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Abstract: An efficient overlapping multi-domain spectral method is used in the analysis of conjugate
problems of heat conduction in solid walls coupled with laminar magnetohydrodynamic (MHD) free
convective boundary layer flow of copper (Cu) water and silver (Ag) water nanofluids over vertical
and horizontal flat plates. The combined effects of heat generation and thermal radiation on the
flow has been analyzed by imposing a magnetic field along the direction of the flow to control the
motion of electrically conducting fluid in nanoscale systems. We have assumed that the nanoparticle
volume fraction at the wall may be actively controlled. The dimensionless flow equations are solved
numerically using an overlapping multi-domain bivariate spectral quasilinearisation method. The
effects of relevant parameters on the fluid properties are shown graphically and discussed in detail.
Furthermore, the variations of the skin friction coefficient, surface temperature and the rate of heat
transfer are shown in graphs and tables. The findings show that the surface temperature is enhanced
due to the presence of nanoparticles in the base fluid and the inclusion of the thermal radiation, heat
generation and transverse magnetic field in the system. An increase in the nanoparticle volume
fraction, heat generation, thermal radiation, and magnetic field parameter enhances the nanofluid
velocity and temperature while reducing the heat transfer rate. The results also indicate that the
Ag–water nanofluid has higher skin friction and surface temperature than the Cu–water nanofluid,
while the opposite behaviour is observed in the case of the rate of heat transfer. The computed
numerical results are compared with previously published results and found to be in good agreement.

Keywords: multi-domain overlapping technique; bivariate spectral quasilinearisation method;
conjugate heat transfer; MHD free convection; radiation; heat generation; nanofluid; vertical and
horizontal flat plates

1. Introduction

Conjugate heat transfer (CHT) is the interaction between the conduction and the buoyancy
forced flow of fluid along a solid surface. In numerous applications, the effect of conduction within
the solid wall is significant and thus must be taken into account. Such applications include heat
exchangers, heaters, nuclear reactors, and pipe insulation systems. In these applications, the analysis
of CHT mechanisms, the coupling of the conduction in the solid body and the convection in the
fluid surrounding is important [1]. CHT problems, in which the coupled heat transfer processes
between conduction and convection mechanisms are considered simultaneously, have been studied
by several researchers in the case of Newtonian fluids. For example, Miyamoto et al. [2] reviewed
the early theoretical and experimental work of conjugate free convection including the methods and
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the principal results in the previously obtained solutions of conjugate problems. Miyamoto et al. [2]
considered CHT problems of free convection from a vertical plate with a uniform temperature or a
uniform heat flux on the outside surface of the plate. Sparrow and Chyu [3] studied CHT problems
for a vertical fin with forced convection. Merkin and Pop [4] analyzed CHT over a vertical flat plate
using an efficient finite-difference scheme. Pop et al. [5] presented a detailed numerical study of the
conjugate mixed convection flow along a vertical flat plate. Luna et al. [6] investigated CHT across a
thin horizontal wall separating two fluids at different temperatures numerically and asymptotically.
Vasquez and Bula [7] studied the CHT process in cooling a horizontal plate in a steady state condition.
Hajmohammadi and Nourazar [8] investigated conjugate forced convection heat transfer from a good
conducting horizontal plate with temperature-dependent thermal conductivity. The horizontal plate
was heated with uniform heat flux at the lower surface and cooled at the upper surface under laminar
forced convection flow. Findings showed that, for a good conducting plate with a finite thickness,
the distribution of the conjugate heat flux at the upper surface is significantly affected by the plate
thickness. Yu and Lin [9] analyzed conjugate free convection over a vertical and horizontal plate
using Keller’s finite-difference method. They proposed the new conjugate parameters and novel
dimensionless coordinates to solve the conjugate free convection problem on vertical and horizontal
plates. Hsiao [10] analysed the conjugate problems of conduction in solid and free convection in fluid
flow using a novel improved formula. The flow equations were solved numerically using the finite
difference, Runge–Kutta and Shooting method.

Many studies have been performed on magnetic field and heat generation effects on
magnetohydrodynamic (MHD)-conjugate heat transfer. Azim and Chowdhury [11] investigated
MHD-conjugate free convection from an isothermal horizontal circular cylinder with Joule heating
and heat generation in the presence of a magnetic field. Azim et al. [12] studied the problem of
steady CHT through an electrically-conducting fluid for a vertical flat plate with a transverse uniform
magnetic field. Kaya [13] investigated mixed convection heat transfer about a thin vertical plate with
magneto and CHT effects in a porous medium. Kaya [14] studied the effect of CHT on MHD mixed
convection about a vertical slender hollow cylinder. Mamun et al. [15] studied the effects of conduction
and viscous dissipation on natural convection flow of an incompressible, viscous and electrically
conducting fluid with a transverse magnetic field. Mamun et al. [16] investigated the magnetic field,
viscous dissipation and heat generation effects on natural convection flow of incompressible, viscous
and electrically conducting fluid along a vertical flat plate with conduction. Hosain and Azim [17]
studied the effects of viscous dissipation and heat generation on MHD conjugate free convection flow
from an isothermal horizontal circular cylinder when the magnetic field was applied.

In the studies mentioned above, the fluid was assumed to be regular. However, traditional fluids
such as water, oil and ethylene glycol might not have enough thermal conductivity to provide the
desired efficiency. A good way to overcome this limitation is to add some solid nanoparticles with high
thermal conductivity to the fluid. The resulting fluid is a suspension of the solid nanoparticles in the
base fluid, which is called nanofluid. The thermal conductivities of nanofluids are believed to be greater
than those of the base fluid due to the high thermal conductivity of the nanoparticles. Numerous
investigations have been done on the effect of nanoparticles on thermal performance. For example,
Choi et al. [18] experimentally studied the effective thermal conductivity of a nano-solid-liquid
mixture. Their results revealed that the dispersion of a small amount (<1% by volume) of carbon
nanotubes in a liquid increases its thermal conductivity remarkably (nearly 200%). Nanofluids have
many applications in heat transfer such as microelectronics, fuel cells, Pharmaceutical processes,
Hybrid-powered engines, engine cooling vehicles, domestic refrigerator, heat exchanger, nuclear
reactor coolant, space technology, and boiler flue gas temperature reduction. Nanoparticles can exist
in a variety of types such as metals, metal oxides, carbides, and carbon. The most common types of
nanofluids available commercially include Aluminium oxide (Al2O3), Titanium oxide (TiO2), Copper
(Cu), and Silver (Ag)–water nanofluid [19].
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The study of CHT in nanofluids has attracted the interest of many researchers. Jafarian et al. [20]
studied CHT in MHD mixed convective flows of nanofluid about a vertical slender hollow Cylinder
embedded in a porous medium. Nimmagadda and Venkatasubbaiah [21] analyzed CHT in a
micro-channel using novel hybrid nanofluids (Al2O3 + Ag/Water). Patrulescu and Grosan [22] studied
CHT in a vertical channel filled with a nanofluid adjacent to a heat generating solid domain. Zahan
and Alim [23] investigated the problem of developing laminar CHT of copper water nanofluid in a
rectangular enclosure. Malvandi et al. [24] studied fluid flow and heat transfer of nanofluids over a flat
plate with conjugate heat transfer by including the fluid effects of thermal resistance of the plate in the
formulation. Zahan et al. [25] also studied the problem of MHD conjugate natural convection flow in a
rectangular frame filled with a copper water nanofluid. Alsabery et al. [26] investigated the conjugate
natural convection of Al2O3-water nanofluid in a square cavity using Buongiorno’s two-phase model.
Amongst their findings, they reported that, when the heat conduction is dominated, the heat transfer
is increased with the increment of the nanoparticles volume fraction.

High temperatures are required to perform many engineering processes. Nuclear power plants,
gas turbines, missiles, satellites, different types of equipment for aircraft, to name a few, can be included
in such processes. Accordingly, radiation heat transfer knowledge is very important to design relevant
devices. Furthermore, radiation has a significant effect on MHD flow and heat transfer characteristics
from an industrial point of view. Industrial applications of thermal radiation include polymer
technology, food production, engineering and spinning of fibers and advanced energy conversion in
heat transfer at high temperatures. The effect of thermal radiation on MHD convection flow has been
investigated by many researchers in the case of regular fluids and nanofluids. Takhar et al. [27] studied
the effect of radiation on natural convection flow and heat transfer for a semi-infinite vertical plate
with the transverse magnetic field. Emad [28] investigated free convection heat transfer characteristics
of an electrically conducting fluid along an isothermal sheet with a transverse magnetic field. In this
analysis, the simultaneous effects of buoyancy and radiation with internal heat generation or absorption
were considered over the linearly stretched sheet taking into account a uniform free stream of
constant velocity and temperature. El-Naby et al. [29] investigated natural convection unsteady
flow over a semi-finite vertical plate with variable temperature, radiation, and transverse magnetic
field. Ali et al. [30] investigated thermal radiation effects on the time-independent hydromagnetic
forced convective flow of an electrically conducting and heat generating-absorbing fluid over a
non-isothermal wedge. Mbeledogu et al. [31] obtained the perturbation solutions of the problem
formed by the simultaneous action of buoyancy and transverse magnetic field on free convection flow
of compressible Boussinesq fluid past a moving vertical plate. The viscosity and thermal conductivity
of the fluid were a function of temperature and the radiative flux was confirmed using the Rosseland
approximation. Ali et al. [32] analyzed the effect of thermal radiation and heat generation on viscous
Joule heating MHD-conjugate heat transfer along a vertical flat plate. Their results showed that thermal
radiation, viscous Joule heating and internal heat generation in the presence of conduction effects
have a significant effect on MHD natural convection flow and thermal fields. In the case of nanofluids,
Elazem et al. [33] considered the effect of radiation on the steady MHD flow and heat transfer of
Cu–water and Ag–water nanofluids flow over a stretching sheet. Raju et al. [34] investigated the
influence of the magnetic field, radiation, and non-uniform heat source/sink on Cu–Ethyline glycol
and Ag–Ethyline glycol nanofluids flow over a moving vertical plate in a porous medium. The results
from these studies reveal that, as thermal radiation increases, the rate of energy transported to the
fluid increases, consequently an increase in temperature occurs.

