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Abstract: There are several types of deterministic compartmental models for disease epidemiology
such as SIR, SIS, SEIS, SEIR, etc. The exposed population group in, for example SEIS or SEIR, usually
represents individuals in the incubation class. Time delays (of which there are several types) when
incorporated into a SIR or SIS model, also fulfil the role of the incubation period without necessarily
adding another compartment to the model. This paper incorporates time delays into a SIS model
that describes the transmission dynamics of cutaneous leishmaniasis. The time lags account for the
incubation periods within the sandflies vector, the human hosts and the different animal groups
that serve as reservoir hosts. A threshold value, R0, of the model is computed and used to study
the disease-free equilibrium and endemic equilibrium of the system. Analysis demonstrating local
and global stability of the disease-free equilibrium when R0 < 1 is provided for all n + 1 population
groups involved is provided. The existence of an endemic equilibrium is only guaranteed when
R0 > 1 and numerical analysis of the endemic equilibrium for a human host, a vector host and a
single animal reservoir host that is globally stable is also provided.

Keywords: leishmaniasis transmission; multiple delays; stability analysis
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1. Introduction

Leishmaniasis is primarily a zoonotic disease caused by protozoan parasites that are transmitted
to humans by female sandflies. Animals including dogs, cattle, rodents and many others are the main
reservoir of the parasite and occasionally humans in some localities. About 30 different species of
sandflies are known to transmit more than 20 species of Leishmania parasites resulting in human
infection. The incubation period within humans and animals range from two to eight weeks, while that
in the sandflies range from four to 25 days [1]. Several forms of the disease have been identified, with
the main types being cutaneous, visceral, and mucocutaneous leishmaniasis. Cutaneous leishmaniasis
(CL) is the most dominant form of the disease leading to skin lesions that can lead to lifelong scars
and disabilities. Visceral leishmaniasis is the most fatal, causing enlargement of the spleen and liver,
while mucocutaneous leishmaniasis affects mostly the mucous membranes of the nose and mouth,
destroying them in the process.

There is currently no vaccine for CL and although the disease can be treated, the majority of
cases occur in developing countries. Estimates of new cases of CL per year range from about 700, 000
to 1.2 million or more worldwide [2] . In recent years, CL has become increasingly prevalent in
urban areas of Latin America, north Africa and central Asia and the Middle East, with these regions
contributing about 95% of new CL cases annually (see Figure 1). Within the endemic regions, six
countries, namely; Afghanistan, Algeria, Brazil, Colombia, Iran and Syria, accounted for more than two
thirds of new CL cases in 2015 (see Figure 2) [3]. Symptoms of CL in humans are primarily ulcerated
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lesions on the skin that can take anywhere between a few months and a few years to heal, though
cases lasting longer than a year are rare. The lesions usually leave depressed scars on the skin, and can
have debilitating effects depending on where they occur. Treatment when available can hasten the
healing of lesions and prevents spreading to other parts of the body. Although recognized as one of
the most important and widespread parasitic disease in the world, CL prevention and control remains
a challenge for health authorities in some countries [4].

Figure 1. Number of new cases of cutaneous leishmaniasis within the most endemic region of the
world between 2005–2015. Data from the World Health Organization (WHO) [3].

Figure 2. Number of new cases of cutaneous leishmaniasis for the most endemic countries of the world
between 2005–2015. Data from WHO [3].

Mathematical modeling and analysis has been at the center of infectious disease epidemiology
since the classical works of Ross [5] and Macdonald [6]. Various forms of compartmental models for
infectious diseases have been formulated [7]. Several models studying the transmission dynamics of CL
have been proposed [8–14]. See [15,16] for a review of mathematical models for visceral leishmaniasis.
The majority of these models are deterministic. Bearing in mind that CL is a zoonotic disease that is
transmitted to humans by sandflies, in an attempt to reduce the complexities in analyzing models
of the disease that incorporate time delays, some authors have only used a single delay, limiting it
either to the human host or animal reservoirs. In [17], a mathematical model for CL that incorporates
a time delay between infection and infectiousness for the reservoir (animals) hosts only is provided.
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Their model does not take into consideration time delays in humans (the incidental) host or sandflies
(vector) host. In a more recent paper by Roy et al. [18], a model for CL that focuses on the human host
and sandflies vector is provided with a single delay incorporated only in the human host. Because
within a single locality many different animals can serve as reservoir for CL, Agyingi et al. [19]
developed a susceptible-infectious model that describes the transmission dynamics of cutaneous
leishmaniasis. The model incorporated a single vector population, multiple animal populations that
serve as reservoirs [20] and a human host population. Because the leishmaniasis parasite undergoes
an incubation period within the animal reservoirs, sandflies vector and human host, this paper
builds on the work in [19] by incorporating time delays in all populations involved, distinguishing
it from previous models. The delays represent the time duration between inoculation of susceptible
individuals and them becoming infectious.

