure 6. MSE versus the number of iterations, and the comparison of Algorithm 2 with that of
algorithms by Lopez [2] and Yang [37] when N = 512, M = 120 and L = 30.

Original signal (N = 4096, M = 960, L =60)

500 1000 1500 2000 2500 3000 3500 4000
-1
0
1

Measured values with SNR = 40

100 200 300 400 500 600 700 800 900
-20

0
20

Recovered signal by Yang algorithm (200 Iterations, CPU = 2.2655)

500 1000 1500 2000 2500 3000 3500 4000
-1
0
1

Recovered signal by Lopez algorithm (200 Iterations, CPU = 2.2675)

500 1000 1500 2000 2500 3000 3500 4000
-1
0
1

Recovered signal by Algorithm 2 (11 Iterations, CPU = 0.2150)

500 1000 1500 2000 2500 3000 3500 4000
-1
0
1

Figure 7. The original L−sparse signal versus the recovered sparse signal by Algorithm 2, algorithms
by Lopez [2] and Yang [37] when N = 4096, M = 960 and L = 60.

Math. Comput. Appl. 2020, 25, 47 21 of 24

0 20 40 60 80 100 120 140 160 180 200

Number of iterations

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 8. MSE versus the number of iterations, and the comparison of Algorithm 2 with that of
algorithms by Lopez [2] and Yang [37] when N = 4096, M = 960 and L = 60.

5. Conclusions

In this paper, we present a strong convergence iterative algorithm solving MSSFP with a way
of selecting the stepsizes such that the implementation of the algorithm does not need any prior
information as regards the operator norms. Preliminary numerical results are reported to illustrate
the numerical behavior of our algorithm (HSRPA), and to compare it with those well known in the
literature, including, Censor et al. ([7], Algorithm 1), Censor et al. ([43], Algorithm 5), Zhao and
Yang ([46], Algorithm 3.2) and Zhao et al. ([48], Algorithm 2.1). The numerical results show that our
proposed Algorithm is practical and promising for solving MSSFP. Algorithm 2 is applied in signal
recovery. The experiment results show that Algorithm 2 has fewer iterations than that of algorithms
proposed by Yang [37], Lopez [2] and Shehu [56].

Author Contributions: Conceptualization, G.H.T. and K.S.; data curation, A.G.G.; formal analysis, G.H.T.; funding
acquisition, P.K.; investigation, K.S.; methodology, K.S.; project administration, P.K.; resources, P.K.; software,
A.G.G.; supervision, P.K.; validation, G.H.T. and P.K.; visualization, A.G.G.; writing—original draft, G.H.T.;
writing—review and editing, A.G.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Center of Excellence in Theoretical and Computational Science
(TaCS-CoE), Faculty of Science, KMUTT. The first author was supported by the “Petchra Pra Jom Klao Ph.D.
Research Scholarship” from King Mongkut’s University of Technology Thonburi with Grant No. 37/2561.

Acknowledgments: The authors acknowledge the financial support provided by the Center of Excellence
in Theoretical and Computational Science (TaCS-CoE), KMUTT. Guash Haile Taddele is supported by the
Petchra Pra Jom Klao Ph.D. Research Scholarship from King Mongkut’s University of Technology Thonburi
(Grant No.37/2561). Moreover, Kanokwan Sitthithakerngkiet was supported by the Faculty of Applied Science,
King Mongkut’s University of Technology, North Bangkok. Contract no. 6342101.

Conflicts of Interest: The authors declare no conflict of interest.

Math. Comput. Appl. 2020, 25, 47 22 of 24

References

1. Censor, Y.; Gibali, A.; Reich, S. Algorithms for the split variational inequality problem. Numer. Algorithms
2012, 59, 301–323. [CrossRef]

2. López, G.; Martín-Márquez, V.; Wang, F.; Xu, H.K. Solving the split feasibility problem without prior
knowledge of matrix norms. Inverse Probl. 2012, 28, 085004. [CrossRef]

3. Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction.
Inverse Probl. 2003, 20, 103. [CrossRef]

4. Combettes, P. The convex feasibility problem in image recovery. In Advances in Imaging and Electron Physics;
Elsevier: Amsterdam, The Netherlands, 1996; Volume 95, pp. 155–270.

