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Abstract: Component commonality is a well-known approach in manufacturing, where the same
components are used for multiple products. It has been implemented by many established companies
such as Airbus, Kodak, Toyota, etc. We consider a standard two-product inventory model with
a common component. The demands for the products are independent random variables. Instead of
the usual approach to minimize the total shortage quantity, we propose to minimize the total shortage
cost. The resulting problem is a non-convex nonlinear mathematical program. We illustrate the use of
a primal-dual proximal method to solve this problem by obtaining numerically the optimal allocations
of components. In particular, we show that a higher unit shortage cost induces a higher allocation.

Keywords: stochastic inventory systems; component commonality; augmented Lagrangian

1. Introduction

Nowadays, many companies have increased the number of variations in products to develop
new markets and niches and to serve successfully highly distinct customer demands. However,
most companies cannot afford to keep in stock all components needed to assemble all the types of
these products. A simple way to reduce inventory levels is to incorporate common components that
replace unique components in several final products. This is known as component commonality.

Component commonality has been successfully implemented by many companies such as Airbus
(aircraft families), Caterpillar (Ò785D Mining Truck), Volkswagen’s MQB platform (including VW Golf,
Audi A3, and Seat Octavia), GM’s Ecotec development program, The Joint Strike Fighter program,
Black and Decker’s electric hand tools, Kodak cameras, IBM, HP, Toyota, etc.

The component commonality can reduce inventory levels as well as the number of slow/
non-moving components in the warehouse so it reduces the risk of perishability. This, in turn, reduces
the direct and indirect costs of inventory and manufacturing. In fact, the most important benefits
of component commonality have been identified as follows: (a) a reduction in unit production costs
due to economies of scale; (b) savings in inventory holding or shortage costs due to risk pooling;
(c) reduced product development lead-time and development cost since components that have been
developed for one product do not have to be tested when included in other products; and (d) reduced
administrative cost because of fewer components to manage.

These benefits can be realized best by a manufacturing strategy where parts and subassemblies
are made or acquired to forecasts, while the final assembly of products is delayed until customer
orders have been received. The production system using this sort of strategy is commonly referred to
as assemble-to-order (ATO) system. Such a strategy is likely to emerge when component lead-time is
relatively long while the assembly process is short, and when considerable commonality of components
exists among the products.
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On the other hand, the commonality of components is a double-edged sword that can lead to
a wide fallout. For example, Toyota’s accelerator pedal is common across many Toyota models globally.
If anything goes wrong, the number of affected vehicles is enormous. The commonality of components
can also block the production process for many finished products. Among the important drawbacks
of component commonality are: (a) a lack of product distinctiveness, (i.e., mass confusion); (b) a lack
of innovation and creativity; (c) an increase in the weight/cost of components and products; and (d)
a compromised product performance.

The model we are considering in this paper is a standard newsvendor problem with a common
component. The newsvendor (also called newsboy or single-period) problem aims at determining
optimal inventory levels for a product characterized by fixed prices and uncertain demand. Various
aspects of the newsvendor problem have been considered in previous research. Among recent
relevant papers are, for example the articles [1–6]. The newsvendor model under study turned
out to be non-convex. We show how to use the proximal multipliers method to derive the optimal
components allocation.

The rest of the paper is organized as follows. The next section covers the review of the existing
literature. Sections 3 and 4 deal with Models N and C, respectively. In Section 5, we describe our
algorithmic approach to solve Model C. Section 6 presents computational results and Section 7 describes
some managerial implications. Section 8 concludes the paper.

2. Literature Review

The two main topics that are relevant to our model and that we want to review briefly here are
the component commonality and the primal-dual proximal methods.

2.1. Component Commonality

The benefits of component commonality for cost savings were first identified in the papers by
Rutenberg [7] and Rutenberg and Shaftel [8]. They recognized the economies of scale in production
from using a common product module for multiple products. Since then, the benefits and trade-offs
involved in the decision to incorporate commonality have been well studied. In recent literature,
we find researchers integrating component commonality with other production issues (see, e.g., [9–20]).
In addition, the recent literature contains several success stories about commonality applications
(e.g., [9,12–14,16,21,22]). For more extensive reviews on component commonality, we refer to the recent
surveys [23–27].

Our work follows that pioneered by Baker et al. [28], who considered the following two models,
usually called Models N and C. Model N, which has no common component, consists of two end
products, and each end product comprises two different components that are normalized so that one
component of each type is needed to make one end product (see Figure 1). In Model C, which has
a common component, Component 7 replaces Components 4 and 5 (see Figure 2).