The paper is organized as follows: the mathematical model is presented in Section 2, followed by
the basic properties for nonnegativity, derivation of a threshold value and the existence of equilibriums
in Section 3. The local and global stability of the disease free equilibrium is analytically investigated in
Section 4. A numerical study of the endemic equilibrium is considered in Section 5 and concluding
remarks are given in Section 6.

2. The Mathematical Model

The model presented below builds on the deterministic model in [19]. The CL model in [19]
considers n− 1 animal populations that serve as reservoirs, a human host population, and a single
sand flies vector population. The model consists of n + 1 susceptible classes and n + 1 infectious
classes. In this work, we update all 2(n + 1) classes of susceptible and infectious populations with
time delays that account for the incubation period of the parasite within each population of reservoirs,
hosts, and vectors. The schematics of the 2(n + 1) compartmental SIS model is given in Figure 3.
As an example, the susceptible compartment label S1 interacts with infectious sandflies from the
compartment I f , resulting in an outflow rate δ1ρ1 into the compartment I1. S1 is also depleted by
natural death at rate σ1. The S1 compartment is populated through a birth rate β1N1 and recovery rate
γ1 I1. The same process is repeated in all n + 1 susceptible compartments.

The system of equations associated with the schematic diagram that governs the model are:

dSk
dt

= βk Nk − δkρk
Sk(t)

Nk
I f (t− τk) + γk Ik − σkSk, k = 1, . . . , n

dIk
dt

= δkρk
Sk(t)

Nk
I f (t− τk)− γk Ik − σk Ik, k = 1, . . . , n

dS f

dt
= β f N f −

n

∑
k=1

δkρ f ,k
Ik(t− τ∗)

Nk
S f (t) + γ f I f − σf S f

dI f

dt
=

n

∑
k=1

δkρ f ,k
Ik(t− τ∗)

Nk
S f (t)− γ f I f − σf I f .

(1)

All parameters in the above system of equations are positive and their descriptions are stated in
Table 1. All susceptible classes are depleted to populate the infectious classes, and are being replenished
at some constant birth (β’s) and recovery (γ’s) rates. All population groups decay naturally at some
constant rate (given by the σ’s).
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Figure 3. Schematic diagram of the SIS model. The dash lines represent interaction between infectious
and susceptible populations, while the solid lines represent population movement into and out of a
compartment. For i = 1, 2, . . . , n, f , the susceptible compartment Si interacts with infectious sandflies
from the compartment I f , with an outflow rate δiρi into compartment Ii. Si decreases by a natural
death rate of σi. The Si compartment is populated through births at a rate of βi Ni and through recovery
at a rate of γi Ii.

Table 1. Definition of the parameters of the model.

Parameter Definition

Sk susceptible human/animal population for k = 1, . . . , n
Ik infectious human/animal population for k = 1, . . . , n
Nk total human/animal population for k = 1, . . . , n
S f susceptible sandfly population
I f infectious sandfly population
N f total sandfly population
βk birth rate for human/animal for k = 1, . . . , n
β f sandfly reproduction rate
σk natural death rate for human/animal for k = 1, . . . , n
σf sandfly death rate
γk recovery rate for human/animal for k = 1, . . . , n
γ f sandfly recovery rate
δk average biting rate of human/animal by sandflies for k = 1, . . . , n
ρk transmission rate from human/animal to sandfly for k = 1, . . . , n
ρ f ,k transmission rate from sandfly to human/animal for k = 1, . . . , n
τk incubation period in human/animal population for k = 1, . . . , n
τ∗ incubation period in sandfly population

We define the initial conditions of the system (1) as

Sk(0) = Sk0 > 0, Ik(t) = φk(t) > 0, for k = 1, . . . , n

S f (0) = S f 0 > 0, I f (t) = ϕ(t) > 0,

t ∈ [−τ, 0], τ = max{τ1, . . . , τn, τ∗},
(2)

where φk(t) for k = 1, . . . , n and ϕ(t) are continuous functions.
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Remark 1. We note here that assumptions such as cutaneous leishmaniasis not leading to any deaths, and equal
birth/death rates have been made in the model (1). In this case, the different total populations, N1, . . . , Nn, and
N f are constant, so that Nk = Sk(t) + Ik(t) for k = 1, . . . , n, and N f = S f (t) + I f (t). (As a consequence it is
clear from (1) that S′k(t) + I′k(t) = 0 for k = 1, . . . , n, and S′f (t) + I′f (t) = 0).

The following result shows that the model (1) with the initial conditions (2) is well-posed.

Theorem 1. All solutions of the model (1) with initial conditions (2) are positive and bounded.

