

Correction

MDPI

Correction: Kunc, O.; Fritzen, F. Finite Strain Homogenization Using a Reduced Basis and Efficient Sampling. *Math. Comput. Appl.* 2019, 24, 56

Oliver Kunc 🗅 and Felix Fritzen *🕩

Efficient Methods for Mechanical Analysis, Institute of Applied Mechanics (CE), University of Stuttgart, 70569 Stuttgart, Germany; kunc@mechbau.uni-stuttgart.de

* Correspondence: fritzen@mechbau.uni-stuttgart.de

Received: 30 October 2019; Accepted: 5 November 2019; Published: 6 November 2019

The authors wish to make a correction to Formula (42) of the paper [1]. The correct formula reads

$$\overline{C}_{ijkl}(\overline{F}) = \overline{C}_{ijkl}(\overline{R}\,\overline{U}) = \sum_{m,n=1}^{3} \overline{R}_{im}\overline{C}_{mjnl}(\overline{U})\overline{R}_{kn} \qquad (i,j,k,l=1,2,3).$$
(1)

Correspondingly, a correction to Equations (A1)–(A4) of Appendix A of [1] is now provided. To this end, Green's strain tensor $\overline{E} = \frac{1}{2}(\overline{F}^T \overline{F} - I)$, the corresponding stored energy density function $\overline{W}^E(\overline{E}) = \overline{W}(\overline{F})$, the second Piola–Kirchhoff stress $\overline{S} = \partial \overline{W}^E / \partial \overline{E}|_{\overline{E}}$, and the corresponding stiffness tensor $\overline{\mathbb{C}}^E = \partial^2 \overline{W}^E / (\partial \overline{E})^2|_{\overline{E}}$ are introduced. Starting from the well-known relationship $\overline{P} = \overline{F}\overline{S}$ between \overline{S} and the first Piola–Kirchhoff stress $\overline{P} = \partial \overline{W} / \partial \overline{F}|_{\overline{F}}$ (see for instance [2]), we express the components of $\overline{\mathbb{C}}$ in terms of those of \overline{S} and of $\overline{\mathbb{C}}^E$:

$$\overline{C}_{ijkl} = \frac{\partial^2 \overline{W}}{\partial \overline{F}_{ij} \partial \overline{F}_{kl}} = \frac{\partial \overline{P}_{ij}}{\partial \overline{F}_{kl}} = \sum_{m=1}^3 \frac{\partial \overline{F}_{im} \overline{S}_{mj}}{\partial \overline{F}_{kl}} = \sum_{m=1}^3 \left(\delta_{ik} \delta_{lm} \overline{S}_{mj} + \overline{F}_{im} \frac{\partial \overline{S}_{mj}}{\partial \overline{F}_{kl}} \right)$$
(2)

$$=\delta_{ik}\overline{S}_{lj} + \sum_{m,n,o=1}^{3}\overline{F}_{im}\frac{\partial\overline{S}_{mj}}{\partial\overline{E}_{no}}\frac{\partial\overline{E}_{no}}{\partial\overline{F}_{kl}}$$
(3)

$$=\delta_{ik}\overline{S}_{lj} + \sum_{m,n,o=1}^{3}\overline{F}_{im}\overline{C}_{mjno}^{\mathrm{E}}\frac{\partial\overline{E}_{no}}{\partial\overline{F}_{kl}}$$
(4)

$$=\delta_{ik}\overline{S}_{lj} + \sum_{m,p=1}^{3}\overline{F}_{im}\overline{C}_{mjpl}^{\mathrm{E}}\overline{F}_{kp}.$$
(5)

In the last step, the minor symmetry $\overline{C}_{mjno}^{\text{E}} = \overline{C}_{mjon}^{\text{E}}$ has been exploited, and *i*, *j*, *k*, *l* = 1, 2, 3 above and throughout. From this, the inverse relation

$$\overline{C}_{ijkl}^{E} = -\left(\overline{U}^{-2}\right)_{ik}\overline{S}_{lj} + \sum_{m,n=1}^{3}\left(\overline{F}^{-1}\right)_{im}\overline{C}_{mjnl}\left(\overline{F}^{-\mathsf{T}}\right)_{nk}$$
(6)

can be derived. The fact that Green's strain tensor is frame invariant, i.e., $\overline{E}(\overline{R} \overline{U}) = \overline{E}(\overline{U})$, implies that both the left hand side $\overline{C}_{ijkl}^{E} = \overline{C}_{ijkl}^{E}(\overline{E})$ and the second Piola–Kirchhoff stress $\overline{S}_{lj} = \overline{S}_{lj}(\overline{E})$ are independent of \overline{R} . This is in contrast to $\overline{C}_{mjnl} = \overline{C}_{mjnl}(\overline{R} \overline{U})$ from which follows that

$$\sum_{m,n=1}^{3} \left(\overline{F}^{-1}\right)_{im} \overline{C}_{mjnl}(\overline{R}\,\overline{u}) \left(\overline{F}^{-\mathsf{T}}\right)_{nk} = \sum_{m,n=1}^{3} \left(\overline{U}^{-1}\right)_{im} \overline{C}_{mjnl}(\overline{u}) \left(\overline{U}^{-\mathsf{T}}\right)_{nk},\tag{7}$$

By contraction of the indices *i* and *k* with the second index of \overline{F} and the first index of $\overline{F}^{\mathsf{T}}$, respectively, Equation (1) follows.

The above changes do not affect the scientific results.

References

- Kunc, O.; Fritzen, F. Finite Strain Homogenization Using a Reduced Basis and Efficient Sampling. Math. Comput. Appl. 2019, 24, 56. [CrossRef]
- Bertram, A. Elasticity and Plasticity of Large Deformations; Springer: Berlin/Heidelberg, Germany, 2008. [CrossRef]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).