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Abstract: Recently a new kind of fiducial marker based on order type (OT) has been proposed. Using
OT one can unequivocally identify a set of points through its triples of point orientation, and therefore,
there is no need to use metric information. These proposed order type tags (OTTs) are invariant
under a projective transformation which allows identification of them directly from a photograph.
The magnitude of noise in the point positions that a set of points can support without changing its
OT, is named the maximal perturbation (MP) value. This value represents the maximal displacement
that any point in the set can have in any direction without changing the triplet’s orientation in the set.
A higher value of the MP makes an OTT instance more robust to perturbations in the points positions.
In this paper, we address the problem of how to improve the MP value for sets of points. We optimize
“by hand” the MP for all the 16 subsets of points in the set of OTs composed of six points, and we
also propose a general algorithm to optimize all the sets of OTs composed of six, seven, and eight
points. Finally, we show several OTTs with improved MP values, and their use in an augmented
reality application.
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1. Introduction

Fiducial tags, or fiducial markers, are used in computer vision (CV) applications for robot
localization [1,2], mapping and localization of large environments [3–5], or for pose estimation in
medical endoscopy [6]. Markers are also used for metric purposes, e.g., for calibration [7] and
monitoring changes in distances and orientations in historic structures [8]. AprilTags [9] and Aruco [10]
are perhaps the more used fiducial tags. Essentially, a fiducial marker is used in a CV application as
pattern for a quick and easy detection by a computer, The position and pose of the fiducial marker
with respect to a viewing digital cameras can be obtained automatically by the computer.

In this work we focus on a new kind of tags based on order type (OT) [11,12], called order type
tags (OTTs), which are projective invariant and are also suitable for automatic identification and pose
estimation [13]. These markers are composed of a typical black square frame with an inner white
square and with black triangles inside of this last white square. Four examples of these OTTs are
shown in Figure 1. The position of the triangle vertices form the set of points from which is possible to
calculate its associated OT. This OT also forms a unique identifier for each OTT.

The scenario for the identification task is the following: An OTT instance is located in a scene,
one image is generated through the camera sensor by targeting the camera to the scene in some position
and orientation, in which the visual fiducial marker is visible in the resulting image. The obtained
image is processed, i.e., the image is analyzed to identify the region in which the tag is visible to
compute or to estimate the positions of the triangle vertices. These positions of the triangle vertices are
taken as the elements to form a set of points, and from this set of points its OT can be calculated.
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Figure 1. Four examples of order type tags (OTTS). The labels represent the subset number within the
set C6 (it is the set of all possible OTs formed with six points) in the database in [14]. More details about
this notation will be given in the following sections of this work.

In [11] the authors use the point sets publicly available in [15] to build the OTTs. These data sets
have already an associated maximal perturbation (MP): For a given set of points the MP is the maximal
displacement (noise) that can be added to all the point positions without changing its OT. In this work
we study how to optimize the MP for all the data sets in [15] with six, seven, and eight point elements.
With the optimized set of points, more robust OTTs can be built.

The contribution of this work is to analyze the problem of how to maximize the MP for a set of
points. We provide a general algorithm to increase the MP for a set of points. Although the problem
of finding the point positions within a set that maximizes its MP appears to be an easy geometrical
problem, it is not; we can only provide approximated solutions. The exact solution is still an open
problem.

This paper is structured as follows: Section 2 explains the maximal perturbation definition and
the algorithm to compute it. Section 3 explains the optimization of MP by hand with sets of five
points. In Section 4 we present a general algorithm to optimize the MP. In Section 5 the results of this
algorithm to optimize C6, C7, and C8 will be given. In Section 6 we present a discussion, and finally in
Section 7 conclusions of this work are drawn.

2. Order Type and Maximal Perturbation

OT is a concept from the computation geometry field, it was originally proposed by [16] and
it can be seen as a way to describe sets of points based on the orientation of subsets of three points
(triplets). The OT concept is valid in any dimension but in this work we will work in two dimensions,
with 2D points on a plane. Formally the OT is represented with a so-called λ-matrix [16]: Each of its
entries λi,j, for i, j = {1, 2, . . . n}, i 6= j, and n points in a set, represent the number of points in the set
that are on the left side of the oriented line through points pi pj, for i 6= j.

This number of orientations for all the triplets of points can be calculated by counting the k
positive double area of triangles formed by points pk pi pj, with k 6= i 6= j, and k, i, j ∈ {1, 2, . . . n}.