Proof. Let t∗ be the smallest positive time value where one of the dependent variables in question turns
negative, i.e., Z(t∗) = 0 and dZ/dt(t∗) ≤ 0 where Z is one of the functions S1, . . . , Sn, I1, . . . , In, S f , I f .
Now this Z can not be any of the Sk functions, because dSk/dt(t∗) > 0 when Sk(t∗) = 0 and t∗ was the
smallest positive time value where any of these functions turn negative, i.e., Ik(t∗) ≥ 0. Similarly, Z
can not be any of the Ik functions because dIk/dt(t∗) > 0 as Sk(t∗) > 0 and I f (t∗ − τk) > 0 because of
the minimality of t∗. Analogous arguments prove that Z can not be S f or I f either, thus the statement
is verified.

The boundedness of the solutions follow from the fact that the different populations are constant
populations with Nk = Sk(t) + Ik(t) for k = 1, . . . , n and N f = S f (t) + I f (t).

Remark 2. Theorem 1 shows that the system (1) with initial conditions (2) is positively invariant on the region
defined by

Ω = {0 ≤ S f , 0 ≤ I f , 0 ≤ S f + I f = N f , 0 ≤ Sk, 0 ≤ Ik, 0 ≤ Sk + Ik = Nk, k = 1, . . . , n}.

Further, by the fundamental theorem of functional differential equations [21], the model admits a unique solution.

3. Analysis of the Model

In this section we derive a threshold value of the model and used it to establish the existence of a
positive nonzero equilibrium.

In the analysis that follows, we reduced the 2(n + 1) system Equations (1) to a smaller system
of n + 1 equations by focusing only on the equations for the infectious populations. We achieve
this by eliminating the equations for the susceptible populations using the conservation equations
Nk = Sk(t) + Ik(t) for k = 1, . . . , n and N f = S f (t) + I f (t). Note that we have assumed that βk = σk
for k = 1, . . . , n and β f = σf . The infective equations of the model are now:

dIk
dt

= δkρk
(Nk − Ik)

Nk
I f (t− τk)− γk Ik − σk Ik, k = 1, . . . , n

dI f

dt
=

n

∑
k=1

δkρ f ,k
Ik(t− τ∗)

Nk
(N f − I f )− γ f I f − σf I f .

We normalize the above equations by defining the dimensionless variables y = I f /N f and
xk = Ik/Nk for k = 1, . . . , n. The infective equations now become

dxk
dt

= ck[αk(1− xk)y(t− τk)− xk]

dy
dt

= c0[(1− y)
n

∑
k=1

λkxk(t− τ∗)− y],
(3)

where y ≥ 0, xk ≥ 0 for k = 1, . . . , n, c0 = σf + γ f and ck = σk + γk for k = 1, . . . , n and where

αk =
δkρk N f

(σk + γk)Nk
, λk =

δkρ f ,k

(σf + γ f )
, for k = 1, . . . , n.
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From this point forward, for the purpose of simplicity, we assume that τ1 = τ2 = . . . = τn = τ.
It is clear that the normalization leading to the system of the Equations (3) constraints the solution
space to the positive unit box B = {(x1, . . . , xn, y)|0 ≤ x1, . . . , xn ≤ 1; 0 ≤ y ≤ 1}. The following result,
which is a consequence of Theorem 1, establishes that the solution domain given by the unit box B is
positively invariant.

Lemma 1. All solutions of the system (3) that start in the region B remain in B for all t ≥ 0 with the exception
of the equilibrium solution at the origin.

The proof of this result follows from Theorem 1.
Next we derive a threshold value of the model (3). It is a useful metric that helps determine

whether or not an infectious disease can spread through a population. If the infection is to spread so
that we have an outbreak, then we need dxk

dt > 0 for k = 1, . . . , n and dy
dt > 0 at t = 0. Thus we need

from (3) that,

αk(1− xk)y(t− τ)− xk > 0, for k = 1, . . . , n

(1− y)
n

∑
k=1

λkxk(t− τ∗)− y > 0.

The first inequality yields
αk(1− xk)y(t− τ) > xk, (4)

for k = 1, . . . , n, and the second inequality gives

(1− y)
n

∑
k=1

λkxk(t− τ∗) > y. (5)

Multiplying both sides of (4) by λk we get

αkλk(1− xk)y(t− τ) > λkxk,

for k = 1, . . . , n, which upon summing leads to

n

∑
k=1

αkλk(1− xk)y(t− τ) >
n

∑
k=1

λkxk. (6)

By observing that 1− xk ≤ 1 and 1− y ≤ 1, the inequalities in (5) and (6), respectively, become

n

∑
k=1

λkxk(t− τ∗) > y, (7)

and
n

∑
k=1

αkλky(t− τ) >
n

∑
k=1

λkxk. (8)

From (7) and (8) we get that
n

∑
k=1

αkλky(t− τ) > y.

Noting again that y(t− τ) ≤ y(t) at the start of the infection, the above inequality becomes

n

∑
k=1

αkλk > 1.
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The quantity on the left hand side gives a threshold value of the system (3), and is denoted by R0.
Thus, we have

R0 =
n

∑
k=1

αkλk.

