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Abstract: Privacy is a crucial issue for outsourcing computation, which means that clients utilize cloud
infrastructure to perform online prediction without disclosing sensitive information. Homomorphic
encryption (HE) is one of the promising cryptographic tools resolving privacy issue in this
scenario. However, a bottleneck in application of HE is relatively high computational overhead.
In this paper, we study the privacy-preserving classification problem. To this end, we propose
a novel privacy-preserved approximate classification algorithm. It exploits a set of decision trees to
reduce computational complexity during homomorphic evaluation computation formula, the time
complexity of evaluating a polynomial is degraded from O (n) to O (log n). As a result, for an MNIST
dataset, the Micro- f 1 score of the proposed algorithm is 0.882, compared with 0.912 of the standard
method. For the Credit dataset, the algorithm achieves 0.601 compared with 0.613 of the method.
These results show that our algorithm is feasible and practical in real world problems.

Keywords: privacy; homomorphic encryption; machine learning; gradient boosting decision tree

1. Introduction

Machine learning is widely used for a variety of problems due to its attractive ability resolving
real world problems. Among various machine learning techniques, Gradient Boosting Decision Tree
(GBDT) is commonly used in machine learning task because of its efficiency and accuracy. It can
be applied in many machine learning tasks such as multi-class classification [1], regression [2], and
learning to rank [3]. Machine Learning as a Service (MLaaS) is a novel paradigm in which computing
service providers make online predictions for clients.

However, privacy is an important issue in this paradigm. MLaaS requires trust between service
provider and client. However, this demand is not always satisfied in real world problems. Clients may
be unwilling to disclose their sensitive information, for example, assisting in medical diagnoses or
detecting fraud from personal finance data. Several methodologies for privacy preserving are used
such as anonymization, perturbation, randomization, and condensation. For more details, see [4].

Homomorphic Encryption (HE) is an appropriate cryptographic tool resolving privacy issues
in MLaaS. HE allows computation on encrypted data without decrypt it. Due to this attractive
functionality, HE has received much attention recently for preserving sensitive information
(e.g., financial data). Although there also exist other cryptographic tools such as secure multiparty
computation (MPC), HE has relative advantages compared to MPC since it supports no-interactive
operation and fits perfectly in matrix and vector operations [5].

However, a major bottleneck of HE in applications is relatively huge computational overhead.
In terms of HE, a computation is a function seen as a circuit. Therefore, the complexity for
homomorphic computation is measured by the depth of the circuit. Several works are proposed
to reduce computational overhead. For example, Cheon et al. [5] proposed an ensemble method
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for logistic regreesion based on HE, which resulted in substantial improvement on the performance
of logistic regression. Zhang et al. [6] proposed GELU-Net, which was a novel privacy-preserving
architecture where clients can collaboratively train a deep neural network model. Their experiments
demonstrated the stability in training and time speed-up without accuracy loss. However, huge
computational overhead is an inherent shortcoming of those methods. The depth of the circuit
is the most significant parameter of HE when computing a circuit for machine learning. However, most
commonly used methods for evaluating a decision tree in a privacy-preserved constraint are linear
algorithms. In particular, the depth of a circuit for machine learning grows linearly to the number
of tree nodes. In other words, there exists a limitation on reducing the computational overhead based
on HE in privacy preserving machine learning using a decision tree algorithm. To this end, we need
to develop a new method, which takes full advantage of the tree algorithms’ ability and reduces
the computational cost of the homomorphic evaluation of the circuit.

Due to privacy and efficiency concerns, we propose a novel HE-based approximate GBDT
algorithm based on the following two observations:

• When we ensemble a set of decision trees to produce online prediction, we obtain a linear
algorithm but shallower circuit depth. In other words, a GBDT algorithm achieves more accurate
prediction but much smaller computational overhead compared with a traditional decision
tree algorithm.

• Due to many machine learning tasks being based on datasets with error, an approximate GBDT
algorithm also works in real world problems if we can carefully investigate the error bound
of an algorithm,

which degrades the depth of the circuit via ensembling a set of decision trees. As far as we know, this
work is the first exploration to utilize the nature of the ensemble in GBDT to improve computational
efficiency. As a side contribution, we also increase the stability of classification on encrypted data.
Our contributions are summarized as follows:

• Chebyshev approximation of the parameterized sigmoid function. We propose a new algorithm
called homomorphic approximate GBDT, which enables performing approximate classification
on encrypted data using Chebyshev approximation of the parameterized sigmoid function.