5. Qu, B.; Xiu, N. A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 2005, 21, 1655.
[CrossRef]

6. Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space.
Numer. Algorithms 1994, 8, 221–239. [CrossRef]

7. Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T. The multiple-sets split feasibility problem and its applications
for inverse problems. Inverse Probl. 2005, 21, 2071. [CrossRef]

8. Censor, Y.; Lent, A. Cyclic subgradient projections. Math. Program. 1982, 24, 233–235. [CrossRef]
9. Byrne, C.; Censor, Y.; Gibali, A.; Reich, S. The split common null point problem. arXiv 2011, arXiv:1108.5953.

[CrossRef]
10. Censor, Y.; Segal, A. The split common fixed point problem for directed operators. J. Convex Anal. 2009,

16, 587–600. [CrossRef]
11. Dang, Y.; Gao, Y.; Li, L. Inertial projection algorithms for convex feasibility problem. J. Syst. Eng. Electron.

2012, 23, 734–740.
12. He, Z. The split equilibrium problem and its convergence algorithms. J. Inequalities Appl. 2012, 2012, 162.

[CrossRef]
13. Taiwo, A.; Jolaoso, L.O.; Mewomo, O.T. Viscosity approximation method for solving the multiple-set split

equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces. J. Ind.
Manag. Optim. 2017, 13. [CrossRef]

14. Aremu, K.O.; Izuchukwu, C.; Ogwo, G.N.; Mewomo, O.T. Multi-step iterative algorithm for minimization and
fixed point problems in p-uniformly convex metric spaces. J. Manag. Optim. 2017, 13. [CrossRef]

15. Oyewole, O.K.; Abass, H.A.; Mewomo, O.T. A strong convergence algorithm for a fixed point constrained
split null point problem. Rend. Circ. Mat. Palermo Ser. 2 2020, 13, 1–20. [CrossRef]

16. Izuchukwu, C.; Ugwunnadi, G.C.; Mewomo, O.T.; Khan, A.R.; Abbas, M. Proximal-type algorithms for split
minimization problem in P-uniformly convex metric spaces. Numer. Algorithms 2019, 82, 909–935. [CrossRef]

17. Jolaoso, L.O.; Alakoya, T.O.; Taiwo, A.; Mewomo, O.T. Inertial extragradient method via viscosity
approximation approach for solving equilibrium problem in Hilbert space. Optimization 2020, 1–20.
[CrossRef]

18. He, S.; Wu, T.; Cho, Y.J.; Rassias, T.M. Optimal parameter selections for a general Halpern iteration.
Numer. Algorithms 2019, 82, 1171–1188. [CrossRef]

19. Dadashi, V.; Postolache, M. Forward–backward splitting algorithm for fixed point problems and zeros of the
sum of monotone operators. Arab. J. Math. 2020, 9, 89–99. [CrossRef]

20. Yao, Y.; Leng, L.; Postolache, M.; Zheng, X. Mann-type iteration method for solving the split common fixed
point problem. J. Nonlinear Convex Anal. 2017, 18, 875–882. [CrossRef]

21. Byrne, C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 2002,
18, 441. [CrossRef]

22. Dang, Y.; Gao, Y. The strong convergence of a KM–CQ-like algorithm for a split feasibility problem.
Inverse Probl. 2010, 27, 015007.

23. Jung, J.S. Iterative algorithms based on the hybrid steepest descent method for the split feasibility problem.
J. Nonlinear Sci. Appl. 2016, 9, 4214–4225. [CrossRef]

24. Wang, F.; Xu, H.K. Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. Theory
Methods Appl. 2011, 74, 4105–4111. [CrossRef]

25. Xu, H.K. An iterative approach to quadratic optimization. J. Optim. Theory Appl. 2003, 116, 659–678.
[CrossRef]

http://dx.doi.org/10.1007/s11075-011-9490-5
http://dx.doi.org/10.1088/0266-5611/28/8/085004
http://dx.doi.org/10.1088/0266-5611/20/1/006
http://dx.doi.org/10.1088/0266-5611/21/5/009
http://dx.doi.org/10.1007/BF02142692
http://dx.doi.org/10.1088/0266-5611/21/6/017
http://dx.doi.org/10.1007/BF01585107
http://dx.doi.org/10.1007/BF01585107
http://dx.doi.org/arXiv:1108.5953
http://dx.doi.org/10.1109/JSEE.2012.00090
http://dx.doi.org/10.1186/1029-242X-2012-162
http://dx.doi.org/10.1186/1029-242X-2012-162
http://dx.doi.org/10.3934/jimo.2020092
http://dx.doi.org/10.3934/jimo.2020063
https://doi.org/10.1080/02331934.2020.1716752
http://dx.doi.org/10.1007/s11075-018-0633-9
http://dx.doi.org/10.1080/02331934.2020.1716752
http://dx.doi.org/10.1007/s11075-018-00650-1
http://dx.doi.org/10.1007/s40065-018-0236-2
http://dx.doi.org/10.1088/0266-5611/18/2/310
http://dx.doi.org/10.1088/0266-5611/27/1/015007
http://dx.doi.org/10.22436/jnsa.009.06.63

