
Mathematical

and Computational

Applications

Article

Evolutionary Algorithms Enhanced with Quadratic
Coding and Sensing Search for Global Optimization

Abdel-Rahman Hedar 1,2,* , Wael Deabes 1,3 , Majid Almaraashi 4 and Hesham H. Amin 1,5

1 Department of Computer Science in Jamoum, Umm Al-Qura University, Makkah 25371, Saudi Arabia;
wadeabes@uqu.edu.sa (W.D.); hhabuelhasan@uqu.edu.sa (H.H.A.)

2 Department of Computer Science, Faculty of Computers & Information, Assiut University,
Assiut 71526, Egypt

3 Computers and Systems Engineering Department, Mansoura University, Mansoura 35516, Egypt
4 Department of Computer Sciences, College of Computing and Information Technology,

University of Jeddah, Jeddah 23218, Saudi Arabia; malmaraashi@uj.edu.sa
5 Department of Electrical Engineering, Computers and Systems Section, Faculty of Engineering,

Aswan University, Aswan 81528, Egypt; hhamin@aswu.edu.eg
* Correspondence: hedar@aun.edu.eg or ahahmed@uqu.edu.sa; Tel.: +966-55-0086-411 or +20-10-0070-4940

Received: 26 November 2019; Accepted: 14 January 2020; Published: 16 January 2020
����������
�������

Abstract: Enhancing Evolutionary Algorithms (EAs) using mathematical elements significantly
contribute to their development and control the randomness they are experiencing. Moreover,
the automation of the primary process steps of EAs is still one of the hardest problems.
Specifically, EAs still have no robust automatic termination criteria. Moreover, the highly random
behavior of some evolutionary operations should be controlled, and the methods should invoke
advanced learning process and elements. As follows, this research focuses on the problem of
automating and controlling the search process of EAs by using sensing and mathematical mechanisms.
These mechanisms can provide the search process with the needed memories and conditions to
adapt to the diversification and intensification opportunities. Moreover, a new quadratic coding
and quadratic search operator are invoked to increase the local search improving possibilities.
The suggested quadratic search operator uses both regression and Radial Basis Function (RBF)
neural network models. Two evolutionary-based methods are proposed to evaluate the performance
of the suggested enhancing elements using genetic algorithms and evolution strategies. Results
show that for both the regression, RBFs and quadratic techniques could help in the approximation of
high-dimensional functions with the use of a few adjustable parameters for each type of function.
Moreover, the automatic termination criteria could allow the search process to stop appropriately.

Keywords: evolutionary algorithms; genetic algorithm; evolution strategies; regression; neural
networks; quadratic coding; quadratic search

1. Introduction

Evolutionary Algorithms (EAs) are considered to be one of the core methods applied in the area of
computational intelligence [1]. Generally, EAs constitute a class of the main global search tools
which can be adapted to deal with many forms of nonlinear and hard optimization problems.
Developing applicable versions of EAs is hugely required to meet the fast-growing of optimization
applications in all aspects of science [2,3]. Recently, there is an extreme interest in adapting EAs to be
used with other computational intelligence techniques in different application areas. Although there
are a vast number of attempts to modify the EAs to solve global optimization problems, most of them
invoke only heuristic design elements, and they do not use mathematical mechanisms [4,5].

Math. Comput. Appl. 2020, 25, 7; doi:10.3390/mca25010007 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0002-9936-5987
https://orcid.org/0000-0002-1814-2643
https://orcid.org/0000-0002-4462-7070
http://dx.doi.org/10.3390/mca25010007
http://www.mdpi.com/journal/mca
https://www.mdpi.com/2297-8747/25/1/7?type=check_update&version=2

Math. Comput. Appl. 2020, 25, 7 2 of 28

On the other hand, EAs have been applied in various optimization problems such as continuous,
discrete, and combinatorial problems with and without constraints as well as mixed optimization
problems [6,7]. Moreover, EAs are considered to be a milestone in the computational intelligence
filed [8]. Thus, developing practical schemes of EAs is remarkably required to meet the fast increasing
of many applications in different real-life science [2,9]. However, EAs still have no automatic
termination criteria. Thus, EAs algorithms cannot determine when or where they can terminate,
and a user should pre-specify a criterion for that purpose. Typically, methods of termination criteria are
such as when there has been no improvement in a pre-specified number of generations, when reaching
a pre-specified number of generations, or when the objective function value has reached a pre-specified
value. Another important designing issue is that controlling the randomness of some evolutionary
operations should be considered in designing effective evolutionary-based search methods. This
has motivated many researchers and was one of the main reasons for inventing the “memetic
algorithms” [10,11]. Moreover, more deterministic operations have been highly recommended in
developing the next generation genetic algorithms [12].

The main goal of this research is to construct an effective and intelligent method that looks for
optimal or near-optimal solutions to non-convex optimization problems. A global search method is to
solve the general unconstrained global optimization problem:

min
x∈X

f (x). (1)

In Equation (1), f is a real-value function that is defined in the search space X ⊆ Rn with
variables x ∈ X. Many methods of EAs have been suggested to deal with such problems [13,14].
This optimization problem has also been considered by different heuristic methods such as; tabu
search [15–17], simulated annealing [18–20], memetic algorithms [11], differential evolution [21,22],
particle swarm optimization [23,24], ant colony optimization [25], variable neighborhood search [26],
scatter search [27,28] and hybrid approaches [29–31]. Multiple applications in various areas such
as computer engineering, computer science, economic, engineering, computational science and
medicine can be expressed or redefined as problem in Equation(1), see [2,32] and references therein.
The considered problem is an unconstrained one; however, there are several constraint-handling
techniques that have been proposed to extend some of the previously mentioned research to deal with
the constrained version of Problem (1) [33–35]. Some of the common techniques are to use penalty
functions, fillers and dominance-based technique [36,37].

In this research, the proposed methods are expressed using quadratic models that partially
approximate the objective function. Two design models have been invoked to construct these methods.
In the first model called Quadratic Coding Genetic Algorithm (QAGA), trial solutions are encoded as
coefficients of quadratic functions, and their fitness is evaluated by the objective values at quadratic
optimizers of these models. Through generations, these quadratic forms are adapted by the genetic
operators: selection, crossover, and mutation. In the second model, Evolution Strategies (ESs) are
modified by exploiting search memory elements, automatic sensing conditions, and a quadratic search
operator for global optimization. The second proposed method is called Sensing Evolution Strategies
(SES). Specifically, the regression method and Artificial Neural Networks (ANN) are used as an
approximation process. Explicitly, Radial Basis Functions (RBFs) are invoked as an efficient local ANN
technique [38].

The obtained results show that the quadratic approximation and coding models could improve
the performance of EAs and could reach faster convergence. Moreover, the mutagenesis operator is
much effective and cheaper than some local search techniques. Furthermore, the final intensification
process can be started to refine the elite solutions obtained so far. In general, the numerical results
indicate that the proposed methods are competitive with some other versions of EAs.

The rest of this paper is structured as follows. Related work is discussed in Section 2. In Section 3,
the components of the proposed quadratic models are illustrated. The details of the proposed methods

Math. Comput. Appl. 2020, 25, 7 3 of 28

QCGA and SES are explained in Sections 4 and 5, respectively. In Section 6, numerical experiments
aiming at analyzing and discussing the performance of the proposed methods and their novel operators
are presented. Finally, the conclusion makes up Section 7.

2. Related Work

The main contributions of this research are to use the wise guidance of mathematical techniques
through quadratic models and to design smarter evolutionary-based methods that can sense
the progress of the search to achieve finer intensification, wider exploration, and automatic termination.

In designing the proposed methods, EAs are customized with different guiding strategies. First,
an exploration and exploitation strategy is proposed to provide the search process with accelerated
automatic termination criteria. Specifically, matrices called Gene Matrix (GM) are constructed to
sample the search space [1,39,40]. The role of the GM is to aid the exploration process. Typically,
GM can equip the search with novel diverse solutions by applying a unique type of mutation that
is called “mutagenesis” [39,40]. Principally, mutagenesis may be defined as a nature mechanism
by which the genes of an individual are changed, which lead to the mutation process. Thus, this
mechanism is a driving force of evolution process [40]. Thus, the mutagenesis operator alters some
survival individuals to accelerate the exploration and exploitation processes [40]. On the other hand,
GM is used to lead the search process to know how far the exploration process has gone to judge
a termination point. Moreover, the mutagenesis operation lets the proposed method, the GA with Gene
Matrix, perform like a so-called “Memetic Algorithm” [41,42] to accomplish a faster convergence [40].

Practical termination criteria are one of the main designing issues in EAs. Typically, research
is scant of termination criteria for EAs. However, in [43], an empirical method is used to determine
the maximum number of needed generations by using the problem characteristics to converge for
a solution. Moreover, eight termination criteria have been discussed in [44] that proposed a way of
using clustering techniques to test the distribution of specific generation individuals in the search
space. Different search memory mechanisms have been adapted as termination criteria to reflect
the wideness of the exploration process [39,40,45]. There are four classes of termination criteria of
EAs [39]. The first class is called TFit criterion, and it is based on calculating the best fitness function
values over generations. This method keeps tracking the best fitness function values in each generation,
and it terminates the algorithm if the values do not significantly change [46,47]. A TPop criterion is
the second class measuring the population over generations. In each generation, the distances between
chromosomes are measured and used to terminate the algorithm if these distances are very close. Work
in [48] uses TPop criterion for termination by adding distances among individuals and making sure
it is smaller than a predefined threshold. The other two classes are TBud and TSFB. The TBud criterion
applies a computational budget such as the maximum number of generations or function evaluations
for termination [49–51]. In the TSFB criterion, a search feedback measure evaluates the exploration and
exploitation processes. Measures such as the distribution of the generated solutions or the frequencies
of visiting regions inside the search space are invoked to test the search process. In [45], the exploration
process is examined by a diverse index set of points created at the beginning of the search process,
which tries to guarantee a well-distribution of the generated points over the search space. The algorithm
is terminated when most of the regions get visited.

These termination criteria may struggle from some difficulties [45,52]. Applying TFit only in EAs
can easily make it trapped in local minima. Also, it is costly to have the entire population or a part of it
convergent when using TPop, while it is sufficient to have one chromosome closely reach the global
minima. Gaining prior information about the search problem is a big concern when invoking TBud
criteria. Lastly, however using TSFB looks effective; it may suffer the dimensionality problem, and
it is complex to save and test huge historical search information. Therefore, implementing mixed
termination criteria in EAs to overcome these problems is appreciated [53,54].

Evolutionary computing and artificial neural networks are main classes in computational
intelligence [55,56]. Most of the research focus on how to use EAs to get more trained ANN [57,58].

Math. Comput. Appl. 2020, 25, 7 4 of 28

There is relatively little research studying how to do the opposite by using ANN to design better
EA-based methods or even to construct global optimization methods such in [59,60]. In this research,
the Radial Basis Functions (RBFs) are invoked as an efficient local ANN technique to help the EAs to
reach promising regions and directions. Generally, other types of ANN could be used for the same
task, such as the well-known multi-layer perceptron (MLB) with a training algorithm such as
the back-propagation algorithm. However, RBFs is a local learning ANNs that could overcome
the problem of long iterations learning process of other types of ANNs. In RBFs, the number of
iterations is bounded maximum to the number of input samples. In other words, the middle layer
adds one neuron per any new input sample, as shown in Figure 1.