• Significant reduction in computation time. We propose an improved strategy for evaluating
polynomials corresponding to the decision tree. Our novel method requires O (log n)
homomorphic multiplication to compute an approximate output of a decision tree, compared
to O (n) of the naive method, where n is denoted as the number of attribute of clients’ data.

• Vertical packing. In contrast to a horizontal packing technique that packs several data instances
into a single plaintext, we apply a vertical packing technique to reduce space overhead
substantially. We argue that a vertical packing technique is more scalable and feasible than
horizontal packing in practice.

The paper is organized as follows. Section 2 introduces some backgrounds on homomorphic
encryption and a GBDT algorithm. Section 3 explains how to homomorphically evaluate a pre-trained
decision tree and provides an optimization algorithm to reduce the computational complexity.
The homomorphic approximate GBDT algorithm is presented in Section 4. We perform experiments
and discussion in Section 5. We evaluate our method and give some comprehensive robustness tests
about it. We conclude the paper and identify several future works in Section 6.

2. Preliminaries

The rest of this section introduces some basic background that is useful in the rest of paper.
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2.1. Problem Statement

In this work, we explore a privacy preserving prediction problem illustrated in Figure 1. It is made
up of two parties, and the whole process can be described as follows: firstly, clients (e.g., institution
or individuals) encrypt their sensitive data and send it to a computing service provider. A service
provider (e.g., Alibaba, Tencent, or Amazon) makes predictions on encrypted data using a pre-trained
machine learning model.

Figure 1. Privacy-preserving scenario.

2.2. Error Bound of Multivariate Function

For a multivariate function G (a1, a2, . . . , an), we denote the approximate value of ai as ãi,
the approximate value of G as G̃ = G̃(ã1, ã2 . . . , ãn). We use e (G) = G− G̃ to indicate absolute error
between G and G̃, ε(G) =

e(G)

G̃
indicate the relative error between G and G̃, respectively. According

to taylor theorem, it is easy to see that

e (G) = G− G̃ =
n

∑
i=1

∂G
∂ai

(ai − ãi) + R, (1)

where R = 1
2!

(
n
∑

i=1
(a− ãi)

∂
∂ai

)2
G(ξ1, · · · , ξn) is the truncation error, and ξi is a real number between

ai and ãi. Hence,

Lemma 1. (Absolute Error Bound) [7] e(G), the absolute error bound of G̃, satisfies

|e(G)| =
∣∣∣G− G̃

∣∣∣ 6 n

∑
i=1

∣∣∣∣∂G
∂ai

∣∣∣∣ · |ai − ãi|

=
n

∑
i=1

∣∣∣∣∂G
∂ai

∣∣∣∣ · δ (ai) ,
(2)

where δ (ai) > |e (ai)| is the absolute error bound of ãi.

Lemma 2. (Relative Error Bound) [7] ε (G), the relative error bound of G̃, satisties

|ε (G)| = |e (G)|∣∣∣G̃∣∣∣ 6
n

∑
i=1

∣∣∣∣ ãi

G̃

∣∣∣∣ · ∣∣∣∣∂G
∂ai

∣∣∣∣ · ∆ (ai) , (3)

where ∆ (ai) > |ε (ai)| is the relative error bound of ãi.

Given a data instance x = (x1, x2, · · · , xn), the output of GBDT can be treated as a multivariate
function with respect to x1, x2, · · · , xn. Thus, the error bound of the proposed approximate algorithm
can be established by Lemma 1 and Lemma 2. It is demonstrated in Section 4 for more details.
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2.3. Homomorphic Encryption

Homomorphic encryption is a powerful cryptographic tool, which can solve security and privacy
issues in outsourcing computation. The first construction of fully homomorphic encryption is due
to Gentry’s excellent work [8] in 2009. In 2017, Chen et al. [9] proposed a novel scheme called
Cheon–Kim–Kim–Song (CKKS) scheme which supports arithmetics of approximate numbers. Let
m, ct, sk represent the CKKS plaintext, ciphertext, and secret key, respectively. Then, the decryption
algorithm is done as