Baker et al. [28] assumed that the demands for two end products followed independent uniform
distributions. Gerchak et al. [29] extended the model of Baker et al. [28] to an arbitrary number of
products and any joint demand distribution. Each product had one unique component and a common
one. Eynan and Rosenblatt [30] considered the model of Baker et al. [28] in the case where the
common component was more expensive. They also used independent uniformly distributed demands.
In Eynan [31], the demands for end products were correlated, uniformly distributed. Jönsson and
Silver [32] also dealt with the model of Baker et al. [28]. They considered a different cost function and
assumed the demands for the end products were independent and normally distributed. The same
model was also discussed by Jönsson and Silver [33] and Jönsson et al. [34]. Fu and Fong [35] showed
that the objective function of Jönsson and Silver [32] was convex for any unbounded continuous
demand distributions. Fong et al. [36] considered the same product structure as Baker et al. [28] but
assumed that not all components had the same cost. They also assumed Erlang distributed product
demands. Fu et al. [37] considered the same structure and supposed mixed Erlang distributed product
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demands. We show the contribution and motivation of this paper by summarizing in Table 1 the
previous relevant research.

Table 1. Summary of the relevant research.

Author(s) Number of Demands Common Cost
Products Distributions Component Function

Baker et al. [28] two independent uniform all costs equal max service measure
Gerchak et al. [29] arbitrary any joint distribution all costs equal max expected profit

Eynan & Rosenblatt [30] two independent uniform more expensive min inventory costs
Eynan [31] two correlated uniform all costs equal min inventory costs

Jönsson & Silver [32] two independent normal all costs equal min expected units shortage
Jönsson & Silver [33] arbitrary independent discrete all costs equal min expected units shortage

Fu & Fong [35] two independent continuous all costs equal min expected units shortage
Fong et al. [36] two independent Erlang more expensive min expected units shortage

Fu et al. [37] two mixed independent Erlang more expensive min expected units shortage

The latest paper that came to our attention on this topic is that of Deza et al. [38] who showed
that lowering component commonality may yield a higher type-II service level.

Since Jönsson and Silver [32], and all the papers that have followed, the objective function to
minimize was the shortage quantity. However, it is customary in operations research and management
science to minimize costs, not quantities. For this reason, we choose to study Models N and C with
the objective to minimize the expected shortage cost; see Labro [23] for a review of the costs and
benefits of commonality identified in the related literature. One might think that it should not make
any difference whether shortage quantity or shortage cost is minimized, when the two products
have the same unit shortage cost. In addition, it would seem intuitive that different unit shortage
costs would lead to different component allocations to the products. While investigating these two
hypotheses, the objective function considered turned out to be not necessarily convex. To cope with
the non-convexity of the model, we propose to use what is known in mathematical programming
literature as the proximal multipliers method (see Rockafellar [39] and references therein), a mixture of
the augmented Lagrangian method with the proximal point algorithm.

2.2. Primal-Dual Proximal Methods

The proximal point algorithm (PPA) was first introduced by Moreau [40] and was studied by
Martinet [41]. It has brought some stability to many classical methods of mathematical programming.
For the convex minimization problem:

min { f (x) : x ∈ <n} , (1)

the PPA finds the solution of the following unconstrained regularized problem:

min
{

f (x) +
1
2c
‖x− xn‖2 : x ∈ <n

}
, (2)

where c > 0 is the proximal real parameter. The added quadratic term produces a regularization
effect on the new objective function that should be minimized. Therefore ,some good theoretical and
numerical solutions can be obtained.

Rockafellar [39,42] proved that a straightforward application of the PPA to the dual problem of
a generic convex programming problem is equivalent to the multipliers method of Hestenes–Powell
(Hestenes [43] and Powell [44]) also called the augmented Lagrangian method. The priority to considering
an augmented Lagrangian rather than the ordinary one, may be found in the fact that the problem is
not convex. The augmented Lagrangian formulation strongly convexifies the problem and therefore
ensures the existence of a saddle-point of the constrained problem for non-convex problems.



Math. Comput. Appl. 2019, 24, 55 4 of 18

As a consequence, the classical Usawa-type algorithms will converge by using a constant step
gradient scheme.

Powell [44] and Hestenes [43] presented independently a new method based on a modified
Lagrangian. The nonlinear programming problem

min { f (x) : fi(x) ≤ 0 i = 1, · · · , p, x ∈ <n} , (3)

was reworked in a combination of primal-dual methods and penalty approaches by Hestenes in such
a way to obtain the penalized Lagrangian:

LA(x, u, λ) = f (x) +
1

2λ

p

∑
i=1

{
max

(
ui + λ fi(x), 0

)2
− u2

i

}
, (4)

where u = (u1, ..., up) is the Lagrange multipliers vector and λ > 0 is an arbitrary penalty factor.
Hestenes proposed to solve a sequence of unconstrained minimization problems using the penalized
Lagrangian. The kth unconstrained minimization is

min
x
LA(x, uk, λ), (5)

where uk is the current estimate of the Lagrange multipliers vector. After each minimization, uk is
updated by the following formula:

uk+1
i = max

(
uk

i + λ fi(xk), 0
)