Math. Comput. Appl. 2020, 25, 47 23 of 24

26. Xu, H.K. A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem.
Inverse Probl. 2006, 22, 2021. [CrossRef]

27. Xu, H.K. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces.
Inverse Probl. 2010, 26, 105018. [CrossRef]

28. Yu, X.; Shahzad, N.; Yao, Y. Implicit and explicit algorithms for solving the split feasibility problem.
Optim. Lett. 2012, 6, 1447–1462. [CrossRef]

29. Shehu, Y.; Mewomo, O.T.; Ogbuisi, F.U. Further investigation into approximation of a common solution of
fixed point problems and split feasibility problems. Acta Math. Sci. 2016, 36, 913–930. [CrossRef]

30. Shehu, Y.; Mewomo, O.T. Further investigation into split common fixed point problem for demicontractive
operators. Acta Math. Sin. Engl. Ser. 2016, 32, 1357–1376. [CrossRef]

31. Mewomo, O.T.; Ogbuisi, F.U. Convergence analysis of an iterative method for solving multiple-set split
feasibility problems in certain Banach spaces. Quaest. Math. 2018, 41, 129–148. [CrossRef]

32. Dong, Q.L.; Tang, Y.C.; Cho, Y.J.; Rassias, T.M. "Optimal" choice of the step length of the projection and
contraction methods for solving the split feasibility problem. J. Glob. Optim. 2018, 71, 341–360. [CrossRef]

33. Cegielski, A. Landweber-type operator and its properties. Contemp. Math. 2016, 658, 139–148. [CrossRef]
34. Cegielski, A. General method for solving the split common fixed point problem. J. Optim. Theory Appl. 2015,

165, 385–404. [CrossRef]
35. Cegielski, A.; Reich, S.; Zalas, R. Weak, strong and linear convergence of the CQ-method via the regularity

of Landweber operators. Optimization 2020, 69, 605–636.
36. Hendrickx, J.M.; Olshevsky, A. Matrix p-norms are NP-hard to approximate if p 6= 1, 2, ∞. SIAM J. Matrix

Anal. Appl. 2010, 31, 2802–2812. [CrossRef]
37. Yang, Q. The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 2004, 20, 1261.

[CrossRef]
38. Bauschke, H.H.; Borwein, J.M. On projection algorithms for solving convex feasibility problems. SIAM Rev.

1996, 38, 367–426. [CrossRef]
39. Fukushima, M. A relaxed projection method for variational inequalities. Math. Program. 1986, 35, 58–70.

[CrossRef]
40. Alakoya, T.O.; Jolaoso, L.O.; Mewomo, O.T. Modified inertial subgradient extragradient method with

self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization
2020, 1–30. [CrossRef]

41. Jolaoso, L.O.; Taiwo, A.; Alakoya, T.O.; Mewomo, O.T. A unified algorithm for solving variational inequality
and fixed point problems with application to the split equality problem. Comput. Appl. Math. 2020, 39, 38.
[CrossRef]

42. Buong, N. Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces.
Numer. Algorithms 2017, 76, 783–798. [CrossRef]

43. Censor, Y.; Motova, A.; Segal, A. Perturbed projections and subgradient projections for the multiple-sets
split feasibility problem. J. Math. Anal. Appl. 2007, 327, 1244–1256. [CrossRef]

44. Latif, A.; Vahidi, J.; Eslamian, M. Strong convergence for generalized multiple-set split feasibility problem.
Filomat 2016, 30, 459–467. [CrossRef]

45. Masad, E.; Reich, S. A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear
Convex Anal. 2007, 8, 367. [CrossRef]

46. Zhao, J.; Yang, Q. Self-adaptive projection methods for the multiple-sets split feasibility problem. Inverse Probl.
2011, 27, 035009. [CrossRef]

47. Zhao, J.; Yang, Q. Several acceleration schemes for solving the multiple-sets split feasibility problem.
Linear Algebra Appl. 2012, 437, 1648–1657.