Dec (sk, ct) = m + e ≈ m, (4)

where e is a negligible error. This approximate concept of CKKS makes sense due to most of the data
in real world applications being noisiness. In this setting, the CKKS scheme works perfectly
in practice [5]. Using the CKKS scheme, many works addressed real world problems. For example,
Cheon et al. [5] proposed an ensemble method for logistic regression based on the CKKS scheme,
Zhang et al. [10] presented a practical solution for secure outsourced matrix computation and then
provided a novel framework for secure evaluation of encrypted neural networks on encrypted data.
All of these works demonstrated the applicability of the CKKS scheme. Based on the advantages
explained above, the CKKS scheme is the underlying encryption scheme of the presented algorithm
in the paper. The brief description of the CKKS scheme is as follows:

CKKS homomorphic encryption scheme

R is the ring Z [X] /
(
XN + 1

)
of integer polynomials modulo XN + 1. We use Rq to denote

Z [X] /
(
XN + 1

)
with integer coefficients modulo q. We use [x]q to denote x mod q. The inner

product between vectors a and b is denoted by 〈a,b〉.
Keygen

(
1λ
)

: Given the security parameter λ, select integer p, L, set q` = p`, where ` = 1, 2, · · · , L.
Generate sk, pk, evk and then output it.

Encrypt (m ∈ R): Let v $← χenc and e0, e1
$← χerr. Output [v · pk + (m + e0, e1)]qL

∈ R2
qL

.

Decrypt
(

ct ∈ R2
q` ; sk

)
: Output m = [〈ct, sk〉]q` .

Add
(

ct1 ∈ R2
q` ,ct2 ∈ R2

q`

)
: Output ctadd = [ct1 + ct2]q` .

Mult
(

ct1 ∈ R2
q` , ct2 ∈ R2

q`

)
: Let ct1 = (a1, b1) , ct2 = (a2, b2), compute (d0, d1, d2) =

[(a1a2, a1b2 + a2b1, b1b2)]q` , Output ctmult =
[
(d0, d1) +

⌊
q−1

L · d2 · evk
⌉]

q`
.

CMult
(

a ∈ R, ct ∈ R2
q`

)
: Output ctcmult =

[
(d0, d1) +

⌊
q−1

L · d2 · evk
⌉]

q`
.

2.4. Gradient Boosting Decision Tree

Gradient Boosting Decision Tree (GBDT) is an ensemble method of decision trees, which is trained
iteration by iteration [11]. It learns a decision tree by fitting the negative gradients in each iteration [12].
Note that this paper only focues on the inference process of GBDT, so we omit GBDT training algorithm.
The significant part in GBDT lies in the evaluation of decision trees, which is the most time-consuming
part in the whole process. Suppose we have a pre-trained decision tree. Given a unlabeled data instance
x = (x1, x2, · · · , xn), where xi is defined as the i-th attribute in x, we compare the attribute xi with the
threshold si allocated to internal node. The comparison result is indicated by a boolean variable

ai = sign (si − xi) =

{
1 if si > xi

0 otherwise
. (5)

Then, the value of ai determines whether x is assigned to the left subtree or right subtree. As a toy
example, suppose we have a pre-trained decision tree as illustrated in Figure 2. For a unlabeled data
instance x = (x1, x2) = (0.7, 0.4), the evaluation process is as following: because x2 = 0.4 < 0.6 is
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satisfied then a2 = sign (0.6− 0.4) = 1, hence x goes to left branch of root node. Since x1 = 0.7 < 0.3
is not satisfied, so a1 = sign (0.3− 0.7) = 0, then x is assigned to label B which is the output
of decision tree.

Figure 2. A toy example for evaluating a decision tree.

As all known HE schemes only support evaluating a polynomial homomorphically, we have
to transform sign function into a polynomial. How to approximate a sign function in the context of
HE is elaborated on in Section 4.