In this way, the λ-matrix for the example in Figure 2 is:
− 3 2 1 0
0 − 1 3 2
1 2 − 2 1
2 0 1 − 3
3 1 2 0 −

 .

The entries in the lower triangular λ-matrix have values λj,i = n− 2− λi,j, thus only the values
of the lower triangular λ-matrix, or the upper triangular λ-matrix, are independent and necessary to
store a λ-matrix. Therefore only n2/2− n memory locations are necessary to store a λ-matrix.
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For two point sets A and B in a plane, where B is the translated, rotated and/or projected version
of A into another plane, both sets will have the same OT. This property can be used to match the point
correspondences in the two sets as in [13], and then to find the camera pose (position and orientation).

Authors in [15] analyzed all possible OTs that can be generated with sets from three up to 11 points,
and those authors also provided a publicly available database [14] which contains all the possible OTs.
In their database, point positions are represented with 8 bits (1 byte) up to cardinality 8. They use this
binary format to store all OT instances to reduce the size of the database.

For a set of n points, n! different λ-matrices can be built, depending of how the points are labeled.
Although these λ-matrices can be different, the associated OTs are not. One could select a specific
λ-matrix that could help to identify the set, for example, their minimum lexicographically. In this
way, the λ-matrix is one of the possibles forms to represent the OT. Another form to visualize the
OT is that a λ-matrix can be built for a set of points; if the labels of the points change, the entries of
the new λ-matrix will be permutations of the entries in the original built λ-matrix. Different point
configurations must have different λ-matrices. All those different configurations are finite and were
investigated by [15], and they are publicly available in internet [14].

There exists a single OT with three points and this forms a triangle. With four points there exists
two OTs, one forms a square, and the other one forms a triangle with a point inside. With five points
there exists three OTs. The set of all subsets of n points with different OTs will be represented as Cn.
Cn

i will represent the subset (an instance) i in Cn with n points, Cn
i ⊂ Cn. We maintain the same the

order for the subsets given by [15] in their database [14].
Given a set of points, its MP value is the maximal displacement that any and all the points

can have safely without changing the original OT. Let C represent any set of points, the maximal
perturbation is defined as the half of the minimal distance from any point pi ∈ C to any line defined by
a pair of points pj pk in C with i 6= j 6= k. In Figure 2 the MP concept is illustrated with one example:
five points are drawn in a plane, the radius of the bigger circle represents the minimal distance in any
point to a line, and for this example is from point p3 to line p1 p2; the radius of the smaller circle is the
MP, any point can be inside its respective smaller circle and the respective OT is kept. If points p2 and
p3, or points p3 and p1, simultaneously cross the dashed line, the OT changes: The figure will be an
irregular pentagon instead of a square with one point inside.

p4 p2

p3

p1p5

Figure 2. Five points in the plain. The radius of the bigger circle represents the minimal distance from
any point to a line, the radius of the smaller circle is the maximal perturbation (MP). If points p2 and
p3, or points p3 and p1, cross the dashed line simultaneously, the order type (OT) changes, and the
figure will be an irregular pentagon instead of a square with one point inside. Points are sorted in a
circular form starting with p1.

In the next section, it will be optimized the MP “by hand” for every OT instance in the set C6,
and in the Section 4 an algorithm to optimize C6 to C8 will be explained.
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3. Optimizing MP for C6

We try to analyze first how to optimize the subsets of points in C6 (with six points). We have a grid
of 256× 256 to position every point, because 8 bits were used to store every number that represents
those point positions. In general, a greedy strategy is performed with the following steps:

1. Fix the points belonging to the convex hull on the grid border.
2. Position the rest of the points inside an area proportional to the number of them.
3. The points are positioned optimally. In one have four points and three of them form a triangle,

that is also its convex hull, the optimal position of the fourth is in the triangle’s incenter: the
intersection of the three internal angle bisectors. The incenter is at equal distances from the three
triangle’s edges.

4. The positions are refined by a partial exhaustive search, trying to move other points not involved
directly in the MP calculation.

For instance, the optimal position of point p3 in Figure 2 is in the center formed by p1, p2, and the
intersection point of line segments p1 p4 and p2 p5. Also, it is possible to increase the area of the referred
triangle moving points p4 or p5; increasing the area of this triangle increases also the associated MP
for the whole set of points.