Remark 3. We remark here that the threshold value R0 computed above is equivalent to the basic reproduction
number obtained in [19]. The basic reproduction number is the average number of secondary cases caused by
introducing an infectious individual in a completely susceptible population. Based on the above computation of
the threshold value, we see that each animal/human population xk, contributes αkλk infections towards R0.

Further we note that for each population xk, αk is given as the product of the average time spent in an
infectious state 1/(σk + γk), the sandflies average biting rate δk, the transmission rate from human/animal to
sandflies ρk, and the ratio of total sandflies to human/animal population N f /Nk. Similarly, λk is given as the
product of the average time spent by sandflies in an infectious state 1/(σf + γ f ), their average biting rate δk,
and the transmission rate from sandflies to human/animal ρ f ,k.

We now turn our attention to computing the equilibriums of the system (3). At the equilibrium
points, (x1, . . . , xn, y), we have that ẋk = 0, (k = 1, . . . , n) and ẏ = 0, leading to the equations

xk =
αky

1 + αky
, (k = 1, . . . , n) and

n

∑
k=1

λkxk =
y

1− y
.

Eliminating xk from the above equations yields the following equation:

n

∑
k=1

αkλky
1 + αky

− y
1− y

= 0. (9)

The equation (9) governs the equilibriums of the system and an immediate observation is that
y = 0 and consequently (x1, . . . , xn, y) = (0, . . . , 0, 0) is an equilibrium point. We call (0, . . . , 0, 0) the
disease-free equilibrium (DFE) of the model (3). Further, using the Equation (9), the following result
establishes the existence of a unique positive equilibrium other than the DFE, which we refer to as the
endemic equilibrium.

Theorem 2 ([19]). System (3) has a unique equilibrium solution with positive coordinates if the threshold value
R0 = ∑n

k=1 αkλk > 1. If R0 ≤ 1, the system has no equilibria with positive coordinates. The origin is an
equilibrium in all cases.

The proof of this result is given in Theorem 3.1 in Agyingi et al. [19].
We remark here that the equations defining the equilibrium points are identical to the equations

for the ordinary differential equation model in [19], thus the result describing the equilibriums is also
identical. We will investigate the stability of the DFE and the endemic equilibrium in Sections 4 and 5
respectively.

4. Analysis of the Disease-Free Equilibrium

In this section we study the long term behavior of the disease-free equilibrium of the proposed
model. We start by computing the characteristic equation of the delay system (3) which is given as

det ( J0 + e−sτJτ + e−sτ∗ Jτ∗ − sI ) = 0, (10)

where I is the (n + 1)× (n + 1) identity matrix and where the Jacobian matrices J0, Jτ , and Jτ∗ are
defined respectively as
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J0 =



−c1α1y− c1 0 0 . . . 0
0 −c2α2y− c2 0 . . . 0
...

. . . . . . . . .
...

... 0 −cnαny− cn 0

0 . . . . . . 0 −c0
n
∑

k=1
λkxk − c0


,

Jτ =


0 0 . . . 0 c1α1(1− x1)

0 0 . . . 0 c2α2(1− x2)
...

...
...

...
0 0 . . . 0 cnαn(1− xn)

0 0 . . . 0 0

 and

Jτ∗ =


0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0

c0λ1(1− y) c0λ2(1− y) . . . c0λn(1− y) 0

 .

Bearing in mind that the origin is the DFE of the system, the characteristic equation evaluated at
the DFE yields

det



−c1 − s 0 . . . 0 e−sτc1α1

0 −c2 − s
. . .

... e−sτc2α2
...

. . . . . . 0
...

0 . . . 0 −cn − s e−sτcnαn

e−sτ∗c0λ1 e−sτ∗c0λ2 . . . e−sτ∗c0λn −c0 − s


= 0,

and on evaluating the above determinant, the characteristic equation at the disease-free equilibrium
becomes

(−1)n+1
n

∏
j=0

(cj + s) + (−1)ne−s(τ+τ∗)c0

n

∑
k=1

n

∏
j=1;j 6=k

(cj + s)ckαkλk = 0. (11)

Theorem 3. The disease-free equilibrium of the system (3) is unstable if R0 > 1 and stable if R0 < 1.

Proof. We begin by showing that the disease-free equilibrium is unstable if R0 > 1. Denoting the
function on the left side of (11) by f (s), that is,

f (s) = (−1)n+1
n

∏
j=0

(cj + s) + (−1)ne−s(τ+τ∗)c0

n

∑
k=1

n

∏
j=1;j 6=k

(cj + s)ckαkλk, (12)

when s = 0, we get

f (0) = (−1)n+1
n

∏
j=0

cj + (−1)n
n

∏
j=0

cj

n

∑
k=1

αkλk.

Observing that ∑n
k=1 αkλk = R0, the preceding equation becomes

f (0) = (−1)n
n

∏
j=0

cj[R0 − 1]. (13)
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We see from (12) that if n is odd, then f (s) → ∞ as s → ∞, and if R0 > 1 in (13) then f (0) < 0.
Similarly, if n is even, then f (s)→ −∞ as s→ ∞, and f (0) > 0 as long as R0 > 1. Thus there exists a
positive real root of f (s), establishing the instability of the disease-free equilibrium.