3. Computational Polynomial

Without loss of generality, we call the computational polynomial of a decision tree
the computational model of the tree. As GBDT is an ensemble model of decision trees,
the computational polynomial of GBDT is the mean value of decision trees’ output. In the rest
of the section, we firstly demonstrate how to transform a pre-trained decision tree to the corresponding
polynomials. In addition, then we optimize the transform process. After that, we propose a GBDT
computational polynomial.

3.1. Decision Tree Polynomial

In a binary tree, we define the internal node as the nodes that both have left children and right
children. A binary tree is a true binary tree if and only if it only contains internal nodes and leaf nodes.
Obviously, if n is the number of internal nodes in a true binary tree, then the number of leaf of the tree
is n + 1. Theorem 1 guarantees existence and uniqueness of polynomial form of a given decision tree.

Theorem 1. Given a decision tree T that contains n number of internal nodes, then there exists only one
polynomial P (T) that can be represented as

P (T) =

{
L0, if n = 0,

a1·P
(
Tleft
)

,+ (1− a1) · P
(
Tright

)
otherwise,

(6)

where a1 =

{
1, if A1 6 s1

0, otherwise
, and L0 is the allocated label of root node.

Proof. It is obvious that n > 0. If n = 0, the decision tree only contains root node, then all data
instances are assigned to root nodes. Hence, P (T) = L0 holds. If n > 0, then T contains left subtree
Tleft and right subtree Tright. As one data instance must be allocated to only one leaf node, then the label

of current instance falls in Tleft or Tright, so P (T) = a1 · P (Tleft) + (1− a1) · P
(

Tright

)
is satisfied.
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For simplicity, we denote P (T) as g (a1, a2, · · · , an), which is a multivariate function with
respect to x1, x2, · · · , xn. As a toy example, Figure 3 elaborates on how to transform a decision
tree to a polynomial.

Figure 3. Transformation between Decision Tree and Polynomial.

Using Theorem 1, a decision tree that contained n internal nodes is evaluated by
P (T) = a1 · P (Tleft) + (1− a1) · P

(
Tright

)
. The number of arithmetic operation is about n additions,

n − 1 multiplication, and n + 1 constant multiplications. Since multiplications need to perform
key-switching procedure and hence is time-consuming compared to addition and constant
multiplication. For this reason, we say that the complexity of Theorem 1 is O (n). Since

P (T) = a1 · P (Tleft) + (1− a1) · P
(

Tright

)
= a1 ·

(
P (Tleft)− P

(
Tright

))
+ P

(
Tright

)
,

(7)

then the computational cost of decision tree evaluation is about n− 1 additions, log n multiplications
and ≈ n

2 constant multiplications. Thus, the complexity of Theorem 1 is optimized to O (log n).

3.2. GBDT Computational Polynomial

Using the decision tree computational polynomial demonstrated above, it is straightforward

to build a GBDT computational polynomial. Due to G =
M
∑

m=1
γm · Tm, firstly, we can transform

each decision tree Tm into the corresponding polynomial gm (a1, a2, · · · , an); then, we average every

polynomial gm and then output the expected G =
M
∑

m=1
γm · gm.

4. Homomorphic Approximate GBDT Prediction

In this section, we firstly propose an algorithm for approximately evaluating a pre-trained decision
tree homomorphically. Then, we present security analysis and error analysis of the proposed algorithm.
In the end of the section, we propose a privacy-preserved approximate GBDT algorithm based on HE,
which can be used in classification tasks on encrypted data.

4.1. Homomorphic Approximate GBDT Algorithm

The main cost in GBDT lies in running a decision tree algorithm for classification, and the critical
part in a decision tree is comparison operation. The comparison operation is to compare the value
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of attribute with the threshold in current internal node. There exists two paradigms for comparison:
exact comparison and approximate comparison. For exact comparison, we can use several HE schemes
such as Brakerski–Gentry–Vaikuntanathan (BGV) [13], Brakerski–Fan–Vercauteren (BFV) [14], or
Gentry–Sahai–Waters (GSW) [15]. However, we have to point out that, in the setting of machine
learning tasks, training data are noisy, so the trained model based on these data does not perfectly
reflect the pattern. Thus, the exact comparison paradigm is not robustness enough. Fortunately,
it is a judicious way to increase the robustness of the system with the help of an approximate
comparison paradigm.