The sixteen instances (or subsets) of C6 are shown in Figure 3. Each one is numbered row by row
(the first one in the upper corner at the left) and the number of points in their convex hull is in Table 1.
The instances 1, 2, 3, 8, 9, and 10, which have 6, 5, 5, 5, 4, and 4 points in the convex hull, respectively,
are trivial to optimize because of their symmetry in the convex hull points. The easiest instance is 1
because it has all its points form its convex hull, the resulted instance can be seen in Figure 4.

Figure 3. The 16 subsets of C6 in the database of [14] and [15].



Math. Comput. Appl. 2019, 24, 97 5 of 13

Figure 4. The 16 optimized subsets in C6.

For the rest of the instances, each one is optimized with the aim of a different python script.
The optimization procedure will be explained with one example. The instance chosen to optimize
will be the fourth, it has four points in its convex hull. These four points are situated in the outer
vertices of the grid, as shown in Figure 5. The point p3 is positioned in the center of triangle pa pb p2

(see Figure 5). The last point p4 is positioned in the incenter of triangle p3 pd pc. Point pc is calculated
as the intersection of line segments p1 p5 and p2 p3. Point pd is calculated as the intersection of line
segments p1 p5 and p6 p3. Clearly, this greedy strategy gives a small MP value (check Figure 5). Now
MP can be improved if point p3 is moved on the line p3 pb. At each position on this line, the MP is
recalculated at the final positions in Figure 4 is at the maximum MP value. Note that it is not the MP’s
global maximum. The obtained maximum MP is a local maximum. The procedure explained here is
an heuristic that get good MP values—and very useful point positions—but it is not a procedure that
obtains the best point positions that guarantee the MP’s global maximum.

We give another example, the optimization of point subset C6
5 . The points p1, p2, p3, and p6

(equal to (0, 0), (255, 0), (255, 255), and (0, 255), respectively) are situated in the corners of the grid, as is
shown in Figure 6 at the left. Point p5 will in the incenter of triangle p6 pa p f , where pa = (127, 127) and
p f = (127, 255), thus p5 = (90, 218). The next point p4, calculated in a greedy step, will be in the center
of triangle p5 pe p3, where point e is in the intersection of lines p5 p2 and p1 p3, thus p4 = (149, 196),
with this set of points its MP value is equal to 0.63, which is very small, less than 1 unit. Instead
we search for a greater MP value, with the aim of another python script, where p5 = (90, y) and
p4 = (255− 90, y), and y takes the values from the point c to b, as it is shown in Figure 6 at the right.
In this way, points are symmetric with respect to the middle vertical axis, and this configuration does
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not change its order type. The optimized p5 and p4 are (90, 199) and (165, 199), respectively, and the
MP value for the subset is equal to 12.50.

6

1

d

3

b

2

5

4

c

a

2

3

b

1

6 5

Figure 5. Optimizing the instance C6
4 . At the left the positioning of the four convex hull points and the

point p3. At the right the positioning of point p4. Details in the text.

4

e

f

21

6 3

a

5
4

b

21

6 3

a

5

c

Figure 6. Optimizing the instance C6
5 . At the left the positioning of the four convex hull points,

and the points p5 and p4. At the right is shown the dashed line where is search p5 = (90, y) and
p4 = (255− p5.x, y). Details in the text.

A summary of the results is shown in Table 1. The higher improvements in the MP are in the easiest
instances. All python scripts are publicly available (http://cs.cinvestav.mx/~fraga/OptMP.tar.gz).

We called an optimization “by hand” of these instances of C6 because we were unable to generate
an algorithm to calculate the initial point positions given some of the points already in the border of
the grid. Here the positions are set by carefully observing the point positions in the corresponding
database in [14], which are the positions that define each OT.

Table 1. MP values obtained by optimizing “by hand” each instance of C6.

Instance Original Optimized # Points Used for
Number MP MP Convex Hull Matching

1 19.44 28.31 6 no
2 12.27 19.00 5 yes
3 13.24 21.57 5 yes
4 8.52 8.75 4 yes
5 7.80 12.02 4 yes
6 9.36 12.50 4 yes
7 8.46 16.26 4 yes
8 13.22 21.21 5 no
9 7.44 10.53 4 yes
10 6.70 26.16 4 no
11 6.92 9.74 3 yes
12 6.59 7.24 3 yes
13 6.82 8.00 3 yes
14 8.01 11.69 3 yes
15 7.35 8.05 3 no
16 7.74 14.32 3 no

http://cs.cinvestav.mx/~fraga/OptMP.tar.gz
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4. General Algorithm to Optimize the MP

In this section, we present our approach to automatically modify the positions of the points for a
given set of points C1, with a MP(C1) value, to a new set of points C2 with an associated MP(C2) value
higher or equal than the original, in such a way that the OTs of both sets are maintained unchanged,
i.e., MP(C2) ≥ MP(C1) and λ(C2) = λ(C1).