The thermal radiation effect on the MHD-conjugate flow of nanofluids over flat plates with
internal heat generation can be important in many industrial and theoretical applications. However,
the literature review shows that no significant study investigated the combined effects of thermal
radiation and heat generation on MHD-conjugate heat transfer flow on natural convection in a
nanofluid filled enclosure. The objective of this study is to extend the work of Yu and Lin [9] by
analyzing the conjugate heat transfer in MHD free convective flow of Cu–water and Ag–water
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nanofluids along the vertical and horizontal plates with internal heat generation and thermal radiation.
This study is theoretical and can have practical significance in designing and operation of plate heat
exchangers. It is worth mentioning that the problem considered has applications in industries such
as flat fins and cooling of electronic boards due to the inclusion of nanoparticles. The flow is subject
to a uniform magnetic field imposed along the direction of the flow. We further demonstrate the
application of efficient overlapping multi-domain bivariate spectral quasilinearisation method in
solving a nonlinear system of partial differential equations (PDEs) modeling CHT problems. This
method is more accurate than the non-overlapping multi-domain bivariate spectral quasilinearisation
method (MD-BSQLM) [35]. The non-overlapping MD-BSQLM applies the multi-domain technique only
in the time interval. However, the method considered in the present work applies the multi-domain
technique in both space and time intervals. In addition to that, the method uses the overlapping
multi-domain technique in the space interval. The overlapping grid strategy can improve the accuracy
of spectral collocation based methods. The accuracy improvement is achieved through making the
coefficient matrix in the matrix equation (resulting from the collocation process) less dense. This means
that the coefficient matrix will be sparse. The sparsity of matrices caused by overlapping sub-domains
can help to minimize the storage of large matrices and make it easy to perform matrix-vector
multiplications. This is because there will be a lot of multiplication by zero which reduces the
computational time and enables the matrices to be stored efficiently. Since the method combines the
bivariate spectral quasilinearisation method [36], non-overlapping and overlapping multi-domain
technique, for reference purposes, we shall refer to the method as the overlapping multi-domain
bivariate spectral quasilinearisation method (OMD-BSQLM). The use of spectral collocation-based
methods such as the OMD-BSQLM for solving systems of PDEs can be a most promising tool in the
study of conjugate heat transfer problems. From the literature review, several studies [2,9] concluded
that it is very difficult to obtain analytical solutions of conjugate heat transfer problems due to the
matching conditions at the solid–fluid interface. These studies proposed the use of numerical methods
such as finite difference schemes as the most promising procedures for performing this matching.
However, the finite difference methods have a lot of limitations when compared to spectral methods.
Spectral methods are highly accurate and more efficient than traditional methods such as the finite
difference methods [37]. When applied to problems with smooth solutions, they use few grid points
and require minimal computational time to generate accurate solutions, thus they are better than
traditional methods. The spectral method algorithm is easy to implement in scientific computing
software. To establish the accuracy of the OMD-BSQLM, certain limiting solutions of the flow equations
are studied.

2. Mathematical Formulation

Let us consider the viscous, steady, incompressible, electrically conducting and free convection
flow of nanofluid over a vertical flat plate and a horizontal flat plate of finite length l and thickness
b. The thickness of the plates is assumed to be smaller than the length. The base fluid is water and
nanoparticles (Cu and Ag) are in thermal equilibrium with no slip between them. The thermophysical
properties of the base fluid and different nanoparticles are shown in Table 1. It is assumed that the
left side of the vertical plate and the lower side of the horizontal plate are maintained at the constant
temperature Tb, such that Tb > T∞, where T∞ is the temperature of the ambient nanofluid. Heat is
transferred by conduction from the outside surface of the solid plates coupled with the free convection
in the nanofluid, while the axial heat conduction in the plates is neglected. A uniform magnetic
field B(x) is imposed along the direction of flow. The applied transverse magnetic field can be
chosen in its special form as B(x) = B0α1/2

f x−1, where B0 is the steady strength of the magnetic field
towards the y-axis. It is assumed that the induced magnetic field and the external electric field are
negligible. Thermal radiation and internal heat generation terms are included in the energy equation.
The geometry and coordinate system for the vertical and horizontal flat plates are shown in Figure 1.
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With the above assumptions, equations of the conservation of mass, momentum, and energy are given
by

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= − 1
ρn f

∂p
∂x

+ νn f
∂2u
∂y2 + gβn f (T − T∞) sin ϕ−

σn f B2(x)
ρn f

u, (2)

0 = − 1
ρn f

∂p
∂y

+ gβn f (T − T∞) cos ϕ, (3)

u
∂T
∂x

+ v
∂T
∂y

=
kn f

(ρCp)n f

∂2T
∂y2 +

Q0

(ρCp)n f
(T − T∞)− 1

(ρCp)n f

∂qr

∂y
, (4)

where u and v are the velocity components in the x- and y- directions, p is the pressure, g is the
acceleration due to gravity, T is the fluid temperature near the plate, qr is the radiative heat flux, Q0

is the rate of heat generation, σn f is the electrical conductivity, νn f is the kinematic viscosity, µn f is
the dynamic viscosity, ρn f is the effective density, αn f is the thermal diffusivity, kn f is the effective
thermal conductivity, βn f is the thermal expansion coefficient and (ρCp)n f is the heat capacity of
the nanofluid. The term Q0(T − T∞) represents the amount of heat generated or absorbed per unit
volume, where Q0 is a constant which may be either positive for a heat sink or negative for a heat
source. The radiative heat flux qr with Rosseland approximation has the form qr = − 4σ∗

3k∗
∂T4

∂y , where
σ∗ is the Stefan–Boltzmann constant and k∗ is the mean absorption coefficient. The temperature
differences within the flow are assumed to be sufficiently small such that T4 may be expressed as a
linear function of temperature. Expanding T4 using Taylor series and neglecting higher order terms
yields T4 ∼= 4T3

∞T − 3T4
∞. The nanofluid constants are defined as [38–40]

νn f =
µn f

ρn f
, µn f =

µ f

(1− φ)2.5 ,
kn f

k f
=

[
(ks + 2k f )− 2φ(k f − ks)

(ks + 2k f ) + φ(k f − ks)

]
,

σn f

σf
=

1 +
3
(

σs
σf
− 1
)

φ(
σs
σf

+ 2
)
−
(

σs
σf
− 1
)

φ

 ,

ρn f = (1− φ)ρ f + φρs, (ρCp)n f = (1− φ)(ρCp) f + φ(ρCp)s, βn f = (1− φ)β f + φβs, αn f =
kn f

(ρCp)n f
, (5)

where φ is the solid volume fraction of nanoparticles, β is the thermal expansion, subscripts f ,s and

n f denote fluid, solid and nanofluid, respectively. For the vertical plate, the angle ϕ is π/2 and
∂p/∂x, and ∂p/∂y are both equal to zero. For the horizontal plate, the angle ϕ to the horizontal is
equal to zero. In formulating Equations (1)–(4), viscous dissipation and compression work have been
neglected. Moreover, the physical properties of the fluid are assumed to be constant except for the
density variation that induces a buoyancy force. The boundary conditions for Equations (1)–(4) are

u = 0, v = 0, at y = 0, (6)

u → 0, p → 0, T → T∞ as y→ ∞. (7)

Table 1. Thermophysical properties of the base fluid and the nanoparticles [38].

Base Fluid Nanoparticles

Physical Properties Water Copper (Cu) Silver (Ag)

Cp (J/kgK) 4179 385 235
ρ (Kg/m3) 997.1 8933 10,500
k (W/mK) 0.613 401 429
σ (Sm−1) 0.05 5.96× 107 6.3× 107

β× 105 (K−1) 21 1.67 1.89
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Figure 1. Physical model and coordinate system. (a) vertical plate; (b) horizontal plate.