To realize approximate comparison, we have to approximate sign function. Since sign function is
not continued and smooth, we substitute it by a parameterized sigmoid function. It is formulated as

σ (x; t) =
1

1 + exp (−t · x) , (8)

where t is called a steep factor that controls the gap between sign function and parameterized sigmoid
function. The larger t is, the more precise an approximation function we get. The pattern is illustrated
in Figure 4a. Without loss of generality, we scale x to interval [−1, 1]. This scale operation is correct
because, in classification tasks, we do not need to maintain the true values, but maintain the order
between these values. In the paper, we use Chebyshev polynomials to approximate sign function.
Figure 4b shows the approximate curves using Chebeshev polynomials. We can see that it is a very
perfect curve when degree = 24.

(a)

(b)

Figure 4. Parameterized sigmoid function and its approximation. (a) Parameterized sigmoid function;
(b) Chebyshev approximation.
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4.2. Security Analysis

Suppose that the cloud is honest and curious. If one can ensure the IND-CPA security
of an underlying homomorphic encryption scheme (i.e., BGV scheme), then ciphertexts of any two
plaintexts are computationally indistinguishable. The cloud learns nothing from the encrypted data
as all computations are performed over encryption. Then, the novel algorithm we proposed preserves
the confidentiality of data.

4.3. The Error Bound of a Decision Tree

Now, we focus on the partial derivative ai, which is an internal node in Tg. From Figure 5,
we observe that

∂g
∂ai

=
(

P (Tleft)− P
(

Tright

))
∏
j∈P

ãj, (9)

where ai =

{
1, if Ai 6 si,

0, otherwise,
and Tleft, Tright is the left subtree and right subtree of ai, respectively.

P is the ensemble of all ancestor nodes from ai to root node in order. With maximum–minimum
normalization, we can map a label attached each leaf (which is real number) into interval [0, 1]. Since
0 ≤ P (Tleft) , P

(
Tright

)
, ãj ≤ 1, hence

2
∂g
∂ai

& =
(

P (Tleft)− P
(

Tright

))
∏
j∈P

ãj& 6 min (ãk)& 6 ã1, (10)

where ãk is a certain node in a path passed through ai.
Now, we know how to express partial derivatives of each variable ai. Based on it, we derive

the prediction error bound of tree T. Suppose ∆ = ∆ (ai) is the relative error bound of internal node ai
in tree T. With Lemma 2, we can see that g̃, the final prediction of tree, T, satisfies

|ε(g)| 6
n

∑
i=1

∣∣∣∣ ãi
g̃

∣∣∣∣ · ∣∣∣∣ ∂g
∂ai

∣∣∣∣ · ∆ (ai)

=
n

∑
i=1

∣∣∣∣ ãi
g̃

∣∣∣∣ · (P (gleft)− P
(

gright

))
∏
j∈P

ãj · ∆

6
n

∑
i=1

∣∣∣∣ ãi
g̃

∣∣∣∣ · ã1 · ∆ = ã1 · ∆ ·
1
|g̃|

n

∑
i=1
|ãi|

6 ã1 · ∆ ·
n
|g̃|

6 ∆ · n
|g̃| .

(11)

Consequently, the approximate error is dominated by the following three factors:

• ∆: The lower the error we want, the higher degree polynomial we have to evaluate, which leads
to heavy computational time. In Section 5, we elaborate on how ∆ affects the performance.

• n: It is a hyperparameter controlled by the service provider. A large n leads to an outstanding
model but is at risk of overfitting, and a small n leads to lower approximate error, which is what
we want. In order to obtain lower approximate error g̃, it is a judicious way to increase the number
of decision trees in GBDT. In this manner, we get an outstanding model that is also a lower
approximate error model.

• g̃: Given this parameter, we can evaluate the error bound of our approximate prediction. Note that
0 6 g̃ 6 1.
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Figure 5. Partial derivative of an internal node.

4.4. The Error Bound of GBDT

As the GBDT model is an additive model of decision trees, it is easy to see that the error bound
of approximate GBDT G̃ is the average of decision trees error bound. To be precise, we denote a GBDT
model as G, which consists of M decision trees denoted T1, T2, · · · , TM. We define the prediction of Tm

as gm, approximate prediction of decision tree as g̃m output from Algorithm 1. Then,

|ε (G)| = ε

(
M

∑
m=1

γm · g̃m

)
=

M

∑
m=1

γm · ε (g̃i)

6
M

∑
m=1

∆ · γm ·
nm

|g̃m|
.