SUM Neuron

In
p

u
t
v
e

c
to

r

Bases Neurons

μ"

μ#

μn

μ$
Output

Figure 1. Representation of RBF architecture.

3. Quadratic Approximation Methods

One of the main steps in the proposed algorithms is to find out the best and fastest approximation
for a high-dimensional function. Generally, two methods have been applied for this purpose; quadratic
regression and radial basis function as a local supervised ANN. In both methods, the following
Equation (2) and its derivative are used for the fitting of the parameters:

f (x) = xT Ax + bx + c, (2)

where A is an n × n matrix, b is a vector with n-dimension, and c is a scalar. These individuals’
quadratic forms are adapted by the genetic operators through generations to fit the given objective
function locally.

The least-square quadratic regression (also known as a nonlinear or second-order regression) is
used because it is a fast and simple method for fitting. Moreover, it produces a good approximation
and has very encouraging properties that can solve high-dimensional functions by finding A, b,
and c in Equation (2). Thus, the idea is to choose a quadratic function that minimizes the sum of
the squares of the vertical distances between the original fitness function values at generated solutions
and an approximate quadratic function with finding coefficients A, b and c, as shown in Figure 2.
Then, approximate quadratic optimizers of the quadratic models can be given by Equation (3), which
is represented by the derivative of Equation (2).

Math. Comput. Appl. 2020, 25, 7 5 of 28

x∗ = −1
2

A−1b. (3)

It is computationally expensive to compute the inverse of a full matrix A in Equation (3), especially
for high dimension problems. Hence, it is recommended to apply an efficient relaxation method to
approximate A to a diagonal matrix. Therefore, an approximate quadratic solution can be given as:

x∗ = −1
2

n

∑
i=1

bi
ai,i

, (4)

where ai,j and bi are the entities of A and b, respectively, with ai,i 6= 0, i = 1, . . . , n and i = 1, . . . , n.

Figure 2. Representation of quadratic approximation.

3.1. Regression

Quadratic regression models are usually generated using least-squares methods [61]. Procedure 1
explains the steps of obtaining an approximate solution using the least-squares regression models.
Starting with a set S of previously generated solutions, the least-squares regression method is
called to find an approximate quadratic function, as in Equation (2), that fits those solutions. Then,
an approximate optimizer can be calculated using Equation (3).

Procedure 1. Quad-LSE(S)

1. Using least-squares regression, generate a quadratic model as in Equation (2) that fits the solutions
in the sample set S.

2. Get the coefficients A, b, and c, of the generated approximate quadratic function.
3. Return with the minimum point of the approximate quadratic function using Equations (3)

and (4).

3.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) are used in various optimization applications, such as in
the areas of complex nonlinear system identification and global approximation. Many researchers have
proved that multi-layer feed-forward ANNs, using different types of activation functions, works as
a universal approximator [38]. Moreover, continuous nonlinear functions can be approximated and/or

Math. Comput. Appl. 2020, 25, 7 6 of 28

interpolated with feed-forward ANNs and can be used to approximate the outputs of dynamical
systems directly. Generally, ANNs are employed with EA in two main ways. Typically, most research
focus on optimizing ANNs parameters, especially weights, using evolutionary techniques, especially
GA [62]. These results, in better classification of the ANNs, use of the power of both methods,
the learning ability of the ANNs, and the best parameter values of EA. On the other hand, little
research, such as this one, do the opposite thing by optimizing the evolutionary algorithms using
ANNs for various purposes [63–65].

In this research, the speedup of the optimization process has been done using an RBF neural
network. The RBF has been used for searching for the approximated quadratic function for
a continuous function of variables such as shown in Appendices A and B. Therefore, The RBF builds
local representations of the functions and so their parameters. However, RBFs are simpler to be
initialized and trained than feed-forward multi-layer perceptrons (MLPs) neural networks. Thus, RBFs
overcome the problem of the training iteration process as it is a local learning type of neural network.
Therefore, the iterations are bounded as a maximum of the number of input samples. However, RBFs
approximation may be very attractive for approximating complex functions in numerical simulations.
Moreover, RBFs would allow randomly scattered data to generalize easily to several space dimensions,
and it can be accurate in the interpolation process. With all those motivations, this study used
the properties of RBFs approximations to develop a new global optimization tool.

As shown in Figure 1, the RBF neural network is a two-layer ANN, where each hidden unit
exploits a radial (Gaussian) activation function for the hidden layer processing elements. The output
unit applies a weighted sum of all hidden unit outputs. Although the inputs into the RBF network
are nonlinear, the output is linear due to the structure of the RBF neural network. By adjusting
the parameters of the Gaussian functions in the hidden layer neurons, each one reacts only to a small
region of the input space. However, for successful performance and implementation of RBFs is to
find reasonable centers and widths of the Gaussian functions. In this research, during simulation,
a MATLAB function is used to determine the Gaussian centers and widths using the input data of
the desired function from Appendices A and B. Once the hidden layer has completed its local training
and all parameters adjustment, the output layer then adds the outputs of the hidden layer based on
its weights. The steps of obtaining an approximate solution using the ANN models are shown in
Procedure 2.

Procedure 2. Quad-ANN(S)

1. A set S of generated samples of solutions is used for training the RBF to obtain an approximate
quadratic function as in Equation (2).

2. Get the coefficients A, b and c of the approximate quadratic function obtained by the RBF network.
3. Return with the minimum point of the approximate quadratic function using Equations (3)

and (4).

4. Quadratic Coding Genetic Algorithm

One of the proposed methods in this research is called the Quadratic Coding Genetic Algorithm
(QCGA). In the following, the main structure and design of the proposed QCGA method are described.
Generally, the QCGA method uses a population of µ individuals or solutions. Each individual
represents a quadratic form model as in Equation (2). These quadratic form individuals are adapted
by the genetic operators through generations to fit the given objective function locally. Therefore,
optimizing these quadratic models can provide approximated solutions for the local minima of
a given objective function. The optimizers of the quadratic models can be given by Equation (3),
as explained before.

Practically, it is very costly to compute the inverse of a full matrix A in Equation (3), especially
for high dimension problems. Hence, using a reasonable relaxation form of this coefficient matrix

Math. Comput. Appl. 2020, 25, 7 7 of 28

is crucial. Thus, as a main step in the proposed method, A is approximated as a diagonal matrix.
Therefore, the QCGA individuals are coded in the quadratic models as:

w = (w1, w2, . . . , wn, wn+1, . . . , w2n, w2n+1), (5)

where wi , i = 1, . . . , n, are equal to the diagonal entities of A, wi , i = n + 1, . . . , 2n, are equal to the entities
of b, and w2n+1 = c. To avoid the non-singularity of A, the entities wi , i = 1, . . . , n, are initialized and
updated to satisfy the conditions |xi|≥ ε, i = 1, . . . , n, for some predefined small real number ε.
The individuals fitness values are computed as f (x∗), where f (·) is the given objective function and x∗

is calculated as:
x∗ = −1

2
(
wn+1

w1
,

wn+2

w2
, . . . ,

w2n

wn
). (6)

The algorithmic scenario of QCGA is shown in Figure 3. In each iteration of the QCGA algorithm,
an intermediate parent population is generated using the linear ranking selection mechanism [66].
Then, the arithmetical crossover and uniform mutation operators [67] are applied to reproduce
the offspring. After getting the children, the survival selection is applied to select the survival members
based on the members’ elitism. Finally, the QCGA uses local search methods of Nelder–Mead [68] and
the heuristic descent method [18] as a final intensification step to refine the best solutions found so far.

Start

 Set the initial parameters for the

quadratic coding and genetic operators

Create an initial population

Compute the individuals quadratic

optimizers, and evaluate their fitness

Select the intermediate population

 Apply the quadratic crossover and

mutation operators

 Compute the children quadratic

optimizers, and evaluate their fitness

Termination

Conditions

Apply the final

refinement operator
T

Select the next

generation

F

Stop

Figure 3. The QCGA Flowchart.

5. Sensing Evolution Strategies

The difficulty in solving global optimization problems arises from the challenge of searching a vast
variable space to locate an optimal point, or at least space of points, with appropriate solution quality.
It becomes even more challenging when the appropriate space is minimal compared to the complex
search space. However, the quality of the initial solutions may impact the performance of the algorithm.

Math. Comput. Appl. 2020, 25, 7 8 of 28

Thus, various global optimization techniques which exploit memory concept in different ways to
help in both finding the optimal solution in minimum time and reduce the problem complexity are
proposed. Generally, memory concept is used in various research for the sake of assisting exploration
and exploitation processes. In [40], a directing strategy based on new search memories; the Gene
Matrix (GM) and Landscape Matrix (LM) is proposed. That strategy can provide the search with new
diverse solutions by applying a new type of mutation called “mutagenesis” [39]. The mutagenesis
operator is used to change selected survival individuals to accelerate the exploration and exploitation
processes. However, the GM and LM are also used to help the search process to remember how far
the exploration process has gone to judge a termination point. In [15,16], tabu search algorithms are
used with memory concept in high-dimensional problems to explore the region around an iterate
solution more precisely.

The main structure of the proposed Sensing Evolution Strategies (SES) is shown in Figure 4.
In the following, full details of the SES method and its algorithm steps are described. The SES method
starts with a population of µ real-coded chromosomes. The mutated offspring is generated as in
the typical ESs [69,70]. Therefore, a mutated offspring (x̃, σ̃) is obtained from a parent (x̂, σ̂), where
the i-th component of the mutated offspring (x̃, σ̃) is given as:

σ̃i = σ̂i eτ′N(0,1)+τNi(0,1), (7)

x̃i = x̂i + σ̃i Ni(0, 1), (8)

where τ′ ∝ 1/
√

2n and τ ∝ 1/
√

2
√

n, and the proportional coefficients are usually set to one.
The mutated offspring can be also computed from recombined parent as given in Procedure 3.

Procedure 3. Recombination(p1, . . . , pρ)

1. If ρ > n then return.
2. Partition each parent into ρ partitions at the same positions, i.e., pj = [X j

1 X j
2 . . . X j

ρ],
j = 1, . . . , ρ.

3. Order the set {1, 2, . . . , ρ} randomly to be {o1, o2, . . . , oρ}.
4. Calculate the recombined child x = [Xo1

1 Xo2
2 . . . X

oρ
ρ], and return.

Adding sensing features to the proposed SES method makes it behave smarter. This can be
achieved by generating and analyze search data and memory elements. As a main search memory for
the SES, the GM is invoked as it has shown promising performance in global optimization [1,39,40].
In GM, each x in the search space consists of n genes or variables to get a real-coding representation
of each individual in x. First, the range value of each gene is divided into m sub-range to check
the diversity of the gene values. Thus, the GM is initialized to be a n×m zero matrix in which each
entry of the i-th row refers to a sub-space of the i-th gene, from which GM is zeros, and ones matrix
and its entries are changed from zeros to ones if new genes are generated within the corresponding
sub-spaces during the searching process, as shown in Figure 5. This process can be continued until all
entries become ones, i.e., with no zero entry in the GM. At that point, when the GM is considered full
of ones, the search process achieves an advanced exploration process and can be stopped. Therefore,
the GM is used to provide the search process with efficient termination criteria, and it can help by
providing the search process with various diverse solutions.