2.1. Dimensionless Equations for the Vertical Plate

Yu and Lin [9] developed the following non-dimensional variables:

ψ(x, y) = α f λ f (ξ, η), η(x, y) = (y/x)λ, ξ(x) =
[
1 + σRat /(σRah )

4/5
]−1

, θ(ξ, η) =
T − T∞

Tb − T∞
ξ−1, (8)

where Rat = gβ(Tb − T∞)x3/α f ν is the Rayleigh number, Rah = gβ(qhx/kr)x3/α f ν is the Reyleigh

number for a plate with constant wall flux qh = ks(Tb − T∞)/b, λ =
[
(σRat)

−1 + (σRah)
−4/5

]−1/4
,

σ = Pr/(1 + Pr), ψ(x, y) is the stream function defined by u = ∂ψ/∂y and v = −∂ψ/∂x, η(x, y) and
ξ(x) are the dimensionless coordinates, f (ξ, η) is the dimensionless stream function and θ(ξ, η) is
the dimensionless temperature. By using Equation (8), Equations (1)–(4) along with the boundary
conditions (6) and (7) are reduced to the following two-point boundary value problem:

Pr f ′′′ + φ1

[
16− ξ

20
f f ′′ − 6− ξ

10
f ′2 −M2φ2 f ′ + φ3(1 + Pr)θ

]
=

φ1
5

ξ(1− ξ)

[
f ′

∂ f ′

∂ξ
− f ′′

∂ f
∂ξ

]
, (9)(

1 +
k f

kn f
Rd

)
θ′′ + φ4

[
16− ξ

20
f θ′ − 1− ξ

5
f ′θ
]
+

k f

kn f
Qξθ =

φ4
5

ξ(1− ξ)

[
f ′

∂θ

∂ξ
− θ′

∂ f
∂ξ

]
, (10)

where M2 =
σf B2

0
ρ f λ2 is the magnetic field parameter, Pr =

ν f
α f

is the Prandtl number, Rd = 16σ∗T3
∞

3k∗k f
is

the radiation parameter and Q = Q0x2

k f λ2 is the heat generation parameter. The nanoparticle volume

fractions φ1, φ2, φ3 and φ4 depend on the thermal properties of the nanofluid and are defined as

φ1 = [1− φ]2.5

(
1− φ + φ

ρs

ρ f

)
, φ2 =

(
1 +

3(σs/σf − 1)φ
(σs/σf + 2)− (σs/σf − 1)φ

)
1(

(1− φ) + φ(
ρs
ρ f
)
) ,

φ3 = (1− φ) + φ(βs/β f ), φ4 =

[
ks + 2k f + φ(k f − ks)

ks + 2k f − 2φ(k f − ks)

](
(1− φ) + φ

(ρCp)s

(ρCp) f

)
. (11)

The corresponding boundary conditions in dimensionless form are

f (ξ, 0) = 0, f ′(ξ, 0) = 0, ξθ(ξ, 0)− (1− ξ)5/4θ′(ξ, 0) = 1,

f ′(ξ, ∞) = 0, θ(ξ, ∞) = 0. (12)
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2.2. Dimensionless Equations for the Horizontal Plate

Using the following non-dimensional variables in [9], namely

ψ(x, y) = α f λ f (ξ, η), η(x, y) = (y/x)λ, ξ(x) =
[
1 + σRat/(σRah)

5/6
]−1.5

, (13)

θ(ξ, η) =
T − T∞

Tb − T∞
ξ−1, ω(ξ, η) = σpx2/ρα f νλ4, (14)

where λ =
[
(σRat)−1 + (σRah)

−5/6
]−1.5

and ω(ξ, η) is the dimensionless pressure. Equations (1)–(4)
along with their boundary conditions (6) and (7) for the horizontal plate are reduced to

Pr f ′′′ + φ1

[
10− ξ

15
f f ′′ − 5− 2ξ

15
f ′2 − φ2 M2 f ′

]
+

(1− φ)2.5

15
(1 + Pr)[(5 + ξ)ηω′ − (10− 4ξ)ω]

=
φ1
3

ξ(1− ξ)

[
f ′

∂ f ′

∂ξ
− f ′′

∂ f
∂ξ

+ (1 + Pr)
∂ω

∂ξ

]
, (15)

ω′ = θ, (16)(
1 +

k f

kn f
Rd

)
θ′′ + φ4

[
10− ξ

15
f θ′ − 1− ξ

3
f ′θ
]
+

k f

kn f
Qξθ =

φ4
3

ξ(1− ξ)

[
f ′

∂θ

∂ξ
− θ′

∂ f
∂ξ

]
. (17)

The corresponding boundary conditions in dimensionless form are

f (ξ, 0) = 0, f ′(ξ, 0) = 0, ξθ(ξ, 0)− (1− ξ)6/5θ′(ξ, 0) = 1, (18)

f ′(ξ, ∞) = 0, θ(ξ, ∞) = 0, ω(ξ, ∞) = 0. (19)

3. Solution Procedure

In this section, we describe the application of the OMD-BSQLM to find numerical solutions
of the transformed nonlinear PDEs. The method uses the overlapping multi-domain technique,
Chebyshev–Gauss–Lobatto grid points [41,42], and the quasilinearisation method [43], together with
spectral collocation on approximate functions defined as bivariate Lagrange interpolation polynomials.
The multi-domain approach divides the time interval into non-overlapping sub-intervals and the
space interval into overlapping sub-intervals. The quasilinearisation technique helps to linearise the
nonlinear PDEs. The spectral collocation method is applied independently both in space and time
variables in the linearized equations. In order to apply the OMD-BSQLM, the time interval ξ ∈ [0, ξF]

is decomposed into q non-overlapping sub-intervals defined as

Jυ = (ξυ−1, ξυ), υ = 1, 2, 3, . . . , q, with 0 = ξ0 < ξ1 < ξ2 < · · · < ξq−1 < ξq = ξF, (20)

For the semi-finite space domain [0, ∞), a truncated grid [0, η∞] is used. We choose a finite value
of η∞ that is large enough such that the flow properties at η∞ resemble those at ∞. The truncated space
interval [0, η∞] is decomposed into p overlapping sub-intervals of length L, denoted by

Iµ = [η
µ
0 , η

µ
Nη
], µ = 1, 2, 3, . . . , p, (21)

where each Iµ interval is further discretized into Nη + 1 collocation points. Without loss of generality,
we will consider that each subinterval has the same length given by

L =
η∞

p + 1
2 (1− p)(1− cos π

Nη
)

(22)

for the overlap to be possible, and the same number of collocation points (Nη + 1) is used in each
subinterval. In the domain decomposition scheme, we use overlapping subintervals Iµ, where the
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first two points of the interval Iµ+1 coincide with the last two points of the interval Iµ, that is, η1
0 = 0,

η
p
Nη

= η∞, η
µ
Nη−1 = η

µ+1
0 and η

µ
Nη

= η
µ+1
1 . The non-overlapping and overlapping multi-domain grids

are shown in Figures 2 and 3, respectively.

ξ0 ξ1 ξ2 ξ3 ξυ−1 ξυ ξq−1 ξq

J1 J2 J3 Jυ Jq

ξυ−1 ξυ

ξ
(υ)
0 ξ

(υ)
1 ξ

(υ)
2 ξ

(υ)
e−1 ξ

(υ)
e

Figure 2. Non-overlapping grid (ξ-domain).

I1
I2 Ip−1 Ip

η1
0

0

η2
0

η1
Nη−1

η1
Nη

η2
1

η3
0

η2
Nη−1

η2
Nη

η3
1

η
p−1
0

η
p−2
Nη−1

η
p−2
Nη

η
p−1
1

η
p
0

η
p−1
Nη−1

η
p−1
Nη

η
p
1

η
p
Nη

η∞

Figure 3. Overlapping grid (η-domain).

3.1. Numerical Solution for the Vertical Plate

Applying the quasilinearisation method in each sub-interval to Equations (9) and (10) gives the
following system of linear PDEs:

α
(1,µ,υ)
1,3,r

∂3 f (µ,υ)
r+1

∂η3 + α
(1,µ,υ)
1,2,r

∂2 f (µ,υ)
r+1

∂η2 + α
(1,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂η

+ α
(1,µ,υ)
1,0,r f (µ,υ)

r+1 + α
(1,µ,υ)
2,0,r θ

(µ,υ)
r+1

+γ
(1,µ,υ)
1,r

∂

∂ξ

∂ f (µ,υ)
r+1
∂η

+ β
(1,µ,υ)
1,r

∂ f (µ,υ)
r+1
∂ξ

= R(µ,υ)
1,r , (23)

α
(2,µ,υ)
2,2,r

∂2θ
(µ,υ)
r+1

∂η2 + α
(2,µ,υ)
2,1,r

∂θ
(µ,υ)
r+1
∂η

+ α
(2,µ,υ)
2,0,r θ

(µ,υ)
r+1 + α

(2,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂η

+ α
(2,µ,υ)
1,0,r f (µ,υ)

r+1

+β
(2,µ,υ)
2,r

∂θ
(µ,υ)
r+1
∂ξ

+ β
(2,µ,υ)
1,r

∂ f (µ,υ)
r+1
∂ξ

= R(µ,υ)
2,r , (24)
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where the variable coefficients are given by

α
(1,µ,υ)
1,3,r = Pr, α

(1,µ,υ)
1,2,r =

φ1(16− ξ)

20
f (µ,υ)
r +

φ1ξ(1− ξ)