(12)

Algorithm 1: Homo Approx. GBDT Inference

Input: {(γm, Tm)}M
1 , {Ct (Ai)}I

1

Output: Ct
(

G̃M

)
1 Convert T1 to its corresponding approximate polynomial, denoted as g̃1

2 Ct
(

G̃1

)
← CMult (Ct (g̃1) ; γ1)

3 for m = 2, 3, · · · , M do
4 Convert Tm to its corresponding approximate polynomial, denoted as g̃m

5 Ct (g̃m)← g̃m

(
{Ct (Ai)}I

1

)
6 Ct

(
G̃m

)
← Add

(
Ct
(

G̃m−1

)
, CMult (Ct (g̃m) ; γm)

)
7 Return Ct

(
G̃M

)
5. Experiments and Discussion

5.1. Experimental Settings

All experiments were implemented in C++ on Linux with AMD A6-4400M at a 2.7 GHz Processor
(Advanced Micro Devices Company, Santa Clara, California, USA). The code is based on the HEAAN
library [16], which is an open-source software library that implements the CKKS algorithm.
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We chose MNIST [17] and the Credit [18] dataset for our experiments. These two datasets are
widely used in many machine learning classification tasks. The MNIST dataset includes handwritten
digits images ranging from 0 to 9. Each image is 28× 28 pixels. The MNIST dataset has a training set
of 60,000 samples, and a test set of 10,000 samples. The Credit dataset is a commonly used dataset for
binary classification tasks. It is comprised of 28,000 samples for training and 2000 samples for tests.
Each sample in the Credit dataset contains 23 attributes and one label.

In order to make a meaningful comparison of the performance of the different methods, we chose
a micro f 1-score as the performance measure. Suppose we have an n different class denoted as
1, 2, · · · , n. For the i-th class, precisionmicro is computed as

Precisionmicro =
∑n

i=1 TPi

∑n
i=1 TPi + FPi

, (13)

and recallmicro is computed as

Recallmicro =
∑n

i=1 TPi

∑n
i=1 TPi + FNi

, (14)

where TPi, FPi, and FNi indicate true positive, false positive, and false negative with respect to i-th,
respectively. Then, micro f 1-score is computed as follows:

Micro− f 1 = 2 · Recallmicro × Precisionmicro
Recallmicro + Precisionmicro

. (15)

Next, we provide the detailed parameters of GBDT algorithm used in our experiments.
The problem that this paper study is based on an assumption that the service provider has already
been training a GBDT model. Hence, we firstly run an GBDT algorithm for obtaining a pre-trained
model that achieves well performance. Without a loss of generality, the parameters of the GBDT
algorithm in our experiments are as follows. We chose 100 decision trees as base learners after 5-fold
cross validation. For each decision tree, we set the maximum depth to 7. The learning rate is denoted
by γm, which shrinks the contribution of each tree in each boosting stage, is set by 0.1. The Micro− f 1
score of this parameter setting gets 0.912 on the MNIST dataset. For the Credit dataset, we train
300 trees as base learners and set the maximum depth of each tree as 3 and finally get a GBDT model
with Micro− f 1 = 0.613 on the Credit dataset. The detailed parameters of the GBDT algorithm are
summarized on Table 1.

For security concern, we set λ = 80, p = 2, L = 2. Random distribution χenc, χerr is the same as [9].
The approximate error with respect to the sign function, ∆, is 0.001, 0.01, 0.1, 0.3, 0.5, respectively.

Table 1. The parameters of the GBDT algorithm.