Math. Comput. Appl. 2020, 25, 7 9 of 28

Update Search Parameters and Sensing

Memories and Conditions

Start

Exploration Sensing

T

Stop

Intensification Sensing

Diversification Sensing F

T

F

T

F

Set Evolution Parameters and Initialize

Sensing Memories and Conditions

Generate and Initial

Population

Recombination Mutation

Selection

Apply the final

refinement operator

Diversification

Update Solution(s)

Update Search Parameters

Intensification

Figure 4. A flowchart for the Sensing Evolution Strategies with Quadratic Search (SESQS).

Figure 5. An Example of the GM in two dimensions.

Three sensing features have been invoked in the SES method as explained in the following:

• Intensification Sensing. This feature seeks to detect promising search regions that have been
recently visited. Then, a local fast search can be applied to explore such promising regions
deeply. The SES method uses quadratic search models as stated in Procedures 1 and 2 to obtain

Math. Comput. Appl. 2020, 25, 7 10 of 28

approximate premising solutions using Equation (4). Moreover, a promising region can be
detected when the generated mutated children are adapted to be close. Then, a quadratic model
can be generated to approximate the fitness function in that close region surrounding those
mutated children.

• Diversification Sensing. This feature aims to avoid entrapment in local solutions and recognize
the need for generating new diverse solutions. The SES method checks the improvement rates
while the search is going on. Whenever significant non-improvement has been faced, then
the mutagenesis operation (Procedure 4) is called to generate new diverse solutions. In that
procedure, new solutions are created by generating their gene values within sub-ranges whose
corresponding indicators are zeros in the GM as shown in Figure 6. Those diverse solutions
replace some worst solutions in the current population.

• Exploration Sensing. This feature tries to recognize the progress of the search exploration process
and to detect an appropriate time for termination whenever a wide exploration process is achieved.
When a full GM is reached, then the SES method has learned that the exploration method is
almost over.

The mutagenesis operation starts with selecting a zero-position in the GM, which is corresponding
to a zero-visit partition. Selecting such GM-entry is done randomly. Then, a new value of the gene
related to the selected GM-entry is generated within the corresponding partition of the selection, as
illustrated in Figure 6. The formal description of this mechanism is stated in Procedure 4.

Figure 6. An Example of the mutagenesis steps in two dimensions.

Procedure 4. Mutagenesis(x, GM)

1. If GM is full then return.
2. Choose a zero-position (i, j) in GM randomly.
3. Update x by setting xi = li + (j− r) ui−li

m , where r is a random number from (0, 1), and li , ui are
the lower and upper bound of the variable xi, respectively.

4. Update GM by setting GMij = 1, and return.

The formal description of the proposed SES method is given in the following Algorithm 5.

Algorithm 5. SES Algorithm

1. Initialization. Create an initial population P0 = {(xi , σi , F(xi)), i = 1, . . . , µ}, and initialize
the GM. Choose the recombination probability pr ∈ [0, 1], set values of; ρ, Nw and Nelitet, set
ν := λ/µ, and set the generation counter g := 0.

Math. Comput. Appl. 2020, 25, 7 11 of 28

2. Main Loop. Repeat the following steps (2.1) – (2.4) from j = 1, . . . , µ.

2.1 Recombination. Generate a random number χ ∈ [0, 1]. If χ > pr, choose
a parent (x̂j, σ̂j) from Pg and go to Step 2.2. Otherwise, choose ρ parents
p1, . . . , pρ from Pg, and calculate the recombined child (x̂j, σ̂j) using Procedure 3.

2.2 Mutation. Use the individual (x̂j, σ̂j) to calculate the mutated children
(x̃j,k , σ̃j,k), k = 1, . . . , ν, as in Equations (7) and (8).

2.3 Fitness. Evaluate the fitness function F̃j,k = F(x̃j,k), k = 1, . . . , ν.
2.4 Intensification Sensing. If the individual (x̂j, σ̂j) and his mutated children

(x̃j,k , σ̃j,k), k = 1, . . . , ν, are close enough to be approximated by a quadratic
model, the apply Procedure 1 or 2 to get an improved point. Replace the worst
mutated child with the generated point by the quadratic model if the latter is better.

3. Children Gathering. Collect all generated children in Cg containing all (x̃j,k , σ̃j,k , F̃j,k), j =
1, . . . , µ, k = 1, . . . , ν.

4. Update Search Parameters. Update the GM.

5. Exploration Sensing. If the GM is full, then go to Step 8.

6. Selection. Choose the best µ individuals from Pg ∪ Cg to compose the next generation Pg+1.
Update the gene matrix GM.

7. Diversification Sensing. If the new population needs new diverse solutions, then apply
Procedure 4 to alter the Nw worst individuals in Pg+1. Set g := g + 1, and go to Step 2.

8. Intensification. Apply a local search method starting from each solution from the Nelite best
ones obtained in the previous search stage.

The non-convex global optimization problem, defined in Equation (1), is an NP-complete
problem [71]. Therefore, there is no efficient algorithm to solve such problem in its general form.
Metaheuristics are practical solvers for this problem which are generally polynomial algorithms [72,73].
The proposed methods; QCGA and SES, follow the main structures of standard EAs with additive
procedures which are at most of order O(n3).

6. Experimental Results

In the following, the experimental results are discussed. All the proposed methods are
programmed using MATLAB. The parameters values used in QCGA and SES algorithms are set
based on the typical setting in the literature or determined through our preliminary numerical
experiments, as shown in Tables 1 and 2. Two classes of benchmark test functions have been invoked in
the experimental results to discuss the efficiency of the proposed methods. The first class of benchmark
functions contains 13 classical test functions f1– f13 [16]. Those functions definitions are given in
Appendix A. The other class of benchmark functions contains 25 hard test functions h1–h25 [74,75]
which are described in Appendix B.

Table 1. QCGA parameters.

Parameter Definition Value

µ The population size 50
pr The crossover probability 0.25
pm The mutation probability 0.05
m No. of partitions in GM 50

Nelite No. of best solutions used in in the intensification step 1
Nw No. of worst solutions updated by the mutagenesis process n

Math. Comput. Appl. 2020, 25, 7 12 of 28

Table 2. SES parameters.

Parameter Definition Value

µ The population size 30
λ The offspring size 10µ
ρ No. of mated parents min(n, 5)
m No. of partitions in GM 50
pr The recombination probability 0.25

Nelite No. of best solutions used in in the intensification step 1
Nw No. of worst solutions updated by the mutagenesis process n

In the following, a highlight of the performance analysis on the quadratic coding and quadratic
search operators before discussing the whole proposed algorithmic performance of the proposed
methods is given.

6.1. Quadratic Coding

The main numerical results are shown in Figure 7 and Table 3. Table 3 shows the average
values of best solutions (Avg. f (xbest)), the average numbers of function evaluations (Cost), and
the success rates of reaching close to the global optima. We compare the results of the QCGA method
with the standard genetic algorithm (GA), and one of the recent genetic algorithm versions called
the Adaptive Genetic Algorithm (AGA) [9]. For the QCGA and GA results, there are obtained over 100
independent runs. The AGA results are taken from their original reference, which is averaged over
only 30 independent runs. The results in Table 3 and Figure 7 show that the proposed method could
improve the performance of the genetic algorithm and could reach faster convergence. Moreover,
the proposed method could be competitive with the recent advanced GA versions.

Table 3. Solutions qualities and costs of the proposed and compared methods.

QCGA GA AGA

f Avg. f (xbest) Cost Rate Avg. f (xbest) Cost Rate Avg. f (xbest) Cost

f1 5.21× 10−16 34,931 100% 2.04× 10−12 34,646 100% 1.10× 10−43 40,000
f2 3.54× 10−5 41,734 100% 7.62× 10−5 42,252 98% 2.04× 10−31 40,000
f3 1.79× 10−9 38,514 100% 1.46× 10−8 38,969 100% 1.21× 10−4 40,000
f4 8.21× 10−2 38,951 1% 2.35 41,345 0% 1.71× 10+1 40,000
f5 8.04× 10−11 40,678 100% 5.58× 10−1 39,408 86% 2.70× 10−11 40,000
f6 0 34,843 100% 4.50× 10+1 34,939 0% – –
f7 9.32× 10−6 35,816 100% 2.05 35,194 0% 7.64× 10−15 40,000

0 500 1000 1500 2000 2500 3000
Generations

10-1

100

101

102

F
u

n
ct

io
n

 V
al

u
es

f
4

GA
QCGA

0 500 1000 1500 2000 2500 3000
Generations

10-3

10-2

10-1

100

101

102

F
u

n
ct

io
n

 V
al

u
es

f
9

QCGA
GA

Figure 7. Examples of QCGA and GA performance using f4 and f9 test functions.

6.2. Quadratic Models

The performance of the quadratic regression model is tested to show how it can help the EAs
to find new, improved solutions. Figure 8 shows the success rates of obtaining improved solutions

Math. Comput. Appl. 2020, 25, 7 13 of 28

using the proposed quadratic models. Two test functions; f5 and f11 (shown in Appendix A), are
invoked in this experiment with different dimensions of 2, 5, 10, 20, 30 and 50. The solutions used
in this experiment are generated to be close to local or global minima, and also to be far from them.
Results show that the success rates of obtaining improved solutions are promising, especially in high
dimensions. However, the results shown in Figure 8 illustrate that the performance of this quadratic
operation near minima is better than that far from them. Compared to regression models, the RBF is
almost working in the same manner. However, the RBF success rate of obtaining improved solutions
depends on the type of function since the performance of the quadratic operation at f5 is better than
that at f11. Finally, we may conclude that the proposed quadratic models are promising intensification
procedures especially in the vicinity of the local and global minima.

Regression - f
5

2 5 10 20 30 50

Dimensions

0

10

20

30

40

50

60

70

80

90

100

S
u

c
c
e
s
s
 R

a
te

s
 o

f
Q

u
a
d

ra
ti

c
 O

p
e
ra

ti
o

n

Close to Minima

Far from Minima

Regression - f
11

2 5 10 20 30 2

Dimensions

0

10

20

30

40

50

60

70

80

90

100

S
u

c
c
e
s
s
 R

a
te

s
 o

f
Q

u
a
d

ra
ti

c
 O

p
e
ra

ti
o

n

Close to Minima

Far from Minima

Neural Networks - f
5

2 5 10 20 30 50
Dimensions

0

10

20

30

40

50

60

70

80

90

100

S
u

c
c
e
s
s
 R

a
te

s
 o

f
Q

u
a
d

ra
ti

c
 O

p
e
ra

ti
o

n

Close to Minima

Far frpm Minima

Neural Networks - f
11

2 5 10 20 30 50

Dimensions

0

10

20

30

40

50

60

70

80

90

100

S
u

c
c
e
s
s
 R

a
te

s
 o

f
Q

u
a
d

ra
ti

c
 O

p
e
ra

ti
o

n

Close to Minima

Far from Minima

Figure 8. Performance of the quadratic operations near or far from minima.

6.3. Termination Criteria and Processing Time

The automatic termination using the GM is illustrated in Figure 9 using test functions f1, f3, f5

and f7. The QCGA and SESR codes were continued running after reaching the point of having a full
GM to check any further improvement after that. It is worthwhile to mention that there almost no
improvement after reaching a full GM as shown in Figure 9. Therefore, the automatic termination
using the GM could help EAs to avoid unnecessary computations.

Math. Comput. Appl. 2020, 25, 7 14 of 28

Figure 9. GM termination performance.