5
∂ f (µ,υ)

r
∂ξ

, α
(1,µ,υ)
1,0,r =

φ1(16− ξ)

20
∂2 f (µ,υ)

r
∂η2 ,

α
(1,µ,υ)
1,1,r = −φ1(6− ξ)

5
∂ f (µ,υ)

r
∂η

−Mφ1φ2 −
φ1ξ(1− ξ)

5
∂

∂ξ

(
∂ f (µ,υ)

r
∂η

)
, α

(1,µ,υ)
2,0,r = φ1φ3(1 + Pr),

α
(2,µ,υ)
2,2,r = 1 +

(
1 +

k f

kn f
Rd

)
, α

(2,µ,υ)
2,0,r =

kk
kn f

Qξ − φ4(1− ξ)

5
∂ f (µ,υ)

r
∂η

, α
(2,µ,υ)
2,1,r =

φ4(16− ξ)

20
f (µ,υ)
r

+
φ4ξ(1− ξ)

5
∂ f (µ,υ)

r
∂ξ

, α
(2,µ,υ)
1,1,r = −φ4(1− ξ)

5
θ
(µ,υ)
r − φ4ξ(1− ξ)

5
∂θ

(µ,υ)
r
∂ξ

, α
(2,µ,υ)
1,0,r =

φ4(16− ξ)

20
∂θ

(µ,υ)
r
∂η

,

γ
(1,µ,υ)
1,r = −φ1ξ(1− ξ)

5
∂ f (µ,υ)

r
∂η

, β
(1,µ,υ)
1,r =

φ1ξ(1− ξ)

5
∂2 f (µ,υ)

r
∂η2 , β

(2,µ,υ)
2,r = −φ4ξ(1− ξ)

5
∂ f (µ,υ)

r
∂η

,

β
(2,µ,υ)
1,r =

φ4ξ(1− ξ)

5
∂θ

(µ,υ)
r
∂η

, R(µ,υ)
1,r =

φ1(16− ξ)

20
f (µ,υ)
r

∂2 f (µ,υ)
r

∂η2 − φ1(6− ξ)

10

(
∂ f (µ,υ)

r
∂η

)2

−φ1ξ(1− ξ)

5
∂ f (µ,υ)

r
∂η

∂

∂ξ

(
∂ f (µ,υ)

r
∂η

)
+

φ1ξ(1− ξ)

5
∂2 f (µ,υ)

r
∂η2

∂ f (µ,υ)
r
∂ξ

, R(µ,υ)
2,r =

φ4(16− ξ)

20
f (µ,υ)
r

∂θ
(µ,υ)
r
∂η

−φ4(1− ξ)

5
θ
(µ,υ)
r

∂ f (µ,υ)
r
∂η

− φ4ξ(1− ξ)

5
∂ f (µ,υ)

r
∂η

∂θ
(µ,υ)
r
∂ξ

+
φ4ξ(1− ξ)

5
∂θ

(µ,υ)
r
∂η

∂ f (µ,υ)
r
∂ξ

,

subject to boundary conditions

f (µ,υ)
r+1 (ξ, 0) = 0,

∂ f (µ,υ)
r+1
∂η

(ξ, 0) = 0, ξθ
(µ,υ)
r+1 (ξ, 0)− (1− ξ)5/4 ∂θ

(µ,υ)
r+1
∂η

(ξ, 0) = 1,

∂ f (µ,υ)
r+1
∂η

(ξ, ∞) = 0, θ
(µ,υ)
r+1 (ξ, ∞) = 0. (25)

The constants r and r + 1 denote previous and current iterations, respectively. The system of
linear PDEs (23) and (24) is discretized using the spectral collocation method in both η and ξ directions.
Before applying the spectral method on the sub-intervals, the time interval ξ ∈ [ξυ−1, ξυ] is transformed
to τ ∈ [−1, 1] using the linear transformation

ξυ
j =

1
2
(ξυ − ξυ−1)τj +

1
2
(ξυ + ξυ−1), τj = cos

(
π j
Nξ

)
, (26)

and the space region η ∈ [η
µ
0 , η

µ
Nη
] is transformed to z ∈ [−1, 1] using the linear transformation

η
µ
i =

L
2
(zi + 1), zi = cos

(
πi
Nη

)
. (27)

We assume that, at each sub-interval, the required solution, say f (η, ξ), can be approximated by a
bivariate Lagrange interpolation polynomial of the form

f (µ,υ)(η, ξ) ≈
Nη

∑
i=0

Nξ

∑
j=0

f (µ,υ)(zi, τj)Li(z)Lj(τ), (28)

for µ = 1, 2, 3, . . . , p and υ = 1, 2, 3, . . . , q. The bivariate interpolation polynomial interpolates
f (µ,υ)(z, τ) at selected points (zi, τj) in both z and τ directions, for i = 0, 1, 2, . . . , Nη and
j = 0, 1, 2, . . . , Nξ . The function Li(z) and Lj(τ) are the well known characteristic Lagrange cardinal
polynomial based on the Chebyshev–Gauss–Lobatto points. The required solution for θ(η, ξ) can be
approximated in a similar manner. The solution procedure requires that the derivatives of Li(z) and
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Lj(τ) with respect to z and τ, respectively be evaluated at the Chebyshev–Gauss–Lobatto grid points.
The derivatives of f (µ,υ)(η, ξ) with respect to η and ξ at the Chebyshev–Gauss–Lobatto points (zk, τi),
are computed as

∂ f (µ,υ)

∂η

∣∣∣∣∣
(zk ,τi)

=
Nη

∑
ω

Nξ

∑
j=0

f (µ,υ)(zω, τj)
dLω(zk)

dz
Lj(τi) (29)

=
Nη

∑
ω=0

D(µ)
k,ω f (µ,υ)(zω, τi) =

[
D(µ)

]
F(µ,υ)

i , (30)

∂ f (µ,υ)

∂ξ

∣∣∣∣∣
(zk ,τi)

=
Nη

∑
ω

Nξ

∑
j=0

f (µ,υ)(zω, τj)Lω(zk)
dLj(τi)

dτ

=
Nξ

∑
j=0

di,j f (µ,υ)(zk, τj) =
Nξ

∑
j=0

di,jF
(µ,υ)
j , (31)

where di,j =
dLj(τi)

dτ is the ith and jth entry of the standard first derivative Chebyshev–Gauss–Lobatto
based differentiation matrix d = [di,j], for i, j = 0, 1, 2, 3, . . . , Nξ , of size (Nξ + 1) × (Nξ + 1),

D(µ)
k,ω = 2

η
µ
Nη
−η

µ
0

Dk,ω with Dk,ω = dLω(zk)
dz being the kth and ωth entries of the standard first

derivative Chebyshev–Gauss–Lobatto differentiation matrix of size (M + 1) × (M + 1), where
M = Nη + (Nη − 1)(p− 1) is the total number of collocation points over a single domain [−1, 1].
In general, to find an sth order derivative with respect to η, we have

∂s f (µ,υ)

∂ηs

∣∣∣∣∣
(zk ,τi)

=
Nη

∑
ω=0

[
D(µ)

k,ω

]s
f (µ,υ)(zω, τi) =

[
D(µ)

]s
F(µ,υ)

i . (32)

The vector F(µ,υ)
i is defined as

F(µ,υ)
i =

[
f (µ,υ)(z(µ)0 , τ

(υ)
i ), f (µ,υ)(z(µ)1 , τ

(υ)
i ), f (µ,υ)(z(µ)2 , τ

(υ)
i ), . . . , f (µ,υ)(z(µ)Nη

, τ
(υ)
i )

]T
, (33)

where T denotes the matrix transpose. The derivatives d and
[
D(µ)

]s
are scaled by multiplying by

the factors Λ = 2
ξυ−ξυ−1

and Ωs =

(
2

η
µ
Nη
−η

µ
0

)s
=
( 2

L
)s

, respectively. The space and time derivatives

of θ at each sub-interval can be transformed to discrete matrix form in a similar manner. Applying
the spectral collocation method by evaluating Equations (23) and (24) at the collocation points and
making use of the derivative matrices as well as incorporating the initial condition which corresponds
to ξNξ

= −1 gives

A(µ,υ)
1,1 F(µ,υ)

i,r+1 + A(µ,υ)
1,2 Θ

(µ,υ)
i,r+1 + γ

(1,µ,υ)
1,r

Nξ−1

∑
j=0

di,jD(µ)F(µ,υ)
j + β

(1,µ,υ)
1,r

Nξ−1

∑
j=0

di,jF
(µ,υ)
j = K(µ,υ)

1,i , (34)

A(µ,υ)
2,1 F(µ,υ)

i,r+1 + A(µ,υ)
2,2 Θ

(µ,υ)
i,r+1 + β

(2,µ,υ)
1,r

Nξ−1

∑
j=0

di,jF
(µ,υ)
j + β

(2,µ,υ)
2,r

Nξ−1

∑
j=0

di,jΘ
(µ,υ)
j = K(µ,υ)

2,i , (35)

where

K(µ,υ)
1,i = R(µ,υ)