Datasets Parameters Performance

Learning Rate # of Base Learner Max Depth Micro-F1 Score

MNIST 0.1 100 7 0.912
Credit 0.1 300 3 0.613

5.2. Packing Technique

A Packing Technique is a method for the acceleration of the homomorphic evaluation.
More specifically, for the user’s sensitive dataset X ∈ Rm×n, each element in X is encrypted
conventionally as an individual ciphertext. However, this method is less efficient. Packing is
in general associated with the concept of batching a Single Instruction on Multiple Datasets (SIMD) [19].
Consequently, computation can be executed on each independent plaintext in a single pass.
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Following the SIMD paradigm, each attribute in the same data instance can be packed as a single
plaintext. Therefore, each data instance is encrypted as one ciphertext. The method is called
horizontal packing in the paper. In this manner, we can see that the number of ciphertexts is the same
as the amount of data instances. When the amount of a user’s data is huge, the horizontal packing
method has less feasibility and scalability. For instance, the Credits dataset, which is about 2.3 MB,
consists of 30,000 samples. Using horizontal packing, we have 30,000 ciphertexts. For each sample,
there are 23 attributes and one label, and hence it has 24 variables in each data instance. We set λ

= 280, q = 2182, N = 212; then, the size of a ciphertext is 0.355 MB. In total, the size of encrypted
Credits dataset is 30, 000× 0.355 MB = 10.4 GB. Thus, the expansion factor is 10.4 GB

2.3 MB = 4630, which
is impractical.

We observed that there are lots of unused slots in ciphertext. In other words, it only uses 24
212 = 0.5%

slots. Inspired by [4], we use a vertical packing scheme to reduce space overhead and communication
complexity significantly. A vertical packing scheme packs the same attribute in the different data
instances to a single plaintext. Then, each attribute in several data instances is encrypted as a ciphertext.
Therefore, the number of ciphertexts is the same as the amount of attributes. Compared to the
horizontal packing method, the vertical packing scheme is more feasible and scalable since the amount
of ciphertexts is independent of data size. Since we have 213 = 4096 slots, a plaintext, which just
contains one attribute, can be packed by 4096 data instances. Thus, for one attribute in the Credits
dataset, we use

⌈ 30000
4096

⌉
= 8 ciphertexts. For 24 attributes in the entire dataset, we use 24× 8 = 192

ciphertexts. Finally, the space overhead of the encrypted dataset is 192× 0.355 MB = 68.16 MB. We can
see that the expansion factor is 68.16 MB

2.3 MB = 30, which is significantly smaller than the horizontal packing
method. In our experiments, we use a vertical packing technique.

5.3. Classification Performance on Encrypted Data

In order to analyze the influence of approximate GBDT based on HE, we first compare
the performance of our algorithm to that GBDT algorithm on unencrypted data. As stated in Section 4.3,
∆ is an important parameter in our algorithm. If ∆ is too large, the output of our algorithm is not correct.
In other words, the error bound of our algorithm can not converge if ∆ is too large. We experiment
several times and finally chose ∆ = 0.001, 0.01, 0.1, 0.3, 0.5. We argue that this choice makes sense, since
it is based on the following two facts: first, if ∆ is greater than 0.5, randomly choosing a classification
result is better than running a privacy-preserved algorithm on the service side. Second, if ∆ is
too small (e.g., smaller than 0.001), the service provider must suffer much higher computational
overhead for running the algorithm. A single experiment contains randomness. Consequently, we ran
the experiment 10 times and plotted the median of results in Figure 6.

As shown in Table 2, a pre-trained GBDT model on MNIST achieves Micro f1 = 0.912.
After that, we transformed the pre-trained model to an approximate GBDT model based on the
method demonstrated on Section 4. We experimentally compared the performance of approximate
GBDT for various choices of t and degree and finally selected t = 128, degree = 24. We can
see that, when ∆ = 0.01, 0.1, 0.3, the output of approximate GBDT is 0.882, 0.876, and 0.843,
respectively, while the benchmark is 0.912. Consequently, it is acceptable in our experiment when
∆ ≤ 0.3. However, ∆ ≥ 0.3 is not a good choice in practice because the Micro- f1 score is
getting much smaller compared with the performance of GBDT on unencrypted data. The results
show that the approximate approach proposed in this paper is feasible and robust when we
choose some appropriate parameters. For the Credit dataset, we can check that approximate
error rate = 2.0%, 2.6%, 9.5% when ∆ = 0.001, 0.01, 0.1, respectively. Unfortunately, the approximate
error ratio dropped dramatically to 0.495 while ∆ = 0.3. The reason is that, for the Credit dataset,
we have only 23 attributes, while we have 784 = 28× 28 attributes in the MNIST dataset. As stated in
Section 4.3, the parameter n controls the error bound of the output. A too much large n leads to bad
performance (e.g., Micro- f1 = 0.495 in this case) and an appropriate n (e.g., n = 784) achieves good
performance (e.g., approximate error rate less than 9%). The experiments on the Credit dataset told
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us that a dataset containing hundreds of attributes is an ideal dataset while using an approximated
machine learning manner.