The runtime of the proposed methods are computed and presented in Figures 10 and 11 which
is reported over 25 independent runs. Figure 10 shows the processing time for running the QCGA
and the standard GA. The difference between the processing times of the two methods is reasonable,
although the QCGA uses additional search procedures more than the standard GA. The processing
time for running the all proposed methods are presented in Figure 11. The processing times of these
methods are close to each other. However, one can note that the processing times of using the ANN
models are greater than those of using the regression models.

1 2 3 4 5 6 7 8 9 10 11 12 13

Test Functions (f
1
 - f

13
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ro

c
e
s
s
in

g
 T

im
e
s
 (

S
e
c
o

n
d

s
)

QCGA

GA

Figure 10. Processing times for the QCGA and GA codes using f1– f13 test functions.

Math. Comput. Appl. 2020, 25, 7 15 of 28

1 2 3 4 5 6 7 8 9 10 11 12 13

Test Functions (f
1
 - f

13
)

0

0.5

1

1.5

P
ro

c
e

s
s

in
g

 T
im

e
s

 (
S

e
c

o
n

d
s

)

QCGA

SES
R

SES
N

Figure 11. Processing times for proposed methods codes using f1– f13 test functions.

6.4. Global Search Results

Table 4 shows a comparison between various methods such as regression SESR, RBFs SESN ,
and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [76]. The results are not as fair as
the termination policies in both methods are different. Thus, the results show that the regression
method is more promoting over the RBFs due to the mentioned reason of termination criteria.
The results also reveal that the QCGA algorithm has steadily better performance than the ESLAT and
CMA-ES in terms of the success rate. The solution costs in Table 5 show the number of iterations
that is consumed to get each relevant result. RBFs consume more time in all function iterations than
the regression method, while the QCGA consumes less time compared with the ESLAT algorithm.

Table 4. Solutions qualities—average errors and success rates.

f SESR SESN QCGA ESLAT CMA-ES

f1 2.8× 10−19 (100%) 1.7× 10−17 (100%) 5.2× 10−16 (100%) 2.0× 10−17 (100%) 9.7× 10−23 (100%)
f2 5.4× 10−07 (100%) 3.2× 10−05 (100%) 3.5× 10−05 (100%) 3.8× 10−05 (100%) 4.2× 10−11 (100%)
f3 8.6× 10−08 (100%) 5.1× 10−06 (100%) 1.8× 10−09 (100%) 6.1× 10−06 (100%) 7.1× 10−23 (100%)
f4 1.1× 10−01 (7%) 6.5× 10−01 (5%) 8.2× 10−02 (1%) 7.8× 10−01 (0%) 5.4× 10−12 (100%)
f5 2.7× 10−01 (78%) 1.6× 10−00 (75%) 8.0× 10−11 (100%) 1.9× 10−00 (70%) 4.0× 10−01 (90%)
f6 2.8× 10−04 (100%) 1.7× 10−02 (100%) 0.0× 10−00 (100%) 2.0× 10−02 (98%) 1.4× 10−02 (36%)
f7 5.5× 10−03 (8%) 3.3× 10−01 (5%) 9.3× 10−06 (100%) 3.9× 10−01 (0%) 2.3× 10−01 (0%)
f8 −2.2× 1015 (0%) −2.1× 1015 (0%) −2.80× 1038 (0%) −2.3× 1015 (0%) −7.6× 1003 (0%)
f9 6.6× 10−02 (48%) 3.9× 10−00 (45%) 3.0× 10−00 (0%) 4.7× 10−00 (40%) 5.2× 1001 (0%)
f10 2.5× 10−10 (100%) 1.5× 10−08 (100%) 9.9× 10−06 (100%) 1.8× 10−08 (100%) 6.9× 10−12 (100%)
f11 2.0× 10−05 (97%) 1.2× 10−03 (95%) 1.7× 10−11 (100%) 1.4× 10−03 (90%) 7.4× 10−04 (92%)
f12 2.1× 10−14 (100%) 1.3× 10−12 (100%) 9.0× 10−12 (100%) 1.5× 10−12 (100%) 1.2× 10−04 (88%)
f13 9.1× 10−05 (71%) 5.4× 10−03 (65%) 5.5× 10−02 (45%) 6.4× 10−03 (60%) 1.7× 10−03 (86%)

Math. Comput. Appl. 2020, 25, 7 16 of 28

Table 5. Solutions costs (Numbers of function evaluations).

f SESR SESN QCGA ESLAT CMA-ES

f1 34,944 38,827 34,931 69,724 10,721
f2 30,512 33,902 41,734 60,859 12,145
f3 36,153 40,169 38,514 72,141 21,248
f4 34,993 38,880 38,951 69,821 20,813
f5 33,387 37,096 40,678 66,609 55,821
f6 28,614 31,793 34,843 57,064 2,184
f7 25,563 28,403 35,816 50,962 667,131
f8 30,934 34,371 35,552 61,704 6,621
f9 27,022 30,024 34,911 53,880 10,079
f10 29,537 32,818 36,256 58,909 10,654
f11 35,604 39,560 35,699 71,044 10,522
f12 31,597 35,108 36,305 63,030 13,981
f13 32,910 36,566 36,596 65,655 13,756

The Wilcoxon rank-sum test [77–79] is applied to measure the performance of all the compared
methods. This test is classified as a non-parametric test, which is endorsed in our experiments [80,81].
A comparison between the Wilcoxon test’s results and the obtained results from our proposed methods
are illustrated in Table 6. The table shows the sum of rankings obtained in each comparison and
the p-value associated. Typically, the difference di between the performance values of the two methods
on i-th out of N results are calculated. Afterwards, based on the absolute values of these differences,
they are ranked. The ranks R+ and R− are computed as follows:

R+ = ∑
di>0

rank(di) +
1
2 ∑

di=0
rank(di),

R− = ∑
di<0

rank(di) +
1
2 ∑

di=0
rank(di).

The equality hypothesis is based on rejecting in case of having the min(R+, R−) is less than or
equal to the value of the distribution of Wilcoxon for N degrees of freedom (Table B.12 in [79]). The best
method is SESR, as shown in Table 6 according to the best solutions criteria, while the comparison
based on the success rate criteria shows that SESR is better than the SESN and ESLAT algorithms.
Also, QCGA has an excellent performance better than SESN and ESLAT. The third comparison criteria,
solutions costs, proves that SESR performs better than all the compared methods except the CMA-ES.

Math. Comput. Appl. 2020, 25, 7 17 of 28

Table 6. Wilcoxon rank-sum test for the results of Tables 4 and 5.

Comparison Criteria Compared Methods R+ R− p-Value Best Method

Best Solutions SESR, SESN 13 78 0.0001 SESR
SESR, QCGA 13 78 0.0001 SESR
SESR, ESLAT 13.5 77.5 0.0003 SESR
SESR, CMA-ES 13 78 0.0001 SESR
SESN , QCGA 0 91 0.3560 -
SESN , ESLAT 56 35 0.4418 -
SESN , CMA-ES 13 78 0.3560 -
QCGA, ESLAT 72 19 0.2382 -
QCGA, CMA-ES 13 78 0.7976 -
ESLAT, CMA-ES 16 75 0.2184 -

Success Rates SESR, SESN 90.5 0.5 0 SESR
SESR, QCGA 77 14 0.8501 -
SESR, ESLAT 90.5 0.5 0 SESR
SESR, CMA-ES 46 45 0.5681 -
SESN , QCGA 0.5 90.5 0 QCGA
SESN , ESLAT 45.5 45.5 NaN -
SESN , CMA-ES 1.5 89.5 0 CMA-ES
QCGA, ESLAT 90.5 0.5 0 QCGA
QCGA, CMA-ES 44 47 0.5488 -
ESLAT, CMA-ES 1.5 89.5 0 CMA-ES

Solutions Costs SESR, SESN 0 91 0.0313 SESR
SESR, QCGA 1 90 0.0005 SESR
SESR, ESLAT 0 91 0 SESR
SESR, CMA-ES 70 21 0.0029 CMA-ES
SESN , QCGA 24 67 0.2592 -
SESN , ESLAT 0 91 0 SESN
SESN , CMA-ES 76 15 0.0029 CMA-ES
QCGA, ESLAT 0 91 0 QCGA
QCGA, CMA-ES 77 14 0.0029 CMA-ES
ESLAT, CMA-ES 78 13 0.0004 CMA-ES

6.5. Results for Hard Test Functions

There are many suits of test functions, but one of the most common is the CEC2005 suit which
contains 25 functions [74,75], see Appendix B. This benchmark suit includes unimodal functions
(h1–h5), basic multimodal functions (h6–h12), extended multimodal functions (h13–h14), and hybrid
composition functions (h15–h25). These functions are composed from some classical functions with
higher degrees of difficulties like function shifting, rotating and combining.

The proposed QCGA method is applied to these hard test functions with dimensions 10, 30
and 50, as reported in Tables 7–9. The reported results in these tables are global minima, the mean
and standard deviation of best objective values obtained by the algorithm as well as the best and
the worst value, the mean and standard deviation of the errors between the obtained objective values
and the optimal ones, the mean of function evaluations, and the success rate of reaching the global
minima within a gap of 10−3. All these results are obtained over 25 independent runs of the QCGA
code. The results show that the method could reach the global minima for some functions and close
to them for others. The best objective function values obtained by the method are relatively close to
the worst ones except to functions h4 and h5.

Math. Comput. Appl. 2020, 25, 7 18 of 28

Table 7. The QCGA results of hard functions h1–h25 with dimension n = 10.

Function Values Errors Evals. Success
h h? Mean Std Best Worst Mean Std Mean (%)

h1 −450 −450.0 2.15× 10−12 −450.0 −450.0 2.37× 10−12 2.15× 10−12 58, 024 100
h2 −450 −450.0 1.31× 10−9 −450.0 −450.0 1.59× 10−9 1.31× 10−9 58, 567 100
h3 −450 −450.0 1.72× 10−2 −450.0 −449.9 5.90× 10−3 1.72× 10−2 59, 838 64
h4 −450 8030.5 1.82× 103 3327.4 10812.9 8.48× 103 1.82× 103 57, 652 0
h5 −310 1960.4 1.43× 103 293.2 5634.4 2.27× 103 1.43× 103 59, 736 0
h6 390 390.8 1.63× 100 390.0 394.0 7.97× 10−1 1.63× 100 59, 917 80
h7 −180 −179.0 8.20× 10−1 −180.0 −177.1 9.62× 10−1 8.20× 10−1 58, 943 0
h8 −140 −120.0 1.86× 10−4 −120.0 −120.0 2.00× 101 1.86× 10−4 58, 525 0
h9 −330 −329.7 6.11× 10−1 −330.0 −328.0 2.79× 10−1 6.11× 10−1 57, 897 80
h10 −330 −272.1 1.43× 101 −302.1 −247.4 5.79× 101 1.43× 101 57, 918 0
h11 90 97.4 1.15× 100 95.0 99.3 7.38× 100 1.15× 100 57, 793 0
h12 −460 −138.4 6.45× 102 −460.0 1233.6 3.22× 102 6.45× 102 58, 240 36
h13 −130 −129.8 1.45× 10−1 −130.0 −129.3 1.59× 10−1 1.45× 10−1 58, 620 0
h14 −300 −296.0 2.79× 10−1 −296.4 −295.5 3.98× 100 2.79× 10−1 59, 500 0
h15 120 216.5 2.21× 102 120.0 1020.0 9.65× 101 2.21× 102 57, 595 80
h16 120 361.2 4.66× 101 270.9 458.7 2.41× 102 4.66× 101 57, 745 0
h17 120 365.7 4.82× 101 254.4 452.3 2.46× 102 4.82× 101 57, 698 0
h18 10 910.0 5.30× 10−9 910.0 910.0 9.00× 102 5.30× 10−9 57, 792 0
h19 10 910.0 1.68× 10−3 910.0 910.0 9.00× 102 1.68× 10−3 57, 765 0
h20 10 918.9 4.45× 101 910.0 1132.6 9.09× 102 4.45× 101 57, 707 0
h21 360 1616.7 1.64× 102 860.0 1750.3 1.26× 103 1.64× 102 57, 764 0
h22 360 1273.5 5.28× 101 1145.8 1388.8 9.13× 102 5.28× 101 57, 700 0
h23 360 1615.1 5.17× 101 1523.7 1721.5 1.26× 103 5.17× 101 57, 765 0
h24 260 1361.1 3.63× 102 460.0 1613.9 1.10× 103 3.63× 102 57, 661 0
h25 260 1383.9 3.29× 102 460.0 1543.7 1.12× 103 3.29× 102 57, 646 0

Table 8. The QCGA results of hard functions h1–h25 with dimension n = 30.