1,i − γ
(1,µ,υ)
1,r di,Nζ

D(µ)F(µ,υ)
Nξ
− β

(1,µ,υ)
1,r di,Nξ

F(µ,υ)
Nξ

,

K(µ,υ)
2,i = R(µ,υ)

2,i − β
(2,µ,υ)
1,r di,Nζ

F(µ,υ)
Nξ
− β

(2,µ,υ)
2,r di,Nξ

Θ
(µ,υ)
Nξ



Math. Comput. Appl. 2019, 24, 75 11 of 27

For i = 0, 1, 2, . . . Nξ , Equations (34) and (35) form an Nξ(M + 1)× Nξ(M + 1) matrix system

A(1,1,p,υ)
0,0 · · · A(1,1,p,υ)

0,Nξ
A(1,2,p,υ)

0,0 · · · A(1,2,p,υ)
0,Nξ

A(1,1,p,υ)
1,0 · · · A(1,1,p,υ)

1,Nξ
A(1,2,p,υ)

1,0 · · · A(1,2,p,υ)
1,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(1,1,p,υ)
Nξ−1,0 · · · A(1,1,p,υ)

Nξ−1,Nξ
A(1,2,p,υ)

Nξ−1,0 · · · A(1,2,p,υ)
Nξ−1,Nξ

A(1,1,p−1,υ)
1,0 · · · A(1,1,p−1,υ)

1,Nξ
A(1,2,p−1,υ)

1,0 · · · A(1,2,p−1,υ)
1,Nξ

A(1,1,p−1,υ)
2,0 · · · A(1,1,p−1,υ)

2,Nξ
A(1,2,p−1,υ)

2,0 · · · A(1,2,p−1,υ)
2,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(1,1,p−1,υ)
Nξ−1,0 · · · A(1,1,p−1,υ)

Nξ−1,Nξ
A(1,2,p−1,υ)

Nξ−1,0 · · · A(1,2,p−1,υ)
Nξ−1,Nξ

. . .
. . .

A(1,1,1,υ)
1,0 · · · A(1,1,1,υ)

1,Nξ
A(1,2,1,υ)

1,0 · · · A((1,2,1,υ)
1,Nξ

A(1,1,1,υ)
2,0 · · · A(1,1,1,υ)

2,Nξ
A((1,2,1,υ)

2,0 · · · A(1,2,1,υ)
2,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(1,1,1,υ)
Nξ ,0 · · · A(1,1,1,υ)

Nξ ,Nξ
A(1,2,1,υ)

Nξ ,0 · · · A(1,2,1,υ)
Nξ ,Nξ

A(2,1,p,υ)
0,0 · · · A(2,1,p,υ)

0,Nξ
A(2,2,p,υ)

0,0 · · · A(2,2,p,υ)
0,Nξ

A(2,1,p,υ)
1,0 · · · A(2,1,p,υ)

1,Nξ
A(2,2,p,υ)

1,0 · · · A(2,2,p,υ)
1,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(2,1,p,υ)
Nξ−1,0 · · · A(2,1,p,υ)

Nξ−1,Nξ
A(2,2,p,υ)

Nξ−1,0 · · · A(2,2,p,υ)
Nξ−1,Nξ

A(2,1,p−1,υ)
1,0 · · · A(2,1,p−1,υ)

1,Nξ
A(2,2,p−1,υ)

1,0 · · · A(2,2,p−1,υ)
1,Nξ

A(2,1,p−1,υ)
2,0 · · · A(2,1,p−1,υ)

2,Nξ
A(2,2,p−1,υ)

2,0 · · · A(2,2,p−1,υ)
2,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(2,1,p−1,υ)
Nξ−1,0 · · · A(2,1,p−1,υ)

Nξ−1,Nξ
A(2,2,p−1,υ)

Nξ−1,0 · · · A(2,2,p−1,υ)
Nξ−1,Nξ

. . .
. . .

A(2,1,1,υ)
1,0 · · · A(2,1,1,υ)

1,Nξ
A(2,2,1,υ)

1,0 · · · A((2,2,1,υ)
1,Nξ

A(2,1,1,υ)
2,0 · · · A(2,1,1,υ)

2,Nξ
A((2,2,1,υ)

2,0 · · · A(2,2,1,υ)
2,Nξ

. . .
. . .

. . .
. . .

. . .
. . .

A(2,1,1,υ)
Nξ ,0 · · · A(2,1,1,υ)

Nξ ,Nξ
A(2,2,1,υ)

Nξ ,0 · · · A(2,2,1,υ)
Nξ ,Nξ





F(p,υ)
0,r+1

F(p,υ)
1,r+1

...

F(p,υ)
Nξ−1,r+1

F(p−1,υ)
1,r+1

F(p−1,υ)
2,r+1

...

F(p−1,υ)
Nξ−1,r+1

. . .

F(1,υ)
1,r+1

F(1,υ)
2,r+1

...

F(1,υ)
Nξ ,r+1

Θ
(p,υ)
0,r+1

Θ
(p,υ)
1,r+1
...

Θ
(p,υ)
Nξ−1,r+1

Θ
(p−1,υ)
1,r+1

Θ
(p−1,υ)
2,r+1

...

Θ
(p−1,υ)
Nξ−1,r+1

. . .

Θ
(1,υ)
1,r+1

Θ
(1,υ)
2,r+1
...

Θ
(1,υ)
Nξ ,r+1



=



K(p,υ)
1,0

K(p,υ)
1,1
...

K(p,υ)
1,Nξ−1

K(p−1,υ)
1,1

K(p−1,υ)
1,2

...

K(p−1,υ)
1,Nξ−1

. . .

K(1,υ)
1,1

K(1,υ)
1,2
...

K(1,υ)
1,Nξ

K(p,υ)
2,0

K(p,υ)
2,1
...

K(p,υ)
2,Nξ−1

K(p−1,υ)
2,1

K(p−1,υ)
2,2

...

K(p−1,υ)
2,Nξ−1

. . .

K(1,υ)
2,1

K(1,υ)
2,2
...

K(1,υ)
2,Nξ



, (36)
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where

A(1,1,p,υ)
i,i = α

(1,µ,υ)
1,3,r

[
D(µ)

]3
+ α

(1,µ,υ)
1,2,r

[
D(µ)

]2
+ α

(1,µ,υ)
1,1,r D(µ) + α

(1,µ,υ)
1,0,r + βββ

(1,µ,υ)
1,r di,iI +γγγ

(1,µ,υ)
1,r di,iD

(µ),

A(1,2,p,υ)
i,i = α

(1,µ,υ)
2,0,r I, A(2,1,p,υ)

i,i = α
(2,µ,υ)
1,1,r D(µ) + α

(2,µ,υ)
1,0,r + βββ

(2,µ,υ)
1,r di,iI, (37)

A(2,2,p,υ)
i,i = α

(2,µ,υ)
2,2,r

[
D(µ)

]2
+ α

(2,µ,υ)
2,1,r D(µ) + α

(2,µ,υ)
2,0,r + βββ

(2,µ,υ)
2,r di,iI, when i = j

and

A(1,1,p,υ)
i,j = βββ

(1,µ,υ)
1,r di,jI +γγγ

(1,µ,υ)
1,r di,jD

(µ), A(1,2,p,υ)
i,j = 0, A(2,1,p,υ)

i,j = βββ
(2,µ,υ)
1,r di,jI,

A(2,2,p,υ)
i,j = βββ

(2,µ,υ)
2,r di,jI, when i 6= j. (38)

The vectors F(µ,υ)
i,r+1, and Θ

(µ,υ)
i,r+1 denote the values of f and θ approximated at the collocation

points, and I is the standard (M + 1)× (M + 1) identity matrix. Starting from suitable initial guesses,
the numerical solution for f (η, ξ) and θ(η, ξ) are obtained by solving matrix Equation (36) iteratively
for r = 1, 2, . . . , σ, where σ is the number of iterations to be used.

3.2. Numerical Solution for the Horizontal Plate

Applying a quasilinearisation method in each subinterval to the system of nonlinear PDEs
(15)–(17) gives the following system of linear PDEs:

α
(1,µ,υ)
1,3,r

∂3 f (µ,υ)
r+1

∂η3 + α
(1,µ,υ)
1,2,r

∂2 f (µ,υ)
r+1

∂η2 + α
(1,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂η

+ α
(1,µ,υ)
1,0,r f (µ,υ)

r+1 + α
(1,µ,υ)
2,1,r

∂ω
(µ,υ)
r+1

∂η
,

+α
(1,µ,υ)
2,0,r ω

(µ,υ)
r+1 + γ

(1,µ,υ)
1,1,r

∂

∂ξ

 ∂ f (µ,υ)
r+1
∂η

+ β
(1,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂ξ

+ β
(1,µ,υ)
2,1,r

∂ω
(µ,υ)
r+1
∂ξ

= R(µ,υ)
1,r , (39)

α
(2,µ,υ)
2,1,r

∂ω
(µ,υ)
r+1

∂η
+ α

(2,µ,υ)
3,0,r θ

(µ,υ)
r+1 = 0, (40)