Table 2. Classification performance for various ∆.

Setting-A MNIST Credits

∆
Micro F1 Score Micro F1 Score

Unencrypted Encrypted Gap Err. Rate Unencrypted Encrypted Gap Err. Rate

0.001 0.912 0.882 0.030 3.3% 0.613 0.601 0.012 2.0%
0.01 0.912 0.876 0.036 3.9% 0.613 0.597 0.016 2.6%
0.1 0.912 0.843 0.069 7.6% 0.613 0.554 0.058 9.5%
0.3 0.912 0.829 0.083 9.1% 0.613 0.495 0.118 19.2%
0.5 0.912 0.568 0.344 37.7% 0.613 0.218 0.395 64.4%

(a)

(b)

Figure 6. Performance comparison between non-encrypted and encrypted mode. (a) Performance
on the MNIST dataset; (b) performance on the Credit dataset.

6. Conclusions and Future Work

In this paper, we proposed an approximate-based privacy preserving machine learning algorithm.
It based on homomorphic encryption, which is a promising cryptographic tool resolving privacy issues.
The proposed algorithm reduced the time complexity from O (n) to O (log n). The proposed algorithm
exploited the GBDT algorithm and CKKS schemes. Due to polynomials being an HE-friendly form
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for homomorphic computation, we presented a method for how to transform a pre-trained decision
tree to a polynomial. In addition, we gave a theoretical analysis on the existence and uniqueness
of a polynomial form of a pre-trained decision tree. For efficiency concerns, we also proposed a refined
version of a transforming procedure. Thus, the runtime complexity is optimized from O (n) to O (log n).
Secondly, since the polynomial approximation to the sign function and approximate computation
of CKKS produces a small amount of errors, the theoretical analysis on the convergence of our method
was demonstrated in Section 4. Then, we conducted experiments on public datasets in Section 5.
From our experiments, we found that the setting of ∆ ≤ 0.3 produces a relatively small error rate.
Specifically, for the MNIST dataset, the Micro- f1 score is 0.882 for encrypted data while Micro- f1 score
is 0.912 for unencrypted data. In addition, the error rate is 3.3%, which relatively small. Even if ∆ = 0.3,
the error rate of the proposed algorithm is 9.1%, which is still bounded by the theoretical analysis
on Section 4. For the Credit dataset, the Micro- f1 score is 0.601 for encrypted data while Micro- f1 score
is 0.613 for unencrypted data. The error rate for Credit dataset is 2.0%, which is tolerable in practice.

The proposed algorithm is an approximate-based algorithm. However, there is no doubt that the
proposed algorithm can be applied to other machine learning algorithms such as bagging (e.g., random
forests) or boosting algorithms (e.g., Adaboost). Firstly, the ensemble algorithm (e.g., bagging or
boosting algorithm) in machine learning using HE can significantly reduce the depth of the circuit.
Compared with the non-ensemble algorithm, the HE plus ensemble algorithm is a promising solution
resolving privacy issues. Secondly, it is feasible that we do approximate computation if we want to
preserve the privacy information of user data. However, at the same time, we have to carefully study
the approximate errors that may produce impractical results. However, the experiments in Section 5
do not exactly fit into our theoretical analysis in Section 4 because the upper bounds of approximate
error are not precise enough. Although we have carefully studied the error bound, this is not enough.
A better method for approximating the sign function may refine the error bound and finally produce
a better algorithm. From our experiment results, we can see that the proposed algorithm works very
well on datasets containing hundreds of attributes (e.g., MNIST dataset) but not perfectly on only
a few attributes. Besides good performance of the proposed algorithm on the classification problems,
generalization of the proposed algorithm would be an interesting future work for our research.
In addition, finding an appropriate parameter setting would be an interesting follow-up study.
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