Function Values Errors Evals. Success
h h? Mean Std Best Worst Mean Std Mean (%)

h1 −450 −450.0 6.23× 10−10 −450.0 −450.0 4.38× 10−10 6.23× 10−10 172, 504 100
h2 −450 −450.0 2.47× 10−8 −450.0 −450.0 1.03× 10−7 2.47× 10−8 177, 167 100
h3 −450 −439.6 2.23× 101 −449.9 −399.8 1.04× 101 2.23× 101 180, 218 0
h4 −450 29718.1 1.59× 103 27415.2 31616.6 3.02× 104 1.59× 103 172, 917 0
h5 −310 21183.2 3.03× 103 18314.0 25710.7 2.15× 104 3.03× 103 173, 964 0
h6 390 875.9 4.24× 102 409.1 1186.5 4.86× 102 4.24× 102 177, 557 0
h7 −180 −180.0 1.15× 10−10 −180.0 −180.0 9.86× 10−7 1.15× 10−10 177, 086 100
h8 −140 −120.0 4.85× 10−6 −120.0 −120.0 2.00× 101 4.85× 10−6 177, 544 0
h9 −330 −237.3 1.75× 101 −262.3 −218.6 9.27× 101 1.75× 101 172, 591 0
h10 −330 −84.2 2.28× 101 −106.1 −52.4 2.46× 102 2.28× 101 172, 977 0
h11 90 126.9 2.68× 100 123.1 129.4 3.69× 101 2.68× 100 173, 114 0
h12 −460 385.0 5.70× 102 −68.3 1220.3 8.45× 102 5.70× 102 176, 014 0
h13 −130 −127.0 1.01× 100 −128.3 −125.9 2.98× 100 1.01× 100 176, 551 0
h14 −300 −286.7 3.03× 10−1 −287.1 −286.3 1.03× 101 3.03× 10−1 182, 736 0
h15 120 531.5 1.81× 101 508.7 557.3 4.11× 102 1.81× 101 173, 161 0
h16 120 468.9 9.39× 101 364.2 578.0 3.49× 102 9.39× 101 173, 415 0
h17 120 508.4 8.68× 101 399.3 607.9 3.88× 102 8.68× 101 173, 128 0
h18 10 910.3 1.88× 10−1 910.1 910.6 9.00× 102 1.88× 10−1 173, 191 0
h19 10 910.4 1.38× 10−1 910.2 910.6 9.00× 102 1.38× 10−1 173, 609 0
h20 10 910.6 2.48× 10−1 910.4 911.0 9.01× 102 2.48× 10−1 172, 848 0
h21 360 1609.3 1.04× 101 1597.9 1621.6 1.25× 103 1.04× 101 173, 131 0
h22 360 1346.6 4.28× 101 1182.1 1400.3 9.07× 102 4.28× 101 173, 098 0
h23 360 1609.9 9.24× 100 1599.5 1621.6 1.25× 103 9.24× 100 173, 375 0
h24 260 1242.3 3.11× 102 823.5 1557.1 9.82× 102 3.11× 102 173, 035 0
h25 260 1404.3 2.63× 102 942.3 1558.8 1.14× 103 2.63× 102 172, 817 0

Math. Comput. Appl. 2020, 25, 7 19 of 28

Table 9. The QCGA results of hard functions h1–h25 with dimension n = 50.

Function Values Errors Evals. Success
h h? Mean Std Best Worst Mean Std Mean (%)

h1 −450 −450.0 7.94× 10−13 −450.0 −450.0 8.75× 10−12 7.94× 10−13 290, 585 100
h2 −450 −450.0 1.82× 10−7 −450.0 −450.0 2.41× 10−7 1.82× 10−7 300, 898 100
h3 −450 −443.7 6.20× 100 −449.8 −424.5 6.35× 100 6.20× 100 319, 328 0
h4 −450 65598 1.13× 104 50984 100100 6.60× 104 1.13× 104 287, 977 0
h5 −310 22210 3.89× 103 14404 29409 2.25× 104 3.89× 103 302, 175 0
h6 390 705.7 3.27× 102 433.6 1243.2 3.16× 102 3.27× 102 306, 740 0
h7 −180 −180.0 1.47× 10−10 −180.0 −180.0 4.11× 10−10 1.47× 10−10 300, 342 100
h8 −140 −120.0 9.89× 10−7 −120.0 −120.0 2.00× 101 9.89× 10−7 298, 303 0
h9 −330 −106.3 2.25× 101 −161.9 −64.3 2.24× 102 2.25× 101 289, 411 0
h10 −330 64.9 6.03× 101 −47.4 187.4 3.95× 102 6.03× 101 289, 837 0
h11 90 155.4 3.25× 100 148.5 161.4 6.54× 101 3.25× 100 291, 468 0
h12 −460 5489 6.17× 103 −455.0 17190 5.95× 103 6.17× 103 298, 225 0
h13 −130 −116.2 3.74× 100 −120.8 −105.5 1.38× 101 3.74× 100 299, 730 0
h14 −300 −277.2 3.19× 10−1 −277.9 −276.7 2.21× 101 3.19× 10−1 320, 024 0
h15 120 705.5 5.59× 101 663.1 768.8 5.86× 102 5.59× 101 288, 695 0
h16 120 530.4 8.50× 101 450.0 619.4 4.10× 102 8.50× 101 288, 770 0
h17 120 595.3 4.74× 101 541.0 627.6 4.75× 102 4.74× 101 288, 089 0
h18 10 918.3 1.81× 100 916.8 920.3 9.08× 102 1.81× 100 288, 668 0
h19 10 918.9 1.45× 100 917.2 920.0 9.09× 102 1.45× 100 288, 326 0
h20 10 915.9 3.70× 100 911.9 919.2 9.06× 102 3.70× 100 289, 279 0
h21 360 1621.9 1.50× 101 1603.3 1644.7 1.26× 103 1.50× 101 288, 564 0
h22 360 1256.5 7.13× 101 1187.9 1334.4 8.97× 102 7.13× 101 288, 602 0
h23 360 1633.1 2.26× 101 1598.8 1657.2 1.27× 103 2.26× 101 288, 786 0
h24 260 1550.2 1.81× 101 1526.5 1567.5 1.29× 103 1.81× 101 288, 319 0
h25 260 1558.3 9.61× 100 1549.6 1573.4 1.30× 103 9.61× 100 288, 425 0

To check the quality of the hard functions results displayed in Tables 8 and 9, we compare them
with the following benchmark methods:

• Self-adaptive artificial bee colony based on the global best candidate (SABC-GB) method [82].
• Artificial bee colony (ABC/best/1) [83].

The compared results are reported in Tables 10 and 11, as well as Table 12 which shows the statistical
tests for the compared results. Tables 10 and 11 show the mean and standard deviation values of
the errors between the obtained objective values and the optimal ones for the hard test functions with
dimensions 30 and 50. The results of the compared methods SABC-GB and ABC/best/1 are taken from
their original references [82,83], respectively. The number of function evaluations used to terminate
both of the SABC-GB and ABC/best/1 methods is 300,000 as mentioned in [82].

The best obtained error values among the compared methods in Tables 8 and 9 are marked
with bold. Moreover, the numbers of times that each method succeeded in obtaining the best result
compared to the others are mentioned at the bottom of each table. For the 30-dimension results in
Table 8, the performance of SABC-GB and QCGA regarding obtaining the best errors is close. However,
the proposed QCGA method is slightly better than SABC-GB for the 50-dimension results in Table 9.

Math. Comput. Appl. 2020, 25, 7 20 of 28

Table 10. Comparing the QCGA method with other benchmark methods using the hard functions
h1–h25 with dimension n = 30.

QCGA ABC/best/1 [83] SABC-GB [82]
h Mean Std Mean Std Mean Std

h1 4.38× 10−10 6.23× 10−10 1.97× 10−12 1.93× 10−13 5.68 × 10−14 0
h2 1.03 × 10−7 2.47× 10−8 3.55× 104 1.96× 103 1.01× 104 6.19× 102

h3 1.04 × 101 2.23× 101 5.28× 107 9.41× 106 1.08× 107 3.23× 105

h4 3.02 × 104 1.59× 103 5.06× 104 5.02× 103 3.19× 104 4.67× 102

h5 2.15× 104 3.03× 103 9.34× 103 5.34× 102 7.41 × 103 7.94× 102

h6 4.86× 102 4.24× 102 1.86× 102 4.11× 101 2.52 × 10−1 1.03× 10−1

h7 9.86 × 10−7 1.15× 10−10 4.70× 103 5.15× 10−2 4.70× 103 0.00
h8 2.00 × 101 4.85× 10−6 2.09× 101 1.10× 10−2 2.09× 101 5.40× 10−2

h9 9.27× 101 1.75× 101 2.03× 10−12 2.02× 10−12 5.68 × 10−14 0
h10 2.46× 102 2.28× 101 2.82× 102 1.14× 101 1.34 × 102 5.34
h11 3.69× 101 2.68 3.32× 101 1.45 2.50 × 101 2.66× 10−1

h12 8.45 × 102 5.70× 102 8.82× 104 1.61× 104 1.05× 104 2.05× 103

h13 2.98 1.01 7.59 7.45× 10−1 7.39 × 10−1 1.94× 10−1

h14 1.03 × 101 3.03× 10−1 1.33× 101 3.39× 10−2 1.27× 101 4.65× 10−2

h15 4.11× 102 1.81× 101 3.29× 102 1.45× 102 2.39 × 10−3 1.81× 10−3

h16 3.49× 102 9.39× 101 3.17× 102 1.11× 101 1.58 × 102 2.51× 101

h17 3.88× 102 8.68× 101 4.25× 102 8.83 2.35 × 102 3.37
h18 9.00 × 102 1.88× 10−1 9.21× 102 2.16 9.09× 102 1.32
h19 9.00 × 102 1.38× 10−1 9.21× 102 1.73 9.10× 102 1.13
h20 9.01 × 102 2.48× 10−1 9.23× 102 3.07 9.09× 102 1.47
h21 1.25× 103 1.04× 101 5.07× 102 5.87× 10−1 5.00 × 102 0
h22 9.07 × 102 4.28× 101 1.04× 103 1.60× 101 9.38× 102 2.68
h23 1.25× 103 9.24 6.12× 102 2.13× 101 5.34 × 102 0
h24 9.82× 102 3.11× 102 1.07× 103 3.25× 101 4.54 × 102 3.59× 102

h25 1.14 × 103 2.63× 102 1.68× 103 5.07 1.64× 103 0

Best 12 0 13

Math. Comput. Appl. 2020, 25, 7 21 of 28

Table 11. Comparing the QCGA method with other benchmark methods using the hard functions
h1–h25 with dimension n = 50.