Next we show that the disease-free equilibrium is stable if R0 < 1. Re-writing Equation (11) and
dividing both sides by (−1)n+1, we obtain

n

∏
j=0

(cj + s) = e−s(τ+τ∗)c0

n

∑
k=1

n

∏
j=1;j 6=k

(cj + s)ckαkλk,

which is equivalent to

c0 + s = e−s(τ+τ∗)c0

(
c1α1λ1

c1 + s
+

c2α2λ2

c2 + s
+ · · ·+ cnαnλn

cn + s

)
. (14)

Suppose that there is a s ≥ 0 which satisfies the above equation, then we have that,

c0 + s = e−s(τ+τ∗)c0

(
c1α1λ1

c1 + s
+

c2α2λ2

c2 + s
+ · · ·+ cnαnλn

cn + s

)
< e−s(τ+τ∗)c0

(
c1α1λ1

c1
+

c2α2λ2

c2
+ · · ·+ cnαnλn

cn

)
= e−s(τ+τ∗)c0

n

∑
k=1

αkλk

= e−s(τ+τ∗)c0R0.

We get from the above computation that

s < c0

(
R0

es(τ+τ∗)
− 1
)

. (15)

If s ≥ 0 and R0 < 1, then the righthand side of the inequality (15) is negative which is a
contradiction. Therefore all real eigenvalues are negative when R0 < 1.

Further, we investigate whether there are complex eigenvalues with positive real parts. Suppose
that s = ν + iω, where ν, ω > 0, then from Equation (14) we get

c0 + ν + iω = e−(ν+iω)(τ+τ∗)c0

(
c1α1λ1

c1 + ν + iω
+

c2α2λ2

c2 + ν + iω
+ · · ·+ cnαnλn

cn + ν + iω

)
.

Re-writing the above equation we get

1 +
ν

c0
+ i

ω

c0
= e−ν(τ+τ∗)[cos(ω(τ + τ∗))− i sin(ω(τ + τ∗))]

×
(

c1α1λ1

(c1 + ν)2 + ω2 (c1 + ν− iω) + · · ·+ cnαnλn

(cn + ν)2 + ω2 (cn + ν− iω)

)
.

Equating the real and imaginary parts of the above equation we respectively obtain

1 +
ν

c0
= cos(ω(τ + τ∗))

(
c1α1λ1(c1 + ν)

(c1 + ν)2 + ω2 + · · ·+ cnαnλn(cn + ν)

(cn + ν)2 + ω2

)
e−ν(τ+τ∗)

−ω sin(ω(τ + τ∗))

(
c1α1λ1

(c1 + ν)2 + ω2 + · · ·+ cnαnλn

(cn + ν)2 + ω2

)
e−ν(τ+τ∗). (16)
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and

ω

c0
= −ω cos(ω(τ + τ∗))

(
c1α1λ1

(c1 + ν)2 + ω2 + · · ·+ cnαnλn

(cn + ν)2 + ω2

)
e−ν(τ+τ∗)

− sin(ω(τ + τ∗))

(
c1α1λ1(c1 + ν)

(c1 + ν)2 + ω2 + · · ·+ cnαnλn(cn + ν)

(cn + ν)2 + ω2

)
e−ν(τ+τ∗). (17)

Adding the squares of both sides of Equations (16) and (17), we get that

(
1 +

ν

c0

)2
+

ω2

c2
0
=

( n

∑
k=1

ckαkλk(ck + ν)

(ck + ν)2 + ω2

)2

+

(
ω

n

∑
k=1

ckαkλk
(ck + ν)2 + ω2

)2
 e−2ν(τ+τ∗)

<

(
n

∑
k=1

ckαkλk(ck + ν)

(ck + ν)2 + ω2

)2

+ ω2

(
n

∑
k=1

ckαkλk
(ck + ν)2 + ω2

)2

<

(
n

∑
k=1

ckαkλk
(ck + ν)

)2

+ ω2

(
n

∑
k=1

ckαkλk
(ck + ν)2

)2

<

(
n

∑
k=1

ckαkλk
ck

)2

+ ω2

(
n

∑
k=1

ckαkλk

c2
k

)2

<

(
n

∑
k=1

αkλk

)2

+ ω2

(
n

∑
k=1

αkλk
ck

)2

< R2
0 +

ω2

c2∗
R2

0,

where c∗ = min{c1, c2, . . . , cn}. The above inequality yields(
1 +

ν

c0

)2
+

ω2

c2
0
< R2

0

(
1 +

ω2

c2∗

)
,

which cannot be satisfied by any positive ν and ω values when R0 < 1, if we impose the sufficient
condition that c∗ ≥ c0. Therefore there are no complex eigenvalues with positive real parts. Also
observe that if ν = 0, there are no imaginary eigenvalues since no ω > 0 satisfies the above inequality.
We conclude that the disease-free equilibrium is locally asymptotically stable.