48. Zhao, J.; Yang, Q. A simple projection method for solving the multiple-sets split feasibility problem.
Inverse Probl. Sci. Eng. 2013, 21, 3537–3546. [CrossRef]

49. Yao, Y.; Postolache, M.; Zhu, Z. Gradient methods with selection technique for the multiple-sets split
feasibility problem. Optimization 2019, 69, 269–281. [CrossRef]

50. Osilike, M.O.; Isiogugu, F.O. Weak and strong convergence theorems for nonspreading-type mappings in
Hilbert spaces. Nonlinear Anal. Theory Methods Appl. 2011, 74, 1814–1822. [CrossRef]

51. Aubin, J.P. Optima and Equilibria: An Introduction to Nonlinear Analysis; Springer Science & Business Media:
Berlin, Germany, 2013; Volume 140. [CrossRef]

http://dx.doi.org/10.1016/j.na.2011.03.044
http://dx.doi.org/10.1023/A:1023073621589
http://dx.doi.org/10.1088/0266-5611/22/6/007
http://dx.doi.org/10.1088/0266-5611/26/10/105018
http://dx.doi.org/10.1007/s11590-011-0340-0
http://dx.doi.org/10.1016/S0252-9602(16)30049-2
http://dx.doi.org/10.1007/s10114-016-5548-6
http://dx.doi.org/10.2989/16073606.2017.1375569
http://dx.doi.org/10.1007/s10898-018-0628-z
http://dx.doi.org/10.1007/s10957-014-0662-z
http://dx.doi.org/10.1080/02331934.2019.1598407
http://dx.doi.org/10.1137/09076773X
http://dx.doi.org/10.1088/0266-5611/20/4/014
http://dx.doi.org/10.1137/S0036144593251710
http://dx.doi.org/10.1007/BF01589441
http://dx.doi.org/10.1080/02331934.2020.1723586
http://dx.doi.org/10.1007/s40314-019-1014-2
http://dx.doi.org/10.1007/s11075-017-0282-4
http://dx.doi.org/10.1016/j.jmaa.2006.05.010
http://dx.doi.org/10.2298/FIL1602459L
http://dx.doi.org/10.1088/0266-5611/27/3/035009
http://dx.doi.org/10.1016/j.laa.2012.05.018
http://dx.doi.org/10.1080/17415977.2012.712521
http://dx.doi.org/10.1080/02331934.2019.1602772

Math. Comput. Appl. 2020, 25, 47 24 of 24

52. Ceng, L.C.; Ansari, Q.H.; Yao, J.C. An extragradient method for solving split feasibility and fixed point
problems. Comput. Math. Appl. 2012, 64, 633–642. [CrossRef]

53. Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 408.

54. Maingé, P.E.; Măruşter, Ş. Convergence in norm of modified Krasnoselski–Mann iterations for fixed points
of demicontractive mappings. Appl. Math. Comput. 2011, 217, 9864–9874. [CrossRef]

55. He, B. Inexact implicit methods for monotone general variational inequalities. Math. Program. 1999,
86, 199–217.

56. Shehu, Y. Strong convergence result of split feasibility problems in Banach spaces. Filomat 2017, 31, 1559–1571.
[CrossRef]

57. Cegielski, A. Iterative Methods for Fixed Point Problems in Hilbert Spaces; Springer: Berlin/Heidelberg, Germany,
2012; Volume 2057. [CrossRef]

58. Gibali, A.; Liu, L.W.; Tang, Y.C. Note on the modified relaxation CQ algorithm for the split feasibility
problem. Optim. Lett. 2018, 12, 817–830. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.na.2010.10.054
http://dx.doi.org/10.1016/j.camwa.2011.12.074
http://dx.doi.org/10.1016/j.amc.2011.04.068
http://dx.doi.org/10.1007/s101070050086
http://dx.doi.org/10.2298/FIL1706559S
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Split Inverse Problem
	Split Feasibility Problem and Multiple-Set Split Feasibility Problem

	Preliminary
	Half-Space Relaxation Projection Algorithm
	Preliminary Numerical Results and Applications
	Application to Signal Recovery

	Conclusions
	References

