Mathematical and Computational

MDPI
Applications

## Correction

# Correction: Kunc, O.; Fritzen, F. Finite Strain Homogenization Using a Reduced Basis and Efficient Sampling. Math. Comput. Appl. 2019, 24, 56 

Oliver Kunc (D) and Felix Fritzen * (D)

Efficient Methods for Mechanical Analysis, Institute of Applied Mechanics (CE), University of Stuttgart, 70569 Stuttgart, Germany; kunc@mechbau.uni-stuttgart.de

* Correspondence: fritzen@mechbau.uni-stuttgart.de

Received: 30 October 2019; Accepted: 5 November 2019 ; Published: 6 November 2019

The authors wish to make a correction to Formula (42) of the paper [1]. The correct formula reads

$$
\begin{equation*}
\bar{C}_{i j k l}(\overline{\boldsymbol{F}})=\bar{C}_{i j k l}(\overline{\boldsymbol{R}} \overline{\boldsymbol{u}})=\sum_{m, n=1}^{3} \bar{R}_{i m} \bar{C}_{m j n l}(\overline{\boldsymbol{U}}) \bar{R}_{k n} \quad(i, j, k, l=1,2,3) . \tag{1}
\end{equation*}
$$

Correspondingly, a correction to Equations (A1)-(A4) of Appendix A of [1] is now provided. To this end, Green's strain tensor $\overline{\boldsymbol{E}}=\frac{1}{2}\left(\overline{\boldsymbol{F}}^{\top} \overline{\boldsymbol{F}}-\boldsymbol{I}\right)$, the corresponding stored energy density function $\bar{W}^{\mathrm{E}}(\overline{\boldsymbol{E}})=\bar{W}(\overline{\boldsymbol{F}})$, the second Piola-Kirchhoff stress $\overline{\boldsymbol{S}}=\partial \bar{W}^{\mathrm{E}} /\left.\partial \overline{\boldsymbol{E}}\right|_{\bar{E}}$, and the corresponding stiffness tensor $\overline{\mathbb{C}}^{\mathrm{E}}=\partial^{2} \bar{W}^{\mathrm{E}} /\left.(\partial \overline{\boldsymbol{E}})^{2}\right|_{\bar{E}}$ are introduced. Starting from the well-known relationship $\overline{\boldsymbol{P}}=\overline{\boldsymbol{F}} \bar{S}$ between $\bar{S}$ and the first Piola-Kirchhoff stress $\overline{\boldsymbol{P}}=\partial \bar{W} /\left.\partial \overline{\boldsymbol{F}}\right|_{\bar{F}}$ (see for instance [2]), we express the components of $\overline{\mathbb{C}}$ in terms of those of $\bar{S}$ and of $\overline{\mathbb{C}}^{\mathrm{E}}$ :

$$
\begin{align*}
\bar{C}_{i j k l} & =\frac{\partial^{2} \bar{W}}{\partial \bar{F}_{i j} \partial \bar{F}_{k l}}=\frac{\partial \bar{P}_{i j}}{\partial \bar{F}_{k l}}=\sum_{m=1}^{3} \frac{\partial \bar{F}_{i m} \bar{S}_{m j}}{\partial \bar{F}_{k l}}=\sum_{m=1}^{3}\left(\delta_{i k} \delta_{l m} \bar{S}_{m j}+\bar{F}_{i m} \frac{\partial \bar{S}_{m j}}{\partial \bar{F}_{k l}}\right)  \tag{2}\\
& =\delta_{i k} \bar{S}_{l j}+\sum_{m, n, o=1}^{3} \bar{F}_{i m} \frac{\partial \bar{S}_{m j}}{\partial \bar{E}_{n o}} \frac{\partial \bar{E}_{n o}}{\partial \bar{F}_{k l}}  \tag{3}\\
& =\delta_{i k} \bar{S}_{l j}+\sum_{m, n, o=1}^{3} \bar{F}_{i m} \overline{\mathrm{C}}_{m j n o}^{\mathrm{E}} \frac{\partial \bar{E}_{n o}}{\partial \bar{F}_{k l}}  \tag{4}\\
& =\delta_{i k} \bar{S}_{l j}+\sum_{m, p=1}^{3} \bar{F}_{i m} \bar{C}_{m j p l}^{\mathrm{E}} \bar{F}_{k p} . \tag{5}
\end{align*}
$$

In the last step, the minor symmetry $\bar{C}_{m j n o}^{\mathrm{E}}=\bar{C}_{m j o n}^{\mathrm{E}}$ has been exploited, and $i, j, k, l=1,2,3$ above and throughout. From this, the inverse relation

$$
\begin{equation*}
\bar{C}_{i j k l}^{\mathrm{E}}=-\left(\bar{U}^{-2}\right)_{i k} \bar{S}_{l j}+\sum_{m, n=1}^{3}\left(\bar{F}^{-1}\right)_{i m} \bar{C}_{m j n l}\left(\bar{F}^{-\mathrm{T}}\right)_{n k} \tag{6}
\end{equation*}
$$

can be derived. The fact that Green's strain tensor is frame invariant, i.e., $\overline{\boldsymbol{E}}(\overline{\boldsymbol{R}} \overline{\boldsymbol{U}})=\overline{\boldsymbol{E}}(\overline{\boldsymbol{U}})$, implies that both the left hand side $\bar{C}_{i j k l}^{\mathrm{E}}=\bar{C}_{i j k l}^{\mathrm{E}}(\overline{\boldsymbol{E}})$ and the second Piola-Kirchhoff stress $\bar{S}_{l j}=\bar{S}_{l j}(\overline{\boldsymbol{E}})$ are independent of $\overline{\boldsymbol{R}}$. This is in contrast to $\bar{C}_{m j n l}=\bar{C}_{m j n l}(\overline{\boldsymbol{R}} \overline{\boldsymbol{U}})$ from which follows that

$$
\begin{equation*}
\sum_{m, n=1}^{3}\left(\bar{F}^{-1}\right)_{i m} \bar{C}_{m j n l}(\overline{\boldsymbol{R}} \overline{\boldsymbol{U}})\left(\bar{F}^{-\mathbf{T}}\right)_{n k}=\sum_{m, n=1}^{3}\left(\bar{U}^{-1}\right)_{i m} \bar{C}_{m j n l}(\overline{\boldsymbol{U}})\left(\bar{U}^{-\mathbf{\top}}\right)_{n k}, \tag{7}
\end{equation*}
$$

By contraction of the indices $i$ and $k$ with the second index of $\overline{\boldsymbol{F}}$ and the first index of $\overline{\boldsymbol{F}}^{\top}$, respectively, Equation (1) follows.

The above changes do not affect the scientific results.

## References

1. Kunc, O.; Fritzen, F. Finite Strain Homogenization Using a Reduced Basis and Efficient Sampling. Math. Comput. Appl. 2019, 24, 56. [CrossRef]
2. Bertram, A. Elasticity and Plasticity of Large Deformations; Springer: Berlin/Heidelberg, Germany, 2008. [CrossRef]