Remark 4. The condition that c∗ ≥ c0 in the above proof is only a sufficient condition since the disease-free
equilibrium does not exhibit any form of instabilities. The disease-free equilibrium remains stable even when
c∗ ≤ c0 as demonstrated in the next result.

We complete our analysis of the disease-free equilibrium by providing the following global
stability result, which is stronger than local stability whenever the threshold value R0 is smaller than 1.

Theorem 4. The disease-free equilibrium of the system (3) is globally asymptotically stable if R0 < 1.

Proof. We start with the first equation of the system (3), that is, for k = 1, . . . , n we have

dxk
dt

= ck[αk(1− xk)y(t− τ)− xk].

Recalling from Remark 1 that all solutions are contained within a unit box, we have the differential
inequalities

dxk
dt
≤ ck[αky(t− τ)− xk], k = 1, . . . , n,

which are the same as
dxk
dt

+ ckxk ≤ ckαky(t− τ) k = 1, . . . , n.
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Multiplying both sides of the preceding inequalities by eckt, we obtain that

dxk
dt

eckt + ckxkeckt =
d
dt
(xk(t)eckt) ≤ ckαkeckty(t− τ), k = 1, . . . , n.

Integrating the above inequalities on the interval (0, t), we obtain

xk(t)eckt − xk(0) ≤
∫ t

0
ckαkecksy(s− τ) ds, k = 1, . . . , n.

Rearranging these inequalities, we have that

xk(t) ≤ e−cktxk(0) + e−ckt
∫ t

0
ckαkecksy(s− τ) ds, k = 1, . . . , n.

Now this implies that for k = 1, . . . , n,

xk(t) ≤ e−cktxk(0) + e−ckt sup y(t)
∫ t

0
ckαkecks ds = e−cktxk(0) + sup y(t)(αk − αke−ckt).

Thus we get that
lim sup

t
xk(t) ≤ αk lim sup

t
y(t), k = 1, . . . , n. (18)

In a similar fashion, taking the second equation of the system (3), that is,

dy
dt

= c0[(1− y)
n

∑
k=1

λkxk(t− τ∗)− y],

and bearing in mind Remark 1, we obtain the differential inequality

dy
dt
≤ c0[

n

∑
k=1

λkxk(t− τ∗)− y],

which is the same as
dy
dt

+ c0y ≤ c0[
n

∑
k=1

λkxk(t− τ∗)].

Again, multiplication by ec0t gives

dy
dt

ec0t + c0yec0t =
d
dt
(y(t)ec0t) ≤ c0ec0t[

n

∑
k=1

λkxk(t− τ∗)],

and then integration on the interval (0, t) yields

ec0ty(t)− y(0) ≤
∫ t

0
c0ec0sλ1x1(s− τ∗) ds + · · ·+

∫ t

0
c0ec0sλnxn(s− τ∗) ds.

We again rewrite this as

y(t) ≤ e−c0ty(0) + e−c0t
∫ t

0
c0ec0sλ1x1(s− τ∗) ds + · · ·+ e−c0t

∫ t

0
c0ec0sλnxn(s− τ∗) ds.

Taking the supremums we get

sup y(t) ≤ e−c0ty(0) + ec0t sup x1(t)
∫ t

0
c0ec0sλ1 ds + · · ·+ ec0t sup xn(t)

∫ t

0
c0ec0sλn ds.
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After integration, we then obtain

lim sup
t

y(t) ≤ λ1 lim sup
t

x1(t) + · · ·+ λn lim sup
t

xn(t). (19)

Combining the inequalities (18) and (19), we get

lim sup
t

y(t) ≤ α1λ1 lim sup
t

y(t) + · · ·+ αnλn lim sup
t

y(t) = lim sup
t

y(t)
n

∑
k=1

αkλk.

The preceding inequality is the same as

lim sup
t

y(t) ≤ R0 lim sup
t

y(t).

Since R0 < 1, we get that lim sup
t

y(t) = 0; consequently, by (18), lim sup
t

xk(t) = 0 for k = 1, . . . , n.

This concludes the proof.

5. Numerical Results and Discussion

In this section, we continue our analysis of the equilibriums by considering the case n = 2 of the
system (3), where the x1 variable represents a proportion of infectious human population, x2 variable
represents a proportion of infectious animal population and y is a proportion of infectious sandflies.
Here we numerically confirm the theoretical results established in the previous section on the stability
of the disease-free equilibrium. Next we investigate the stability of the endemic equilibrium for
different parameter values of the model, in particular, the population densities and time delays.