α
(3,µ,υ)
3,2,r

∂2θ
(µ,υ)
r+1

∂η2 + α
(3,µ,υ)
3,1,r

∂θ
(µ,υ)
r+1
∂η

+ α
(3,µ,υ)
3,0,r θ

(µ,υ)
r+1 + α

(3,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂η

+ α
(3,µ,υ)
1,0,r f (µ,υ)

r+1

+β
(3,µ,υ)
3,1,r

∂θ
(µ,υ)
r+1
∂ξ

+ β
(3,µ,υ)
1,1,r

∂ f (µ,υ)
r+1
∂ξ

= R(µ,υ)
3,r , (41)
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where the variable coefficients are given by

α
(1,µ,υ)
1,3,r = Pr, α

(1,µ,υ)
1,2,r =

φ1(10− ξ)

15
f (µ,υ)
r +

φ1ξ(1− ξ)

3
∂ f (µ,υ)

r
∂ξ

, α
(1,µ,υ)
1,0,r =

φ1(10− ξ)

15
∂2 f (µ,υ)

r
∂η2 ,

α
(1,µ,υ)
1,1,r = −φ1(10− 4ξ)

15
∂ f (µ,υ)

r
∂η

−M2φ1φ2 −
φ1ξ(1− ξ)

3
∂

∂ξ

(
∂ f (µ,υ)

r
∂η

)
,

α
(1,µ,υ)
2,1,r = − (1− φ)2.5

15
(1 + Pr)(10− 4ξ),

(1− φ)2.5

15
(1 + Pr)(5 + ξ)η, α

(2,µ,υ)
2,1,r = 1, α

(2,µ,υ)
3,0,r = −1,

α
(3,µ,υ)
3,2,r = 1 +

(
1 +

k f

kn f
Rd

)
, α

(3,µ,υ)
3,1,r =

φ4(10− ξ)

15
f (µ,υ)
r +

φ4ξ(1− ξ)

3
∂ f (µ,υ)

r
∂ξ

, α
(3,µ,υ)
3,0,r =

k f

kn f
Qξ

−φ4(1− ξ)

3
∂ f (µ,υ)

r
∂η

, α
(3,µ,υ)
1,1,r = −φ4(1− ξ)

3
θ
(µ,υ)
r − φ4ξ(1− ξ)

3
∂θ

(µ,υ)
r
∂ξ

, α
(3,µ,υ)
1,0,r =

φ4(10− ξ)

15
∂θ

(µ,υ)
r
∂η

,

γ
(1,µ,υ)
1,1,r = −φ1ξ(1− ξ)

3
∂ f (µ,υ)

r
∂η

, β
(1,µ,υ)
1,1,r =

φ1ξ(1− ξ)

3
∂2 f (µ,υ)

r
∂η2 , β

(1,µ,υ)
2,1,r = −φ1ξ(1− ξ)

3
(1 + Pr),

β
(3,µ,υ)
3,1,r = −φ4ξ(1− ξ)

3
∂ f (µ,υ)

r
∂η

, β
(3,µ,υ)
1,1,r =

φ4ξ(1− ξ)

5
∂θ

(µ,υ)
r
∂η

, R(µ,υ)
1,r =

φ1(10− ξ)

15
f (µ,υ)
r

∂2 f (µ,υ)
r

∂η2

−φ1(5− 2ξ)

15

(
∂ f (µ,υ)

r
∂η

)2

− φ1ξ(1− ξ)

3
∂ f (µ,υ)

r
∂η

∂

∂ξ

(
∂ f (µ,υ)

r
∂η

)
+

φ1ξ(1− ξ)

3
∂2 f (µ,υ)

r
∂η2

∂ f (µ,υ)
r
∂ξ

,

R(µ,υ)
2,r = 0, R(µ,υ)

3,r =
φ4(10− ξ)

15
f (µ,υ)
r

∂θ
(µ,υ)
r
∂η

− φ4(1− ξ)

3
θ
(µ,υ)
r

∂ f (µ,υ)
r
∂η

−φ4ξ(1− ξ)

5
∂ f (µ,υ)

r
∂η

∂θ
(µ,υ)
r
∂ξ

+
φ4ξ(1− ξ)

5
∂θ

(µ,υ)
r
∂η

∂ f (µ,υ)
r
∂ξ

,

subject to boundary conditions

f (µ,υ)
r+1 (ξ, 0) = 0,

∂ f (µ,υ)
r+1
∂η

(ξ, 0) = 0, ξθ
(µ,υ)
r+1 (ξ, 0)− (1− ξ)6/5 ∂θ

(µ,υ)
r+1
∂η

(ξ, 0) = 1,

∂ f (µ,υ)
r+1
∂η

(ξ, ∞) = 0, ω
(µ,υ)
r+1 (ξ, ∞) = 0 θ

(µ,υ)
r+1 (ξ, ∞) = 0. (42)

We apply the Chebyshev spectral collocation method that uses bivariate Lagrange interpolation
polynomials as basic functions as in the vertical plate. Thus, evaluating Equations (39) and (41) at
the collocation points and making use of the derivative matrices as well as incorporating the initial
conditions which corresponds to ξNξ

, we obtain

A(µ,υ)
1,1 F(µ,υ)

i,r+1 + A(µ,υ)
1,2 Ω

(µ,υ)
i,r+1 + A(µ,υ)

1,3 Θ
(µ,υ)
i,r+1 + γ

(1,1,µ,υ)
1,r

Nξ

∑
j=0

di,jD
(µ)F(µ,υ)

j + β
(1,µ,υ)
1,1,r

Nξ

∑
j=0

di,jF
(µ,υ)
j ,

+β
(1,µ,υ)
2,1,r

Nξ

∑
j=0

di,jΩ
(µ,υ)
j = R(µ,υ)

1,i , (43)

A(µ,υ)
2,1 F(µ,υ)

i,r+1 + A(µ,υ)
2,2 Ω

(µ,υ)
i,r+1 + A(µ,υ)

2,3 Θ
(µ,υ)
i,r+1 = R(µ,υ)

2,i , (44)

A(µ,υ)
3,1 F(µ,υ)

i.r+1 + A(µ,υ)
3,2 Ω

(µ,υ)
i,r+1 + A(µ,υ)

3,3 Θ
(µ,υ)
i,r+1 + β

(3,µ,υ)
1,1,r

Nξ

∑
j=0

di,jF
(µ,υ)
j + β

(3,µ,υ)
3,1,r

Nξ

∑
j=0

di,jΘ
(µ,υ)
j = R(µ,υ)

3,i . (45)

The vectors F(µ,υ)
i,r+1, Ω

(µ,υ)
i,r+1 and Θ

(µ,υ)
i,r+1 denote the values of f , ω and θ approximated at the

collocation points. Imposing boundary conditions for i = 0, 1, 2, 3, . . . , Nξ − 1, Equations (43)–(45) can
be expressed as a matrix system of size Nξ(M + 1)× Nξ(M + 1) as in the previous subsection.
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4. Results and Discussion

The transformed nonlinear PDEs for the vertical and horizontal plates were solved numerically
using the OMD-BSQLM for Cu–water and Ag–water nanofluids. Numerical computations are carried
out using Pr = 0.7 [9], M = 0.5 and Q = 0.01 [12,16]. However, the parametric values of the radiation
parameter and nanoparticle volume fraction were chosen as Rd = 0.6 and φ = 0.3. All of these values
are treated the same in the entire study except the varied values in respective figures. The space domain
η was truncated to η∞ = 15. The numerical results were generated using Nξ = 5, Nη = 20 collocation
points. The number of sub-intervals in both space and time are taken as p = q = 5. In order to obtain a
clear understanding of the physics of the problem, a parametric study was undertaken to determine
the impact of the different physical parameters on the fluid properties and flow characteristics.

To determine the accuracy of our numerical results, the local skin friction coefficient and the
surface temperature are compared with the non-overlapping MD-BSQLM and published results by Yi
and Lin [9] in Table 2. The table gives a comparison of the OMD-BSQLM results when ξ = M = φ = 0
for different values of the Prandtl number Pr. It is observed that, for increasing values of the Prandtl
number, the results are in good agreement with values in the literature and those obtained using
the non-overlapping MD-BSQLM. Hence, the use of the present method is justified. It is also noted
that the OMD-BSQLM can give accurate results with a minimal number of grid points compared to
the non-overlapping MD-BSQLM. Table 3 presents results for the local skin friction f ′′(ξ, 0), surface
temperature θ(ξ, 0) and heat transfer rate −θ′(ξ, 0) for varying values of the dimensionless streamwise
coordinate ξ and different nanofluids. The table shows clearly that the skin friction, interfacial
temperature, and heat transfer rate decrease with increasing values of ξ. This is due to the increase of
the momentum boundary layer thickness and thermal boundary layer thickness.

Table 2. Comparison of the OMD-BSQLM results with MD-BSQLM, Yi and Lin [9] for f ′′(0, 0) and
θ(0, 0) at different values of Pr when ξ = M = φ = 0.