We were able to optimize by hand the 16 instances in C6, but for C7 and C8 there are 135 and 3315
instances, respectively. Performing the optimization by hand for these two sets is not possible and for
this reason an automatic approach is proposed.

We exploit the MP definition to iteratively modify each point position, without changing the OT.
By moving each point belonging to each subset of points in such way that the OT is not changed or
increased, the associated OT to that subset of points does not change. The idea is to take a point pi in
the set, and try to find a new position, within its neighborhood, in such a way that the current MP is
increased. If a new point position that enhances the MP is found, or at least the current MP value is not
reduced, the new position is accepted. This process is repeated for all the points. The search space is
discrete, and both point coordinates can have integer positions from 0 up to 255 (1 byte, as the original
representation in [14]). Thus, the coordinates (x, y) for a point are attempted to be moved to their eight
neighborhood positions {(x− 1, y + 1), (x, y + 1)(x + 1, y + 1)(x− 1, y)(x + 1, y)(x− 1, y− 1)(x, y−
1)(x + 1, y− 1)}. We detail this idea in Algorithm 1.

The input in Algorithm 1 is an instance l of Ck
l , that is, a set of k pairs of coordinate values (x, y),

Then, for each point pi, for i = {1, 2, . . . , k}, each one of its eight neighborhoods {q} = N(pi) will be
analyzed, to search for the one that increases the MP value. To perform the search, the trial set Ctrial is
used, which is a copy of input set Ck

l with a moved point. A trial set substitutes the previous one only if
the moved point increases the distance to its closest line dtrial, or remains unchanged. The procedure is
repeated until no more changes in the point positions can be performed, or until a maximum number
of iterations is reached.

Algorithm 1 Algorithm to improve MP(Cin) through single point displacements.

Require: Set point Cin, number of MaxIterations.
Ensure: A set of points Cnew, with MP(Cnew) ≥ MP(Cin)

1: Cnew ← Cin . A copy of the input set of points Cin
2: i← 0
3: while i < MaxIterations do
4: Cprev ← Cnew . Copy the set of points Cnew
5: for all pi ∈ Cnew do
6: Obtain the eight neighbors {qk} = N(pi).
7: Compute the distance dcurrent from pi to the closest line in Cnew
8: Compute mp←MP(Cnew)
9: pnew ← pi . A new point is initialized

10: for each neighbor q ∈ {qk} do
11: Ctrial ← Cnew
12: Ctrial.pi ← q . Replace pi by q in Ctrial
13: Compute the distance dtrial from q to the closest line in Ctrial
14: if MP(Ctrial) ≥mp and dtrial ≥ dcurrent then
15: dcurrent ← dtrial
16: mp← MP(Ctrial)
17: pnew ← q
18: end if
19: end for
20: Cnew.pi ← pnew
21: end for
22: if Cprev = Cnew then
23: return Cnew
24: end if
25: end while
26: return Cnew
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The complexity of Algorithm 1 is linear with respect to the number of iterations. The number
of iterations can be considered unknown. The number of pixel neighbors to each pixel is constant,
equal to 8. The number of points is a small number, in this study, a number in the set {6, 7, 8}. And the
number of iterations is a number much bigger than the number of points.

We can not visualize a brute force approach to solve this problem. The MP value for a set of points
with a fixed OT depends of the positions of the whole set. The idea of Algorithm 1 is to try to move all
points and not a single one in each iteration. Also the positions of the points in the convex hull are
certainly arbitrary, many of them can be tried.

5. MP Optimization Results for C6, C7, and C8

Algorithm 1 was applied to all the subsets of points in Ck, for k = {6, 7, 8}, in [14] with a maximum
number of iterations equal to 200. The results are shown in Table 2 and in Figure 7. In Table 2 the
number of subsets that have a given MP value are counted, and these subsets are now represented
with the set Dn(v) which contains all the subsets with a MP lesser or equal to v. The improvement
can be seen in the last row: for D8(9.0) there are now 60 optimized OTs with a MP greater than 9,
when initially were only three. For D7(9.0), the number of subsets with MP greater than 9 increases
from three to 33. We can observe a significant increase in the MP values: After applying our approach,
OT instances that support a greater magnitude of noise are obtained. In Table 2, in the initial values on
the left, we can observe the number of OT instances that support the given noise of magnitude in the
first column. On the right, where we show the final results, we observe a clear improvement, i.e., most
sets of points in Ck increased their MP value, which increases the Dk sets.