The parameter values used in the analysis are mostly similar to parameter values in related
works [17–19], or arbitrarily chosen to explore the behavior of the model. The average biting rates of
human and animal by sandflies are equal and set at δ1 = δ2 = 0.25 per day. The transmission rate from
human and animal to sandflies are also equal and set at ρ1 = ρ2 = 0.25. The transmission rate from
sandflies to humans and animals are equal and set at ρ f ,1 = ρ f ,2 = 0.25. The death rate of humans,
animals and sandflies respectively are σ1 = 0.0001 per day, σ2 = 1/365 per day, and σf = 1/14 per day.
Values for the recovery rates of humans, animals and sandflies respectively are γ1 = 12/365 per day,
γ2 = 5/365 per day and γ f = 1/14 per day.

Because animals are mostly the reservoir of the parasite, the initial conditions for all simulations
reported below were set at x1(0) = 0, x2(0) = 0.1 and y(0) = 0. We performed multiple simulations
in which the initial conditions were perturbed and no changes in the behavior of the equilibrium
solutions were observed.

In the simulations that follow, we use two sets of time delays, {τ = 28, τ∗ = 14} which is
well within the known incubation periods, and extreme values {τ = 1000, τ∗ = 1000} which are
biologically impossible. The very extreme set of time delays was chosen simply to investigate the
nature of the stability of the endemic equilibrium, that is, whether there exist critical delay values at
which bifurcations take place.

The calculated threshold value R0 of the system for the stated parameter values is given as
R0 = α1λ1 + α2λ2, or R0 = 0.2985N f /N1 + 0.5988N f /N2. It is therefore evident that the sandflies to
human/animal ratios determines whether R0 < 1 or R0 > 1. We examine each of these cases below.

We begin with the case where the ratios N f /Nk ≤ 1 for k = 1, 2 and where R0 < 1. The time
evolution of all infectious classes is demonstrated in Figure 4, where there are fewer sandflies compare
to humans/animals, and in Figure 5, where the densities of sandflies, humans and animals are equal.
For population densities N1 = N2 = 5000 and N f = 2500, the results in Figures 4a are for the time
delays {τ = 28, τ∗ = 14}, while the results in Figure 4b are for the time delays {τ = τ∗ = 1000}.
Similarly, for equal population densities N1 = N2 = N f = 12, 500, the results in Figures 5a are for the
time delays {τ = 28, τ∗ = 14}, while the results in Figure 5b are for the time delays {τ = τ∗ = 1000}.
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The results in Figures 4 and 5 show that the disease dies out in both cases since R0 < 1. The presence
of very large delays only induces small oscillations whose amplitude decreases with time and all
solutions converge to the disease-free equilibrium that is asymptotically stable.
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Figure 4. Time evolution of infectious human population x1(t), infectious animal population x2(t)
and infectious sandflies population y(t) for parameter values δ1 = δ2 = 0.25, ρ1 = ρ2 = 0.25,
ρ f ,1 = ρ f ,2 = 0.25, σ1 = 0.0001, σ2 = 1/365, σf = 1/14, γ1 = 12/365, γ2 = 5/365, γ f = 1/14,
N1 = N2 = 5000 and N f = 2500. The plots given in (a) are for τ = 28 and τ∗ = 14, while the plots in
(b) are for τ = τ∗ = 1000.
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Figure 5. Time evolution of infectious human population x1(t), infectious animal population x2(t)
and infectious sandflies population y(t) for parameter values δ1 = δ2 = 0.25, ρ1 = ρ2 = 0.25,
ρ f ,1 = ρ f ,2 = 0.25, σ1 = 0.0001, σ2 = 1/365, σf = 1/14, γ1 = 12/365, γ2 = 5/365, γ f = 1/14,
N1 = N2 = 12500 and N f = 12500. The plots given in (a) are for τ = 28 and τ∗ = 14, while the plots in
(b) are for τ = τ∗ = 1000.

We now turn our attention to the case where for k = 1, 2, the ratios N f /Nk > 1 and where R0 > 1.
First we note that it is possible for all k = 1, 2, the ratios N f /Nk > 1 to still lead to R0 < 1. As an
example, if N f = 5200, and N1 = N2 = 5000 then we get R0 = 0.9332 < 1, leading to the stability of
the DFE. Since the endemic equilibrium only exists if R0 > 1, we focus on those cases where at least
one of the ratios N f /Nk � 1 for k = 1, 2 and that R0 > 1.

The simulations in Figure 6 give the solution profiles of the model for population densities
N1 = N2 = 5000 and N f = 12, 500. The computations in Figures 6a are for the time delays
{τ = 28, τ∗ = 14}, while those in Figure 6b are for the time delays {τ = τ∗ = 1000}. The results
indicate the global stability of the endemic equilibrium. Given very large time delays as illustrated
in Figure 6b, the endemic equilibrium at the onset induces some form of instability that grows with
time and on attaining maximum amplitude begins to fissile out, and then eventually becomes stable.
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Although the human and animal population densities are equal, the results in Figure 6 show that the
disease is more prevalent in the animal reservoir. This can be attributed to the initial conditions.
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Figure 6. Time evolution of infectious human population x1(t), infectious animal population x2(t)
and infectious sandflies population y(t) for parameter values δ1 = δ2 = 0.25, ρ1 = ρ2 = 0.25,
ρ f ,1 = ρ f ,2 = 0.25, σ1 = 0.0001, σ2 = 1/365, σf = 1/14, γ1 = 12/365, γ2 = 5/365, γ f = 1/14,
N1 = N2 = 5000 and N f = 12, 500. The plots given in (a) are for τ = 28 and τ∗ = 14, while the plots in
(b) are for τ = τ∗ = 1000.