Yi and Lin [9] MD-BSQLM OMD-BSQLM

η∞ Pr f ′′(0, 0) θ(0, 0) f ′′(0, 0) θ(0, 0) Nη f ′′(0, 0) θ(0, 0) Nη

Vertical plate
12 0.001 54.745 1.3345 54.7463521 1.3344356 100 54.7463521 1.3344356 20
12 0.01 16.929 1.3759 16.9295516 1.3758562 100 16.9295516 1.3758562 20
12 0.1 5.2502 1.4824 1.2502342 1.4823999 100 1.2502342 1.4823999 20
15 0.7 2.3123 1.6132 2.3123480 1.6129166 100 2.3123480 1.6129166 20
15 7 1.5748 1.6520 1.5743519 1.6518940 100 1.5743519 1.6518940 20

Horizontal plate
12 0.001 47.166 1.2258 47.2048673 1.2257703 100 47.2048673 1.2257703 20
12 0.01 14.549 1.2720 14.5501264 1.2720149 100 14.5501264 1.2720149 20
12 0.1 4.5424 1.3944 4.5423369 1.3943724 100 4.5423369 1.3943724 20
15 0.7 2.0205 1.5583 2.0757356 1.5530446 100 2.0757356 1.5530446 20
15 7 1.3622 1.6410 1.3618515 1.6413464 100 1.3618515 1.6413464 20
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Table 3. OMD-BSQLM results for the skin friction coefficient, heat transfer rate and surface temperature
at different values of ξ when Pr = 0.7, φ = 0.3, M = 0.5, Q = 0.01 and Rd = 0.6.

Vertical Plate

Cu-Water Nanofluid Ag-Water Nanofluid

ξ f ′′(ξ, 0) −θ′(ξ, 0) θ(ξ, 0) f ′′(ξ, 0) −θ′(ξ, 0) θ(ξ, 0)

0.1 3.1502197 0.8886284 2.2102538 3.4901209 0.8859706 2.2335515
0.2 2.9783142 0.7836947 2.0353093 3.2954705 0.7791175 2.0526246
0.3 2.8055275 0.6874567 1.8661087 3.1006493 0.6816661 1.8784674
0.4 2.6354158 0.6013814 1.7060758 2.9096575 0.5949833 1.7145224
0.5 2.4711001 0.5260086 1.5576812 2.7259292 0.5194660 1.5631829
0.6 2.3149074 0.4610286 1.4222383 2.5519493 0.4546541 1.4256179
0.7 2.1681887 0.4055214 1.2999488 2.3890815 0.3994990 1.3018590
0.8 2.0312907 0.3582374 1.1901080 2.2375714 0.3526578 1.1910409
0.9 1.9034739 0.3177938 1.0912546 2.0964877 0.3126913 1.0915734
1 1.7808520 0.2824192 1.0000000 1.9615149 0.2778150 1.0000000

Horizontal plate

0.1 2.0929952 0.8768285 2.2730937 2.1709163 0.8703743 2.3299696
0.2 1.9147577 0.7603163 2.0914784 1.9651128 0.7490266 2.1346661
0.3 1.7431456 0.6537272 1.9129913 1.7696198 0.6393135 1.9443078
0.4 1.5857671 0.5595096 1.7422446 1.5936813 0.5435780 1.7638210
0.5 1.4492674 0.4788634 1.5831252 1.4450572 0.4627300 1.5971702
0.6 1.3381426 0.4116324 1.4381961 1.3286458 0.3962184 1.4467514
0.7 1.2542162 0.3565745 1.3084563 1.2459879 0.3424128 1.3132268
0.8 1.1970874 0.3118610 1.1934924 1.1960098 0.2991830 1.1957896
0.9 1.1656347 0.2755951 1.0917901 1.1770321 0.2644615 1.0925707
1 1.1674280 0.2464322 1.0000000 1.2005270 0.2370678 1.0000000

Figures 4–7 depict the effects of nanoparticle volume fraction, thermal radiation, heat generation
and magnetic field parameter on the velocity profiles for both Ag and Cu nanofluids. It is observed
from the figures that Ag–water nanofluid shows better enhancement in the velocity profiles than
Cu–water nanofluid. This is because the viscosity of the Ag–water nanofluid is higher compared to
that of Cu–water nanofluid. The effect of using different types of nanofluids is more significant in the
vertical plate than on the horizontal plate. Figure 4 shows the influence of the magnetic parameter
on the dimensionless velocity. It is noted that the velocity is higher near the wall and lower far from
the wall for hydrodynamic flows (M = 0). The opposite trend is observed for the hydromagnetic
flows (M 6= 0). Moreover, increasing the magnetic parameter reduces the velocity distribution near
the wall. The magnetic parameter is known to represent the Lorentz force that opposes the flow.
The peak velocity decreases with the increasing values of the magnetic parameter due to the retarding
effect in the boundary layer region. As a result, the separation of the boundary layer occurs earlier
since the momentum boundary layer becomes thick. These findings concur with results reported by
Mamun et al. [12] and Azim et al. [16] in regular fluids.

Figure 5 shows the effect of nanoparticle volume fraction on the velocity profiles. It is seen that the
flow velocity increases around the vertical and horizontal plates with an increase in the nanoparticle
volume fraction. For both the vertical and horizontal plates, it is clear that the flow velocity is
significantly low for the conventional fluid (φ = 0) than for nanofluids (φ 6= 0). As expected, for the
conventional fluid, there is no change in velocity profiles for both plates. However, as the volume
fraction of nanoparticles increases, the velocity distribution also increases. This is due to an increase in
the momentum boundary layer thickness which is attributed to adding nanoparticles to the base fluid.
The nanoparticles enhance the velocity profiles due to the higher thermal conductivity of nanofluids.
For the horizontal plate, we also observe that, near the wall, the momentum boundary layer thickness
decreases as the volume fraction of silver particles increases and away from the wall, the boundary
layer thickness increases. Figure 6 is presented to show the effect of the heat generation parameter on
the dimensionless velocity. It is observed that more heat is generated within the boundary as the heat
generation parameter increases and, consequently, the fluid velocity increases as well. The increase in
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velocity is consistent with the physical consequence as the internal energy generation resulted from the
heat generation increases the buoyancy forces, which in turn enhance more flow along both the vertical
and horizontal plates. The effect of the thermal radiation parameter on the velocity distribution is
shown in Figure 7 for both Ag–water and Cu–water nanofluids. We observe that the velocity increases
within the boundary layer thickness as the thermal radiation parameter increases. Radiation accelerates
the fluid motion, thus enhancing the velocity of nanofluids.
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Figure 4. Velocity profiles for various values M. (a) vertical plate; (b) horizontal plate.
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Figure 5. Velocity profiles for various values φ. (a) vertical plate; (b) horizontal plate.
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Figure 6. Velocity profiles for various values Q. (a) vertical plate; (b) horizontal plate.
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Figure 7. Velocity profiles for various values Rd. (a) vertical plate; (b) horizontal plate.

Figures 8–11 show the influence of thermal radiation, nanoparticle volume fraction, heat
generation and magnetic field parameter on the temperature profiles for both nanofluids.
The temperature distribution in the case of Ag–water nanofluid is relatively higher than in the case
of Cu–water nanofluid. This is because the thermal conductivity of silver nanoparticles is higher
than that of Copper nanoparticles. The effect of using different types of nanofluids is more clear on
the horizontal plate than for the vertical plate. Figure 8 depicts the influence of the magnetic field
parameter on the temperature profiles. The figure shows that the magnetic field enhances the thickness
of the thermal boundary layer, thus increasing the temperature profiles. The effect of nanoparticle
volume fraction on the temperature profiles is shown in Figure 9. For the vertical and horizontal plates,
the thermal boundary layer thickness is enhanced when the nanoparticle volume fraction increases.
Physically, increasing the nanoparticle volume fraction causes an increase in the thermal conductivity
of the nanofluid, which in turn enhances the boundary layer thickness and an augmentation in the
temperature profiles. Similar results were reported by Shahzad et al. [44]. It is worth mentioning that
the temperature is significantly higher in the case of nanofluids than in the regular fluid (φ = 0). This
is due to the presence of high conductive silver and copper nanoparticles.

Figure 10 illustrates the effect of the heat generation parameter on the temperature profiles. It
is seen that the thermal boundary layer is enhanced when the heat generation parameter increases.
The energy resulted from internal heat generation increases the temperature of the fluid within the
boundary and increases the motion of the fluid. The influence of thermal radiation on the temperature
profiles is shown in Figure 11. The figure depicts that an increase in the thermal radiation parameter
improves the temperature profiles. As the temperature increases with increasing radiation parameter,

the thickness of the thermal boundary layer is enhanced. The larger values of the amount of
k∗kn f

4σ∗T3
∞

in
the radiation parameter indicate dominance in the thermal radiation over conduction. Thus, there is a
large amount of radiative heat energy being poured into the system. The fluid within the boundary
layer absorbs imitated heat from the heated plate because of the radiation effect. The radiated heat
ultimately increases the temperature of the fluid. The greater values of thermal radiation parameter
generate higher temperature and, consequently, the fluid motion is accelerated. Similar results were
obtained by Ali et al. [32] in the case of regular fluid.
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Figure 8. Temperature profiles for various values of M. (a) vertical plate; (b) horizontal plate.
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Figure 9. Temperature profiles for various values φ. (a) vertical plate; (b) horizontal plate.
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Figure 10. Temperature profiles for various values of Q. (a) vertical plate; (b) horizontal plate.
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Figure 11. Temperature profiles for various values Rd. (a) vertical plate; (b) horizontal plate.