Figure 7 presents these results from another perspective, as histograms of the number of OT
instances within certain ranges of MP values for the sets C6, C7, and C8. Each subfigure shows a
comparison of the initial MPs in the database in [14] and the results after applying the proposed
algorithm to optimize their MP value. The four histogram comparisons clearly show an improvement
of MP values. All sets of points with high MP values are increased. This case is especially notorious
in Figure 7c, where we can observe that more than 2500 OT instances have their MP between 1 and
2 units. After our approach, we observe a new distribution of the bars in which the number of OTs
with the same MP range is reduced to around 800, and the rest of MP ranges have a higher number of
OT instances.

Table 2. The number of OTs for a given MP value in the original in [15] and the optimized OTs with
our algorithm. The set D include all the elements in C which have a MP lesser or equal to the given
MP value.

Initial MP Optimized MP
MP Value |D8| |D7| |D6| |D8| |D7| |D6|

0.5 3315 135 16 3315 135 16
1.0 3296 135 16 3301 135 16
1.5 1240 135 16 3048 135 16
2.0 642 135 16 2654 135 16
2.5 371 135 16 2240 135 16
3.0 231 86 16 1866 131 16
3.5 135 60 16 1513 124 16
4.0 83 47 16 1196 118 16
4.5 56 32 16 922 114 16
5.0 37 26 16 710 103 16
5.5 26 18 16 537 94 16
6.0 15 15 16 410 80 16
6.5 10 8 16 295 70 16
7.0 5 7 12 208 62 15
7.5 4 4 10 151 57 15
8.0 3 3 8 114 52 15
8.5 3 3 6 83 41 15
9.0 3 3 6 60 33 14



Math. Comput. Appl. 2019, 24, 97 9 of 13

 0

 2

 4

 6

 8

 10

 12

 5  10  15  20  25  30  35

N
um

be
r 

of
 O

T
 in

st
an

ce
s

MP value

Original
Optimized

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2  4  6  8  10  12  14  16  18  20  22

N
um

be
r 

of
 O

T
 in

st
an

ce
s

MP value

Original
Optimized

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  1  2  3  4  5  6  7  8  9  10

N
um

be
r 

of
 O

T
 in

st
an

ce
s

MP value

Original
Optimized

(c)

Figure 7. Histograms of the number of OT instances with respect to the MP values. The original MP
values of the database in [15] and the ones obtained with our proposed algorithm described in Section 4
are shown. (a) Histogram for C6; (b) Histogram for C7; (c) Histogram for C8.

For set C6 a slight improvement was obtained with the procedure described in Section 3, in
comparison with results shown in Table 2: All 16 instances have an MP value greater than 7.0 in Table 1
and in Table 2, 15 of them have a MP value greater than 7.0.

The results in Table 2 and Figure 7 clearly show that our designed Algorithm 1 automatically
improves the MP for all instances in C6, C7, and C8, and is working correctly. After applying our
algorithm to the original data in [15], it improved the positions for all the subsets of points, increasing
their associated MP.

Two instances of the initial and resulting sets of points are shown in each row in Figure 8. In this
figure, the left column shows the initial set of points and their associated MP value, the column at the
right shows the obtained results in the last iteration of our approach, and their associated MP value.

In Figure 9 we can compare the OTTs made with the C6
5 and C6

9 subsets before and after the
optimization by hand, as explained in Section 3. These two markers without their optimized point
positions were shown previously in Figure 1. The markers are detected first in the input image as the
black object with four corners; then, for the markers without optimize (in the left column of Figure 9),
the black triangles inside the white zone are extracted. For the optimized markers built with C6

5 and
C6

9 , these set of points have a convex hull that is also a square, thus the white zone was eliminated and
white triangles are used instead. The elimination of this white zone (see the markers in the second
column of Figure 9) increases the area cover by the optimized C6

5 and C6
9 set of points. A bigger area

makes these optimized markers easier to recognize at farther distances.
Finally, an augmented reality application that use these two optimized OTTs is shown in Figure 10:

Above each marker is drawn a virtual object. The point positions are calculated as the vertices of
the black square and the vertices of the two white triangles. The extraction is made as follows:
(1) A binarization is applied to the input image, (2) all the black components are labeled. For each
black component in the image: (3) the perimeter is calculated, (4) the position of the first pixel in the
perimeter is a vertex, (5) the position of the farthest pixel in the perimeter to the first vertex found,
is the second vertex, and (6) the other two vertices are calculated as the positions of the two farthest
pixels to the line that joins the two first vertices found. A similar process is made to calculate the
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three triangle vertices. These rough vertices positions are enough to calculate the match with the point
positions of the marker model using the λ-matrices. To calculate the marker pose we use homography,
and then it is necessary to refine the vertices positions to a subpixel precision by extracting the points
among each pair of vertices, fitting a line with those points, and calculating the intersection point for
each two lines. In Figure 10, each virtual object can be moved interactively when the respective OTT is
also moved. This application uses the Qt and OpenGL libraries.
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Figure 8. Two OT instances with improved MP value, one per row. To the left the initial set of points
and to the right the set of points after applying Algorithm 1. Note how the set of points tend to cover
most of the available space.

OTT with C6
5 not optimized OTT with the optimized C6

5

OTT with C6
9 not optimized OTT with the optimized C6

9

Figure 9. Two examples of order type tags (OTTs) built with the subsets of points C6
5 and C6

9 without the
original point positions in the database in [14], and with the corresponding optimized point positions
by hand.



Math. Comput. Appl. 2019, 24, 97 11 of 13

Figure 10. A picture of an augmented reality application that shows two virtual objects drawn above
the optimized markers C6

5 and C6
9 . These markers are also shown at the right of Figure 9.

6. Discussion

According to the results presented in Sections 3 and 4, we were able to improve the MP value for
most of the processed OT instances. The improvement is very noticeable in histograms in Figure 7.
In the comparison of histograms, we increased the number of OT instances with higher MP values,
and also we reduced the number of OT instances with small MP values.

The MP value is only defined by the distance of the point to the closest line (defined by each pair
of points) in the entire set of points. Although we are only analyzing one point and its distance to the
closest line, in turn, this distance will define the current MP for the whole set of points. This is because
the MP depends on only three points from the whole set of points. We could call these three points
the critical points. In this sense, we could think that there is no reason for caring about displacing
critical points that do not directly define the OT. Nevertheless, in some situations, the displacements
of the non-critical points is necessary to allow future possible displacements for the critical points.
For instance, consider a case with four points, these form an equilateral triangle and the fifth located
at the center of the triangle. In that OT instance, the MP(C) depends on the distance of the central
point to any of the three lines of the triangle. In a case like that, we see that we can not perform any
movement on the central point without reducing the MP value. In order to make possible a movement
in the central point that improves the MP value of the set, we first should move some of the points that
form the triangle. With a movement of one or more of those points that define the external triangle we
could make some space in such a manner that, in a subsequent search of a new location for the central
point, we can find a new location that improves the MP for the set. This is exactly how our approach
works. The algorithm tries to increase the distance of every point to its closest line, to try to expand
the set of points in such a way that the critical points could be moved to new positions that improve
the MP.

Optimizing by hand instances with more than six points is difficult. However, we can position
the convex hull points on the marker corners. It could be very interesting to optimize by hand the
instances in C7 as those have four points in the same maker corners, and the other three points form a
single triangle, and so its detection process will be simpler. We left this idea as a future work. It could
be possible to fix the four points in the convex hull to the grid corners, and optimize the rest of the
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points with our proposed algorithm. In such a case, it will be necessary to carefully analyze by hand
the initial point positions, which also define the associated order type for the set of points.

Also left as future work, is the analysis for an algorithm to calculate or to search the global
optimum MP for a given set of n points. To find the point positions that correspond to the global
optimum MP is still an open problem.

7. Conclusions

We analyze how MP can be optimized in the set C6, with six points. We also propose a general
algorithm to improve the MP for C7, C8, and C9. The proposed algorithm performs one single distance
point displacement at each iteration, based on the definition of the MP, which states that we can move
any point in a set C to a new location without changing its OT if this movement is smaller than MP(C).
We showed that our approach improves most of the OT instances of the database provided by [15].
The proposed approach improves the set of points in terms of the MP value, and thus it improves the
performance for the markers based on OT, as these can resist more noise when their point positions are
detected in an image. We show the use of these OT markers in an augmented reality application.
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