The next results given in Figure 7 are for population densities N1 = 5000, N2 = 12, 500 and
N f = 12, 500. As in previous computations, Figure 7a is for time delays {τ = 28, τ∗ = 14} and
Figure 7b is for time delays {τ = τ∗ = 1000}. The simulations in Figure 7 also indicate the global
stability of the endemic equilibrium. Exceedingly large time delays that initially rattle the solutions
(see Figure 7b), do not render the endemic equilibrium unstable with time. We also observe here that
when the animal (reservoir) population is significantly higher than that of human, then the model
predicts higher disease prevalence among humans.
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Figure 7. Time evolution of infectious human population x1(t), infectious animal population x2(t)
and infectious sandflies population y(t) for parameter values δ1 = δ2 = 0.25, ρ1 = ρ2 = 0.25,
ρ f ,1 = ρ f ,2 = 0.25, σ1 = 0.0001, σ2 = 1/365, σf = 1/14, γ1 = 12/365, γ2 = 5/365, γ f = 1/14,
N1 = 5000, N2 = 12, 500 and N f = 12, 500. The plots given in (a) are for τ = 28 and τ∗ = 14, while the
plots in (b) are for τ = τ∗ = 1000.

Finally, we consider the case with population densities N1 = 12, 500, N2 = 2500 and N f = 12, 500.
Note that in this case, the reservoir density is significantly lower than that of human. The simulations
given in Figure 8 indicate a very high level of disease prevalence in the reservoir population and the
least disease prevalence among humans. This is unlike in all other cases indicated above where the
least prevalence has always been among sandflies.
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Figure 8. Time evolution of infectious human population x1(t), infectious animal population x2(t)
and infectious sandflies population y(t) for parameter values δ1 = δ2 = 0.25, ρ1 = ρ2 = 0.25,
ρ f ,1 = ρ f ,2 = 0.25, σ1 = 0.0001, σ2 = 1/365, σf = 1/14, γ1 = 12/365, γ2 = 5/365, γ f = 1/14,
N1 = 12500, N2 = 2500 and N f = 12, 500. The plots given in (a) are for τ = 28 and τ∗ = 14, while the
plots in (b) are for τ = τ∗ = 1000.

6. Conclusions

In this paper we have presented a model with time delays for the transmission dynamics of
cutaneous leishmaniasis, an infectious disease whose prevalence is on the increase. Although mostly
located in tropical regions, global warming may provide suitable conditions for its vector to migrate to
subtropical regions and spread the disease. The life cycle of the parasite begins in animals which are
usually the reservoirs and manifest as some form of the disease in humans via sandflies transmission.

Mathematical models for leishmaniasis pale in comparison to other infectious diseases and as
noted before, only a handful of such models account for the incubation period of the parasite within
reservoirs, vectors and humans. The novelty of the model constructed here is that time delays serving
as the incubation period have been incorporated into all population groups, which has often been
avoided or neglected in past works. Starting with an existing deterministic SIS model, delays were
inserted into the 2(n + 1) dimensional system of equations. Because all populations involved were
assumed to be constant, the dimension of the model studied was reduced to a system of only n + 1
infective equations by eliminating the susceptible terms.

A threshold value R0 of the model was computed as a sum of the products of the infected sandflies
and the resulting human/animal infections for each human/animal population group. We used R0

to analyze equilibriums of the model. The disease-free equilibrium of the model is both locally and
globally stable when R0 < 1. A numerical study of the positive endemic equilibrium for the case n = 2
which only exist when R0 > 1, shows that it is globally asymptotically stable even when very extreme
time delay values are employed.

From the model simulations we observe that as long as the sandflies population is kept lower
or near the level of the human and animal populations, the disease will die out. We also learn that
if the sandflies population is substantially higher than that of humans and/or animals, the disease
will persist in all populations. In the situation where the disease is persistent, the model predicts the
following: (i) the prevalence is higher in animals for equal human and animal populations; (ii) the
prevalence is higher in humans when the human population is smaller than that of animals; and (iii)
the prevalence is least in humans when the animal population is smaller than the human population.

The main limitation of the model presented in this work is the assumption that all infected hosts
will survive the incubation period. A possible way of addressing that is the inclusion of an exponential
decay term that represents the average proportion of infected individuals which survive the incubation
period. The threshold value R0 then will depend on the incubation periods as well.
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