Figures 12–15 present the variation of the local skin friction at different values of the thermal
radiation, heat generation, nanoparticle volume fraction and magnetic parameter for the Ag–water
and Cu–water nanofluids. The skin friction coefficient is higher in the Ag–water nanofluid compared
to the Cu–water nanofluid. Hence, the Ag–water nanofluid gives a high drag force in opposition to
the flow compared to the Cu–water nanofluid. For the vertical plate, the skin friction is higher for
the Ag–water nanofluid throughout the surface. However, for the horizontal plate, the skin friction
is higher for a Ag–water nanofluid close to the wall and higher for a Cu–water nanofluid far from
the wall. The effect of the magnetic parameter on the skin friction coefficient is shown in Figure 12.
The figure shows that, when the magnetic parameter increases, the skin friction coefficient decreases.
The magnetic force that opposes the flow decreases the shear stress at the wall, thus reducing the skin
friction coefficient.

The behaviour of the skin friction coefficient against the streamwise coordinate ξ for different
values of the nanoparticle volume fraction is plotted in Figure 13. The figure shows that an increase
in the nanoparticle volume fraction causes a decrease in the skin friction at the plates. In Figure 14,
the impact of the heat generation parameter on the local skin friction is exhibited. The figure reflects
that the skin friction factor increases with increasing heat generation parameter. As mentioned earlier,
increasing the heat generation parameter accelerates the flow and generates greater buoyancy force
and thus increases the skin friction coefficient. The influence of the thermal radiation parameter on the
skin friction coefficient is shown in Figure 15. The increase in the fluid motion due to thermal radiation
enhances the shear stress at the wall which in turn causes an increase in the skin friction coefficient.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

ξ

f
′′ (
0,
ξ)

Solid line : Cu−Water
Dashed line : Ag −Water
Solid line : Cu−Water
Dashed line : Ag −Water

M=0,0.8,1.2,1.8

(a)

0 0.2 0.4 0.6 0.8 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

ξ

f
′′ (
0,
ξ)

Solid line : Cu−Water
Dashed line : Ag −Water
Solid line : Cu−Water
Dashed line : Ag −Water

M=0,0.8,1.2,1.8

(b)

Figure 12. Skin friction coefficient for various values of M. (a) vertical plate; (b) horizontal plate.
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Figure 13. Skin friction coefficient for various values of φ. (a) vertical plate; (b) horizontal plate.

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

ξ

f
′′ (
0,
ξ)

Solid line : Cu−Water
Dashed line : Ag −Water
Solid line : Cu−Water
Dashed line : Ag −Water

Q=0.01, 0.08, 0.2, 0.3

(a)

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

ξ

f
′′ (
0,
ξ)

Solid line : Cu−Water

Dashed line : Ag −Water

Solid line : Cu−Water

Dashed line : Ag −Water

Q = 0.01, 0.08, 0.2, 0.3

(b)

Figure 14. Skin friction for various values of Q. (a) vertical plate; (b) horizontal plate.
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Figure 15. Skin friction coefficient for various values of Rd. (a) vertical plate; (b) horizontal plate.

Figures 16–19 show the effects of the thermal radiation, heat generation, nanoparticle volume
fraction and magnetic field parameter on the rate of heat transfer for both Ag and Cu nanofluids.
The rate of heat transfer is observed to be higher in the Cu–water nanofluid than in the Ag–water
nanofluid for both vertical and horizontal plates. An increase in the magnetic parameter reduces the
rate of heat transfer as seen in Figure 16. The increasing magnetic field parameter enhances the thermal
boundary layer thickness and consequently the heat transfer rate decreases due to an increase in the
magnetic field strength. In addition, the rate of heat transfer depends on the gradient of temperature
and, as the temperature gradient decreases with increasing values of the magnetic parameter, the heat
transfer rate also decreases.

Figure 17 depicts the impact of the nanoparticle volume fraction on the skin friction for the
different nanofluids. Increasing the nanoparticle volume fraction enhances the thermal conductivity of
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the nanofluids, which reduces the thermal boundary layer thickness and the temperature gradient
at the wall as observed from the figure. The influence of the heat generation on the heat transfer
rate is depicted in Figure 18. The figure shows that the heat transfer rate decreases with increasing
heat generation parameter. Since higher values of the heat generation parameter create a hot layer of
fluid near the surface which results in the temperature of the fluid to exceed the surface temperature,
accordingly, the rate of heat transfer from the surface decreases. Figure 19 depicts that increasing
values of the thermal radiation parameter enhances the fluid interfacial temperature, which in turn
makes the flow of the heat rate slower.
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Figure 16. Heat transfer rate for various values of M. (a) vertical plate; (b) horizontal plate.
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Figure 17. Heat transfer rate for various values of φ. (a) vertical plate; (b) horizontal plate.
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Figure 18. Heat transfer rate for various values of Q. (a) vertical plate; (b) horizontal plate.
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Figure 19. Heat transfer rate for various values of Rd. (a) vertical plate; (b) horizontal plate.

Figures 20–23 display the influence of the thermal radiation, heat generation, nanoparticle volume
fraction and magnetic field parameter on the surface temperature for the Ag–water and Cu–water
nanofluids. The surface temperature is noted to be higher in the Ag–water nanofluid than in the
Cu–water nanofluid for both the vertical and horizontal plates. In Figure 20, we observe that, when the
magnetic field is applied in the system, the surface temperature is enhanced for both the vertical and
horizontal plates. As the magnetic field increases, the surface temperature is enhanced. The interaction
between the magnetic field and the fluid motion increases the temperature of the fluid within the
boundary layer which in turn increases the thermal boundary layer thickness as well as the surface
temperature. Figure 21 shows that adding nanoparticles to the fluid enhances the surface temperature
since the surface temperature increases with increasing nanoparticle volume fraction. The surface
temperature increases with increasing values of the heat generation parameter as observed in Figure 22.
This is because the temperature within the boundary layer increases for increasing heat generation
parameter and thus enhances the surface temperature. Figure 23 shows that increasing the thermal
radiation parameter also enhances the surface temperature.
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Figure 20. Surface temperature for various values of M. (a) vertical plate; (b) horizontal plate.
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Figure 21. Surface temperature for various values of φ. (a) vertical plate; (b) horizontal plate.
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Figure 22. Surface temperature for various values of Q. (a) vertical plate; (b) horizontal plate.
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Figure 23. Surface temperature for various values of Rd. (a) vertical plate; (b) horizontal plate.

5. Conclusions

The multi-domain bivariate spectral quasilinearisation method was used to analyze conjugate heat
transfer in MHD free convection flow of copper water and silver water nanofluids over vertical and
horizontal plates. The comparison with previously published results was performed and the results
were in good agreement. The effects of nanofluids, heat generation, thermal radiation, nanoparticle
volume fraction and magnetic field parameter on the fluid properties and flow characteristics were
discussed appropriately with numerical computations. The results obtained in the present study can
have practical importance in various problems such as ablation or perspiration cooling problems.
The results of the paper are of engineering interest where heat transfer processes are controlled in
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polymer processing and nuclear reactor cooling systems. and designing and operation of plate heat
exchangers. From the obtained results and discussion, the following conclusions can be drawn:

• The Ag–water nanofluid has higher velocity and temperature profiles, skin friction coefficient,
and surface temperature than the Cu–water nanofluid. However, the reverse is true for the rate
of heat transfer.

• Heat generation, thermal radiation, nanoparticle volume fraction and magnetic field parameter
enhance the velocity of the nanofluid far from the wall. However, an increase in the magnetic
field parameter significantly decreases the velocity of the nanofluid near the wall.

• Increasing the heat generation, thermal radiation, nanoparticle volume fraction and magnetic field
parameter improves the temperature distribution and the surface temperature while reducing
the rate of heat transfer.

• The overlapping multi-domain bivariate spectral quasilinearisation method holds great potential
for solving highly nonlinear conjugate heat transfer problems since the method gives accurate
results using a minimal number of grid points.
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Abbreviations

The following abbreviations are used in this manuscript:
B(x) External uniform magnetic field
B0 Magnetic strength
p Pressure
Ra Rayleigh number
g Gravitational acceleration
k Thermal conductivity (W/m K)
Cp Specific heat capacity
T Fluid temperature (K or ◦C )
qh Heat flux
f Dimensionless stream function
(u, v) Velocity component in Cartesian coordinate
Tb Constant temperature
T∞ Ambient temperature
Q0 Rate of heat generation
qr Radiative heat flux
M Magnetic field parameter
Pr Prandtl number
Rd Radiation parameter
Q Heat generation parameter
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Greek Symbols
η Scaled boundary layer coordinate
ξ Streamwise coordinate
σ Electrical conductivity (S m−1)
α Thermal diffusivity m2s−1

µ Dynamic viscosity kg m−1s−1

θ Dimensionless temperature
φ Nanoparticle volume fraction parameter
ψ Stream function m2s−1

ρ Density of the fluid ( Kg/m3)
β Thermal expansion coefficient
ν Kinematic viscosity m2s−1

Subscripts
n f Nanofluid phase
f Fluid phase
s Solid phase
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