QCGA ABC/best/1 [83] SABC-GB [82]
h Mean Std Mean Std Mean Std

h1 8.75× 10−12 7.94× 10−13 6.33× 10−11 1.10× 10−11 2.27 × 10−13 4.64× 10−14

h2 2.41 × 10−7 1.82× 10−7 1.06× 105 1.22× 104 6.02× 104 3.79× 103

h3 6.35 6.20 1.84× 108 4.77× 107 5.85× 107 9.96× 106

h4 6.60 × 104 1.13× 104 1.31× 105 7.70× 103 1.30× 105 6.23× 103

h5 2.25 × 104 3.89× 103 2.47× 104 1.20× 103 2.37× 104 1.26× 103

h6 3.16× 102 3.27× 102 3.24× 103 1.33× 103 3.77 1.91
h7 4.11 × 10−10 1.47× 10−10 6.22× 103 1.85 6.20× 103 0
h8 2.00 × 101 9.89× 10−7 2.11× 101 1.82× 10−2 2.10× 101 0
h9 2.24× 102 2.25× 101 2.97× 10−12 6.18× 10−13 1.71 × 10−13 0
h10 3.95 × 102 6.03× 101 6.61× 102 1.17× 101 4.24× 102 3.92× 101

h11 6.54× 101 3.25 6.46× 101 6.63× 10−1 5.60 × 101 1.61
h12 5.95 × 103 6.17× 103 4.69× 105 4.79× 103 5.78× 104 1.28× 104

h13 1.38× 101 3.74 1.82× 101 1.90 1.58 2.61× 10−1

h14 2.21 × 101 3.19× 10−1 2.31× 101 2.34× 10−1 2.26× 101 1.98× 10−1

h15 5.86× 102 5.59× 101 3.17× 102 8.96× 101 2.27 × 101 9.77
h16 4.10× 102 8.50× 101 4.27× 102 1.37 3.10 × 102 3.58× 101

h17 4.75× 102 4.74× 101 7.56× 102 3.98× 101 4.33 × 102 1.93× 101

h18 9.08 × 102 1.81 9.71× 102 9.33 9.39× 102 4.18
h19 9.09 × 102 1.45 9.68× 102 1.30 9.37× 102 6.34
h20 9.06 × 102 3.70 9.75× 102 3.36 9.35× 102 3.88
h21 1.26× 103 1.50× 101 1.04× 103 1.16 1.02 × 103 5.59× 10−1

h22 8.97 × 102 7.13× 101 1.13× 103 2.46× 101 9.91× 102 3.46× 101

h23 1.27× 103 2.26× 101 1.04× 103 3.69 1.02 × 103 0
h24 1.29× 103 1.81× 101 1.36× 103 5.29 1.08 × 103 1.37× 101

h25 1.30 × 103 9.61 1.85× 103 9.93 1.69× 103 5.95

Best 14 0 11

The Wilcoxon rank-sum test is applied to estimate the difference between the compared methods
in terms of the obtained errors and the numbers of function evaluations. The statistical test outputs are
reported in Table 12. These tests clarify that there is no significant difference between the compared
methods in terms of the solution errors at the significant level of 0.05. However, it is clear that
the QCGA could outperform the others in terms of reducing the computational costs of function
evaluations.

Table 12. Wilcoxon rank-sum test for the hard functions results.

Comparison Criteria Compared Methods n R+ R− p-Value Best Method

Solution Errors QCGA, ABC/best/1 [83] 30 114 211 0.2687 –
QCGA, SABC-GB [82] 30 165 160 0.6276 –
QCGA, ABC/best/1 [83] 50 54 271 0.1031 –
QCGA, SABC-GB [82] 50 126 199 0.3721 –

Numbers of QCGA, ABC/best/1 [83] 30 0 325 9.73× 10−11 QCGA
Function Evaluations QCGA, SABC-GB [82] 30 0 325 9.73× 10−11 QCGA

QCGA, ABC/best/1 [83] 50 67 258 7.79× 10−4 QCGA
QCGA, SABC-GB [82] 50 67 258 7.79× 10−4 QCGA

7. Conclusions

In this work, we propose a modified GA version called QCGA, which is based on applying
a quadratic search operator to solve the global optimization problem. The use of quadratic coding of
solutions efficiently assists the algorithm in achieving promising performance. Furthermore, other

Math. Comput. Appl. 2020, 25, 7 22 of 28

quadratic-based techniques are presented as search operators to help the ESs in finding a global solution
quickly. Moreover, the gene matrix memory element is invoked, which could guide the search process
to new diverse solutions and help in terminating the algorithms. The efficiency of these methods is
tested using several sets of benchmark test functions. The comparisons with some standard techniques
in the literature indicate that the proposed methods are promising and show the efficiency of them
shortening the computational costs. We may conclude that applying quadratic search operators can
give them better performance and quick solutions. Therefore, we suggest the extension of the proposed
ideas to modify the other metaheuristics. The quadratic search models can be invoked as local search
procedures in many methods such as particle swarm optimization, ant colony optimization, and
artificial immune systems. Moreover, the quadratic models and coding can also be used in response
surface and surrogate optimization techniques. Finally, the proposed methods can also be extended to
deal with constrained global optimization problems using suitable constraint-handling techniques.

Author Contributions: Conceptualization, A.-R.H., H.H.A. and M.A., W.D.; methodology, A.-R.H.,W.D., H.H.A.
and M.A.; programming and implementation, A.-R.H., H.H.A. and M.A.; writing—original draft preparation,
A.-R.H., W.D., H.H.A. and M.A.; writing—review and editing, A.-R.H.,W.D., H.H.A. and M.A.; funding acquisition,
A.-R.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Plan for Science, Technology, and Innovation (MAARIFAH),
King Abdulaziz City for Science and Technology, the Kingdom of Saudi Arabia, award number (13-INF544-10).

Acknowledgments: The authors would like to thank King Abdulaziz City for Science and Technology,
the Kingdom of Saudi Arabia, for supporting the project number (13-INF544-10).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Classical Test Functions

Appendix A.1. Sphere Function (f1)

Definition: f1(x) = ∑n
i=1 x2

i .
Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f1(x∗) = 0.

Appendix A.2. Schwefel Function (f2)

Definition: f2(x) = ∑n
i=1|xi|+ ∏n

i=1|xi|.
Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f2(x∗) = 0.

Appendix A.3. Schwefel Function (f3)

Definition: f3(x) = ∑n
i=1(∑i

j=1 xj)2.
Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f3(x∗) = 0.

Appendix A.4. Schwefel Function (f4)

Definition: f4(x) = maxi=1,...n{|xi|}.
Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f4(x∗) = 0.

Appendix A.5. Rosenbrock Function (f5)

Definition: f5(x) = ∑n−1
i=1

[
100

(
x2

i − xi+1
)2 + (xi − 1)2

]
.

Search space: −30 ≤ xi ≤ 30, i = 1, 2, . . . , n.
Global minimum: x∗ = (1, . . . , 1), f5(x∗) = 0.

Math. Comput. Appl. 2020, 25, 7 23 of 28

Appendix A.6. Step Function (f6)

Definition: f6(x) = ∑n
i=1(bxi + 0.5c)2.

Search space: −100 ≤ xi ≤ 100, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f6(x∗) = 0.

Appendix A.7. Quartic Function with Noise (f7)

Definition: f7(x) = ∑n
i=1 ix4

i + random[0, 1).
Search space: −1.28 ≤ xi ≤ 1.28, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f7(x∗) = 0.

Appendix A.8. Schwefel Functions (f8)

Definition: f8(x) = −∑n
i=1

(
xi sin

√
|xi|
)

.
Search space: −500 ≤ xi ≤ 500, i = 1, 2, . . . , n.
Global minimum: x∗ = (420.9687, . . . , 420.9687), f8(x∗) = −418.9829n.

Appendix A.9. Rastrigin Function (f9)

Definition: f9(x) = 10n + ∑n
i=1
(

x2
i − 10 cos (2πxi)

)
.

Search space: −5.12 ≤ xi ≤ 5.12, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f9(x∗) = 0.

Appendix A.10. Ackley Function (f10)

Definition: f10(x) = 20 + e− 20e−
1
5

√
1
n ∑n

i=1 x2
i − e

1
n ∑n

i=1 cos(2πxi).
Search space: −32 ≤ xi ≤ 32, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); f10(x∗) = 0.

Appendix A.11. Griewank Function (f11)

Definition: f11(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1.

Search space: −600 ≤ xi ≤ 600, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f11(x∗) = 0.

Appendix A.12. Levy Functions (f12, f13)

Definition:
f12(x) = π

n {10 sin2(πy1) + ∑n−1
i=1

[
(yi − 1)2(1 + 10 sin2(πyi + 1))

]
+ (yn − 1)2}

+ ∑n
i=1 u(xi , 10, 100, 4), yi = 1 + xi−1

4 , i = 1, . . . , n.
f13(x) = 1

10{sin2(3πx1) + ∑n−1
i=1

[
(xi − 1)2(1 + sin2(3πxi + 1))

]
+ (xn − 1)2(1 + sin2(2πxn))

+ ∑n
i=1 u(xi , 5, 100, 4),

u(xi , a, k, m) =


k(xi − a)m, xi > a;
0, −a ≤ xi ≤ a;
k(−xi − a)m, xi < a.

Search space: −50 ≤ xi ≤ 50, i = 1, . . . , n.
Global minimum: x∗ = (1, . . . , 1), f12(x∗) = f13(x∗) = 0.

Appendix B. Hard Test Functions

Twenty-five hard test functions h1–h25 are listed in Table A1 with their global minima and bounds.
The reader is directed to reference [74,75] for more details on these functions.

Math. Comput. Appl. 2020, 25, 7 24 of 28

Table A1. Hard Test Functions.

h Function Name Bounds Global Min

h1 Shifted sphere function [−100, 100] −450
h2 Shifted Schwefel’s function 1.2 [−100, 100] −450
h3 Shifted rotated high conditioned elliptic function [−100, 100] −450
h4 Shifted Schwefel’s function 1.2 with noise in fitness [−100, 100] −450
h5 Schwefel’s function 2.6 with global optimum on bounds [−100, 100] −310
h6 Shifted Rosenbrock’s function [−100, 100] 390
h7 Shifted rotated Griewank’s function without bounds [0, 600] −180
h8 Shifted rotated Ackley’s function with global optimum [−32, 32] −140

on bounds
h9 Shifted Rastrigin’s function [−5, 5] −330
h10 Shifted rotated Rastrigin’s function [−5, 5] −330
h11 Shifted rotated Weierstrass function [−0.5, 0.5] 90
h12 Schwefel’s function 2.13 [−100, 100] −460
h13 Expanded extended Griewank’s + Rosenbrock’s function [−3, 1] −130
h14 Expanded rotated extended Scaffer’s function [−100, 100] −300
h15 Hybrid composition function [−5, 5] 120
h16 Rotated hybrid composition function [−5, 5] 120
h17 Rotated hybrid composition function with noise in fitness [−5, 5] 120
h18 Rotated hybrid composition function [−5, 5] 10
h19 Rotated hybrid composition function with narrow [−5, 5] 10

basin global optimum
h20 Rotated hybrid composition function with global [−5, 5] 10

optimum on the bounds
h21 Rotated hybrid composition function [−5, 5] 360
h22 Rotated hybrid composition function with high [−5, 5] 360

condition number matrix
h23 Non-Continuous rotated hybrid composition function [−5, 5] 360
h24 Rotated hybrid composition function [−5, 5] 260
h25 Rotated hybrid composition function without bounds [2, 5] 260

References

1. Hedar, A.R.; Allam, A.A.; Deabes, W. Memory-Based Evolutionary Algorithms for Nonlinear and Stochastic
Programming Problems. Mathematics 2019, 7, 1126, doi:10.3390/math7111126. [CrossRef]

2. Boussaïd, I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117.
[CrossRef]

3. Noghanian, S.; Sabouni, A.; Desell, T.; Ashtari, A. Global optimization: Differential evolution, genetic
algorithms, particle swarm, and hybrid methods. In Microwave Tomography; Springer: Berlin, Germany, 2014;
pp. 39–61.

4. Noack, M.M.; Funke, S.W. Hybrid genetic deflated Newton method for global optimisation. J. Comput.
Appl. Math. 2017, 325, 97–112. [CrossRef]

5. Talbi, E.G. Combining metaheuristics with mathematical programming, constraint programming and
machine learning. Ann. Oper. Res. 2016, 240, 171–215. [CrossRef]

6. Bansal, J.C.; Singh, P.K.; Pal, N.R. Evolutionary and Swarm Intelligence Algorithms; Springer:
Berlin, Germany, 2019.

7. Bozorg-Haddad, O.; Solgi, M.; Loaiciga, H.A. Meta-heuristic and Evolutionary Algorithms for Engineering
Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2017; Volume 294.

8. Emmerich, M.; Shir, O.M.; Wang, H. Evolution strategies. In Handbook of Heuristics; Springer:
Cham, Switzerland, 2018; pp. 89–119, doi:10.1007/978-3-319-07124-4_13. [CrossRef]

9. Mahmoodabadi, M.; Nemati, A. A novel adaptive genetic algorithm for global optimization of mathematical
test functions and real-world problems. Eng. Sci. Technol. Int. J. 2016, 19, 2002–2021. [CrossRef]

10. Ong, Y.S.; Lim, M.H.; Zhu, N.; Wong, K.W. Classification of adaptive memetic algorithms: A comparative
study. IEEE Trans. Syst. Man Cybern. B Cybern. 2006, 36, 141–152.

https://doi.org/10.3390/math7111126
http://dx.doi.org/10.3390/math7111126
http://dx.doi.org/10.1016/j.ins.2013.02.041
http://dx.doi.org/10.1016/j.cam.2017.04.047
http://dx.doi.org/10.1007/s10479-015-2034-y
https://doi.org/10.1007/978-3-319-07124-4_13
http://dx.doi.org/10.1007/978-3-319-07124-4_13
http://dx.doi.org/10.1016/j.jestch.2016.10.012

Math. Comput. Appl. 2020, 25, 7 25 of 28

11. Nguyen, Q.H.; Ong, Y.S.; Lim, M.H. A probabilistic memetic framework. IEEE Trans. Evol. Comput. 2009,
13, 604–623. [CrossRef]

12. Whitley, D.; Chicano, F.; Ochoa, G.; Sutton, A.M.; Tinós, R. Next generation genetic algorithms.
In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017;
pp. 922–941.

13. Ahrari, A.; Kramer, O. Finite life span for improving the selection scheme in evolution strategies. Soft Comput.
2017, 21, 501–513. doi:10.1007/s00500-015-1805-3. [CrossRef]

14. Toledo, C.F.M.; Oliveira, L.; França, P.M. Global optimization using a genetic algorithm with hierarchically
structured population. J. Comput. Appl. Math. 2014, 261, 341–351. [CrossRef]

15. Hedar, A.R.; Fukushima, M. Tabu search directed by direct search methods for nonlinear global optimization.
Eur. J. Oper. Res. 2006, 170, 329–349. [CrossRef]

16. Hedar, A.R.; Ali, A.F. Tabu search with multi-level neighborhood structures for high dimensional problems.
Appl. Intell. 2012, 37, 189–206. [CrossRef]

17. Mascia, F.; Pellegrini, P.; Birattari, M.; Stützle, T. An analysis of parameter adaptation in reactive tabu search.
Int. Trans. Oper. Res. 2014, 21, 127–152. doi:10.1111/itor.12043. [CrossRef]

18. Hedar, A.R.; Fukushima, M. Heuristic pattern search and its hybridization with simulated annealing for
nonlinear global optimization. Optim. Methods Softw. 2004, 19, 291–308. [CrossRef]

19. Thakur, M. A new genetic algorithm for global optimization of multimodal continuous functions.
J. Comput. Sci. 2014, 5, 298–311. [CrossRef]

20. Yang, C.; Kumar, M. An information guided framework for simulated annealing. J. Glob. Optim. 2015,
62, 131–154, doi:10.1007/s10898-014-0229-4. [CrossRef]

21. Saleh, A.; Hameed, H. A Novel Hybrid Algorithm of Differential Evolution with Evolving Spiking Neural
Network for Pre-synaptic Neurons Optimization. Int. J. Adv. Soft Comput. 2014, 6, 1–16.

22. Tang, L.; Dong, Y.; Liu, J. Differential Evolution with an Individual-Dependent Mechanism. IEEE Trans.
Evol. Comput. 2015, 19, 560–574. doi:10.1109/TEVC.2014.2360890. [CrossRef]

23. Cheng, S.; Lu, H.; Lei, X.; Shi, Y. A quarter century of particle swarm optimization. Complex Intell. Syst. 2018,
4, 227–239, doi:10.1007/s40747-018-0071-2. [CrossRef]

24. Esmin, A.A.; Coelho, R.A.; Matwin, S. A review on particle swarm optimization algorithm and its variants
to clustering high-dimensional data. Artif. Intell. Rev. 2015, 44, 23–45, doi:10.1007/s10462-013-9400-4.
[CrossRef]

25. Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173.
[CrossRef]

26. Mladenović, N.; Dražić, M.; Kovačevic-Vujčić, V.; Čangalović, M. General variable neighborhood search for
the continuous optimization. Eur. J. Oper. Res. 2008, 191, 753–770. [CrossRef]

27. Hvattum, L.M.; Duarte, A.; Glover, F.; Martí, R. Designing effective improvement methods for scatter search:
An experimental study on global optimization. Soft Comput. 2013, 17, 49–62. [CrossRef]

28. Li, K.; Tian, H. A DE-based scatter search for global optimization problems. Discrete Dyn. Nat. Soc. 2015,
2015, 1–9. [CrossRef]

29. Kumar, S.; Singh, S.K. Hybrid BFO and PSO Swarm Intelligence Approach for Biometric Feature
Optimization. Nat. Inspired Comput. 2016, 7, 1490–1518, doi:10.4018/978-1-5225-0788-8.ch057. [CrossRef]

30. Piotrowski, A.P. Adaptive memetic differential evolution with global and local neighborhood-based mutation
operators. Inf. Sci. 2013, 241, 164–194, doi:10.1016/j.ins.2013.03.060. [CrossRef]

31. Sahnehsaraei, M.A.; Mahmoodabadi, M.J.; Taherkhorsandi, M.; Castillo-Villar, K.K.; Yazdi, S.M. A hybrid
global optimization algorithm: Particle swarm optimization in association with a genetic algorithm.
In Complex System Modelling and Control Through Intelligent Soft Computations; Springer: Berlin, Germany,
2015; pp. 45–86.

32. Hosseini, S.S.S.; Yang, X.S.; Gandomi, A.H.; Nemati, A. Solutions of Non-smooth Economic Dispatch
Problems by Swarm Intelligence. In Adaptation and Hybridization in Computational Intelligence; Springer:
Cham, Switzerland, 2015; Volume 18, pp. 136–153, doi:10.1007/978-3-319-14400-9. [CrossRef]

33. Coello, C.A.C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:
A survey of the state of the art. Comput. Methods Appl. Mech. Eng. 2002, 191, 1245–1287. [CrossRef]

34. Mallipeddi, R.; Suganthan, P.N. Ensemble of constraint handling techniques. IEEE Trans. Evol. Comput. 2010,
14, 561–579. [CrossRef]

http://dx.doi.org/10.1109/TEVC.2008.2009460
https://doi.org/10.1007/s00500-015-1805-3
http://dx.doi.org/10.1007/s00500-015-1805-3
http://dx.doi.org/10.1016/j.cam.2013.11.008
http://dx.doi.org/10.1016/j.ejor.2004.05.033
http://dx.doi.org/10.1007/s10489-011-0321-0
https://doi.org/10.1111/itor.12043
http://dx.doi.org/10.1111/itor.12043
http://dx.doi.org/10.1080/10556780310001645189
http://dx.doi.org/10.1016/j.jocs.2013.05.005
https://doi.org/10.1007/s10898-014-0229-4
http://dx.doi.org/10.1007/s10898-014-0229-4
https://doi.org/10.1109/TEVC.2014.2360890
http://dx.doi.org/10.1109/TEVC.2014.2360890
https://doi.org/10.1007/s40747-018-0071-2
http://dx.doi.org/10.1007/s40747-018-0071-2
https://doi.org/10.1007/s10462-013-9400-4
http://dx.doi.org/10.1007/s10462-013-9400-4
http://dx.doi.org/10.1016/j.ejor.2006.06.046
http://dx.doi.org/10.1016/j.ejor.2006.12.064
http://dx.doi.org/10.1007/s00500-012-0902-9
http://dx.doi.org/10.1155/2015/303125
https://doi.org/10.4018/978-1-5225-0788-8.ch057
http://dx.doi.org/10.4018/IJSIR.2016040103
https://doi.org/10.1016/j.ins.2013.03.060
http://dx.doi.org/10.1016/j.ins.2013.03.060
https://doi.org/10.1007/978-3-319-14400-9
http://dx.doi.org/10.1007/978-3-319-14400-9
http://dx.doi.org/10.1016/S0045-7825(01)00323-1
http://dx.doi.org/10.1109/TEVC.2009.2033582

Math. Comput. Appl. 2020, 25, 7 26 of 28

35. Mezura-Montes, E. Constraint-Handling in Evolutionary Optimization; Springer: Berlin, Germany, 2009;
Volume 198.

36. Coello Coello, C.A. Constraint-handling techniques used with evolutionary algorithms. In Proceedings
of the Genetic and Evolutionary Computation Conference, Denver, CO, USA, 20–24 July 2016; pp. 563–587.

37. Hedar, A.R.; Fukushima, M. Derivative-free filter simulated annealing method for constrained continuous
global optimization. J. Glob. Optim. 2006, 35, 521–549. [CrossRef]

38. Da Silva, I.N.; Spatti, D.H.; Flauzino, R.A.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial Neural Networks;
Springer International Publishing: Cham, Switzerland, 2017.

39. Hedar, A.R.; Ong, B.T.; Fukushima, M. Genetic Algorithms with Automatic Accelerated Termination.
Available online: http://www-optima.amp.i.kyoto-u.ac.jp/~fuku/papers/G3AT.pdf (accessed on
14 January 2020).

40. Hedar, A.R. Adaptive Memory Matrices for Automatic Termination of Evolutionary Algorithms.
In Proceedings of the Fourth International Conference on Informatics & Applications, Takamatsu, Japan,
20–22 July 2015; pp. 1–11.

41. Moscato, P. Memetic algorithms: A short introduction. In New Ideas in Optimization; McGraw-Hill Ltd.:
London, UK, 1999; pp. 219–234.

42. Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D. Real-coded memetic algorithms with crossover
hill-climbing. Evol. Comput. 2004, 12, 273–302. [CrossRef]

43. Gibbs, M.S.; Maier, H.R.; Dandy, G.C.; Nixon, J.B. Minimum number of generations required for convergence
of genetic algorithms. In Proceedings of the IEEE International Conference on Evolutionary Computation,
Vancouver, BC, Canada, 16–21 July 2006; pp. 565–572.

44. Jain, B.J.; Pohlheim, H.; Wegener, J. On termination criteria of evolutionary algorithms. In Proceedings
of the Genetic and Evolutionary Computation Conference, San Francisco, CA, USA, 7–11 July 2001;
Morgan Kaufmann Publishers: Burlington, MA, USA, 2001.

45. Hedar, A.R.; Fukushima, M. Directed Evolutionary Programming: Towards an Improved Performance
of Evolutionary Programming. In Proceedings of the IEEE International Conference on Evolutionary
Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 1521–1528, doi:10.1109/cec.2006.1688489.
[CrossRef]

46. Leung, Y.W.; Wang, Y. An orthogonal genetic algorithm with quantization for global numerical optimization.
IEEE Trans. Evol. Comput. 2001, 5, 41–53. [CrossRef]

47. Tsai, J.T.; Liu, T.K.; Chou, J.H. Hybrid Taguchi-genetic algorithm for global numerical optimization.
IEEE Trans. Evol. Comput. 2004, 8, 365–377. [CrossRef]

48. Wang, L.; Xu, R.M.; Yan, B. Accurate small-signal model extraction for pHEMT on GaAs. Int. J. Infrared
Millim. Waves 2007, 28, 1133–1141. [CrossRef]

49. Koumousis, V.K.; Katsaras, C.P. A saw-tooth genetic algorithm combining the effects of variable population
size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 2006, 10, 19–28. [CrossRef]

50. Lim, D.; Ong, Y.S.; Jin, Y.; Sendhoff, B. Trusted evolutionary algorithm. In Proceedings of the IEEE
International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006;
pp. 149–156.

51. Zhou, Z.; Ong, Y.S.; Nair, P.B.; Keane, A.J.; Lum, K.Y. Combining global and local surrogate models to
accelerate evolutionary optimization. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2007, 37, 66–76. [CrossRef]

52. Safe, M.; Carballido, J.; Ponzoni, I.; Brignole, N. On stopping criteria for genetic algorithms. In Advances in
Artificial Intelligence—SBIA 2004; Springer: Berlin, Germany, 2004; pp. 405–413.

53. Kaelo, P.; Ali, M.M. Integrated crossover rules in real coded genetic algorithms. Eur. J. Oper. Res. 2007,
176, 60–76. [CrossRef]

54. Tsoulos, I.G. Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput. 2008,
203, 598–607. [CrossRef]

55. Engelbrecht, A.P. Computational Intelligence: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2007.
56. Konar, A. Computational Intelligence: Principles, Techniques and Applications; Springer Science & Business

Media: Berlin, Germany, 2006.
57. Ding, S.; Li, H.; Su, C.; Yu, J.; Jin, F. Evolutionary artificial neural networks: A review. Artif. Intell. Rev. 2013,

39, 251–260. [CrossRef]

http://dx.doi.org/10.1007/s10898-005-3693-z
http://www-optima.amp.i.kyoto-u.ac.jp/~fuku/papers/G3AT.pdf
http://dx.doi.org/10.1162/1063656041774983
https://doi.org/10.1109/cec.2006.1688489
http://dx.doi.org/10.1109/cec.2006.1688489
http://dx.doi.org/10.1109/4235.910464
http://dx.doi.org/10.1109/TEVC.2004.826895
http://dx.doi.org/10.1007/s10762-007-9288-7
http://dx.doi.org/10.1109/TEVC.2005.860765
http://dx.doi.org/10.1109/TSMCC.2005.855506
http://dx.doi.org/10.1016/j.ejor.2005.07.025
http://dx.doi.org/10.1016/j.amc.2008.05.005
http://dx.doi.org/10.1007/s10462-011-9270-6

Math. Comput. Appl. 2020, 25, 7 27 of 28

58. Such, F.P.; Madhavan, V.; Conti, E.; Lehman, J.; Stanley, K.O.; Clune, J. Deep neuroevolution: Genetic
algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv
2017, arXiv:1712.06567.

59. Cheng, L.; Hou, Z.G.; Lin, Y.; Tan, M.; Zhang, W.C.; Wu, F.X. Recurrent neural network for non-smooth convex
optimization problems with application to the identification of genetic regulatory networks. IEEE Trans.
Neural Netw. 2011, 22, 714–726. [CrossRef]

60. Schweidtmann, A.M.; Mitsos, A. Deterministic global optimization with artificial neural networks embedded.
J. Optim. Theory Appl. 2019, 180, 925–948. [CrossRef]

61. Gunst, R.F. Regression Analysis and Its Application: A Data-Oriented Approach; CRC Press: Boca Raton, FL, USA,
2018.

62. Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A survey on new generation metaheuristic algorithms.
Comput. Ind. Eng. 2019, 137, 106040, doi:10.1016/j.cie.2019.106040. [CrossRef]

63. Liu, Z.; Liu, Y.; Xiong, L. Robust Linear Neural Network for Constrained Quadratic Optimization.
Discrete Dyn. Nat. Soc. 2017, 2017, doi:10.1155/2017/5073640. [CrossRef]

64. Ghasabi-Oskoei, H.; Mahdavi-Amiri, N. An efficient simplified neural network for solving linear and
quadratic programming problems. Appl. Math. Comput. 2006, 175, 452–464, doi:10.1016/j.amc.2005.07.025.
[CrossRef]

65. Feng, J.; Qin, S.; Shi, F.; Zhao, X. A recurrent neural network with finite-time convergence for
convex quadratic bilevel programming problems. Neural Comput. Appl. 2018, 30, 3399–3408,
doi:10.1007/s00521-017-2926-7. [CrossRef]

66. Baker, J.E. Adaptive selection methods for genetic algorithms. In Proceedings of the 1st International
Conference on Genetic Algorithms and Their Applications, Pittsburgh, PA, USA, 24–26 July 1985; pp. 101–111.

67. Herrera, F.; Lozano, M.; Verdegay, J.L. Tackling real-coded genetic algorithms: Operators and tools for
behavioural analysis. Artif. Intell. Rev. 1998, 12, 265–319. [CrossRef]

68. Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
69. Beyer, H.G.; Schwefel, H.P. Fast evolution strategies: A comprehensive introduction. Nat. Comput. 2002,

1, 3–52, doi:10.2146/130117. [CrossRef]
70. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer Science & Business Media:

Berlin, Germany, 2003.
71. Vavasis, S.A. Complexity issues in global optimization: A survey. In Handbook of Global Optimization;

Springer: Berlin, Germany, 1995; pp. 27–41.
72. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009;

Volume 74.
73. Yang, X.S. Metaheuristic optimization: Algorithm analysis and open problems. In Proceedings

of the International Symposium on Experimental Algorithms, Crete, Greece, 5–7 May 2011; pp. 21–32.
74. Liang, J.; Suganthan, P.; Deb, K. Novel composition test functions for numerical global optimization.

In Proceedings of the 2005 IEEE Swarm Intelligence Symposium, Pasadena, CA, USA, 8–10 June 2005;
pp. 68–75.

75. Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.P.; Auger, A.; Tiwari, S. Problem
Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization.
Available online: http://www.cmap.polytechnique.fr/~nikolaus.hansen/Tech-Report-May-30-05.pdf
(accessed on 14 January 2020).

76. Hansen, N.; Müller, S.D.; Koumoutsakos, P. Reducing the Time Complexity of the Derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evol. Comput. 2003, 11, 1–18,
doi:10.1162/106365603321828970. [CrossRef]

77. García, S.; Fernández, A.; Luengo, J.; Herrera, F. A study of statistical techniques and performance measures
for genetics-based machine learning: Accuracy and interpretability. Soft Comput. 2009, 13, 959. [CrossRef]

78. Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures; CRC Press: Boca Raton, FL, USA,
2003.

79. Zar, J.H. Biostatistical Analysis; Pearson Higher Education: London, UK, 2013.
80. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests

as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.
2011, 1, 3–18. [CrossRef]

http://dx.doi.org/10.1109/TNN.2011.2109735
http://dx.doi.org/10.1007/s10957-018-1396-0
https://doi.org/10.1016/j.cie.2019.106040
http://dx.doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1155/2017/5073640
http://dx.doi.org/10.1155/2017/5073640
https://doi.org/10.1016/j.amc.2005.07.025
http://dx.doi.org/10.1016/j.amc.2005.07.025
https://doi.org/10.1007/s00521-017-2926-7
http://dx.doi.org/10.1007/s00521-017-2926-7
http://dx.doi.org/10.1023/A:1006504901164
http://dx.doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.2146/130117
http://dx.doi.org/10.1023/A:1015059928466
http://www.cmap.polytechnique.fr/~nikolaus.hansen/Tech-Report-May-30-05.pdf
https://doi.org/10.1162/106365603321828970
http://dx.doi.org/10.1162/106365603321828970
http://dx.doi.org/10.1007/s00500-008-0392-y
http://dx.doi.org/10.1016/j.swevo.2011.02.002

Math. Comput. Appl. 2020, 25, 7 28 of 28

81. García-Martínez, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real
parameter optimization. J. Heuristics 2009, 15, 617–644. [CrossRef]

82. Xue, Y.; Jiang, J.; Zhao, B.; Ma, T. A self-adaptive artificial bee colony algorithm based on global best for
global optimization. Soft Comput. 2018, 22, 2935–2952. [CrossRef]

83. Gao, W.; Liu, S.; Huang, L. A global best artificial bee colony algorithm for global optimization. J. Comput.
Appl. Math. 2012, 236, 2741–2753, doi:10.1016/j.cam.2012.01.013. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1007/s00500-017-2547-1
https://doi.org/10.1016/j.cam.2012.01.013
http://dx.doi.org/10.1016/j.cam.2012.01.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Quadratic Approximation Methods
	Regression
	Artificial Neural Networks

	Quadratic Coding Genetic Algorithm
	Sensing Evolution Strategies
	Experimental Results
	Quadratic Coding
	Quadratic Models
	Termination Criteria and Processing Time
	Global Search Results
	Results for Hard Test Functions

	Conclusions
	Classical Test Functions
	Sphere Function
	Schwefel Function
	Schwefel Function
	Schwefel Function
	Rosenbrock Function
	Step Function
	Quartic Function with Noise
	Schwefel Functions
	Rastrigin Function
	Ackley Function
	Griewank Function
	Levy Functions

	Hard Test Functions
	References