, i = 1, · · · , p, (6)

where xk solves Equation (5).
To avoid the ill-conditioning usually associated with penalty methods, the penalty parameter λ

should not increase to infinity. The dual iteration tends to converge rapidly, making the algorithm very
efficient. Buys [45] proved the local convergence in the non-convex case under second-order sufficient
conditions. He also showed that the unconstrained minimizations need not be exact. In his book,
Luenberger [46] briefly explored the dual aspect of the multipliers method and gave an interpretation
that the dual iteration is a gradient iteration to maximize the dual function. Rockafellar [47,48]
provided an extension to the unique theoretical result of Arrow et al. [49], concerning saddle points in
non-convex programming. This extension states that, under the second-order sufficient optimality
conditions and under the strict complementarity condition, one can show the existence of a saddle
point for a certain class of generalized Lagrangians. Rockafellar introduced the notions of quadratic
increase and stability to show that, by using an augmented duality (replace the ordinary Lagrangian
by the augmented Lagrangian), the saddle points exist and the dual problem need not be constrained
in the case of problems with inequality constraints.

A summary of the augmented Lagrangian method with all its variants up to 1976 can be found in
Bertsekas [50].

Therefore, in this paper, we consider the problem of Baker et al. [28]. Our contribution is two-fold.
First, we alter the model by modifying the objective function: instead of minimizing the shortage
quantity, we minimize the shortage cost. Second, since the new objective function turns out to be
non-convex, we solve the model using the proximal multiplier method.

3. Model N

Consider the ATO system shown in Figure 1 where two different products consist each of
a “unique” component (numbered 3 and 6, respectively) and a “similar” component (numbered
4 and 5, respectively).
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Figure 1. Model N.

The demands for end products are independent, random variables denoted by X and Y with
respective density functions fX(x) and fY(y) and respective means E[X] and E[Y]. A budget constraint
among the components is taken into account and the budget limit (total number of units available
among all components) is fixed and denoted by T.

Notation 1. To simplify equations, it is customary to use the following notation; see, for example, Jönsson and
Silver [32], Fu and Fong [35], Fong et al. [36], and Fu et al. [37].

φ1(a) =
∫ ∞

a
fX(x)dx,

φ2(a) =
∫ ∞

a
x fX(x)dx,

φ3(a) =
∫ ∞

a
fY(y)dy,

φ4(a) =
∫ ∞

a
y fY(y)dy,

F1(a1, a2, a3) =
∫ a1

a3−a2

fX(x)φ3(a3 − x)dx,

F2(a1, a2, a3) =
∫ a1

a3−a2

fX(x)[(x− a3)φ3(a3 − x) + φ4(a3 − x)]dx.

The decision variable Sj(j = 3, 4, 5, 6), represents the allocation to component j, and, in an optimal
allocation, S3 = S4 and S5 = S6. Denote by gj(j = 1, 2), the unit shortage cost for product
j. Since the objective is to minimize the expected shortage cost, we need to solve the following
mathematical program

min Z = g1 I1 + g2 I2

subject to S3 + S6 =
T
2

(7)

S3, S6 ≥ 0.

Here, T is the sum of components available for allocation and Ij(j = 1, 2) represents the shortage
quantities. Since Product 1 shortage happens when the demand X is larger than the number of
components allocated S3, the shortage quantity I1 is given by:

I1 =
∫ ∞

S3

(x− S3) fX(x)dx = φ2(S3)− S3φ1(S3). (8)
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Similarly, and using the constraint in Equation (7), we have the shortage quantity I2:

I2 =
∫ ∞

S6

(y− S6) fY(y)dy = φ4

(
T
2
− S3

)
−
(

T
2
− S3

)
φ3

(
T
2
− S3

)
. (9)

Therefore, the objective function is given by

Z = g1 [φ2(S3)− S3φ1(S3)] + g2

[
φ4

(
T
2
− S3

)
−
(

T
2
− S3

)
φ3

(
T
2
− S3

)]
. (10)

Note that
∂I1

∂S3
= −φ1(S3) and

∂I2

∂S3
= φ3

(
T
2
− S3

)
.

The first-order optimality condition ∂Z
∂S3

= 0 is equivalent to

g1φ1(S3) = g2φ3

(
T
2
− S3

)
. (11)

Note that
∂2 I1

∂S2
3
= fX(S3) and

∂2 I2

∂S2
3
= fY

(
T
2
− S3

)
.

Therefore,

∂2Z
∂S2

3
= g1 fX(S3) + g2 fY

(
T
2
− S3

)
≥ 0, (12)

and the second-order optimality condition guarantees that the solution S∗3 to Equation (11) yields
a global minimum.

Illustration 1. Assume the demand for Product 1 is uniformly distributed on the interval (0, u1) and the
demand for Product 2 is uniformly distributed on the interval (0, u2). Then,

fX(x) =
1
u1

, x ∈ (0, u1); φ1(a) = u1−a
u1

; φ2(a) =
u2

1 − a2

2u1
;

fY(y) =
1
u2

, y ∈ (0, u2); φ3(a) = u2−a
u2

; φ4(a) =
u2

2 − a2

2u2
.

The necessary optimality condition in Equation (11) yields the optimal number of components to allocate to
Product 1

S∗3 =
g2u1T/2 + (g1 − g2)u1u2

g1u2 + g2u1
,

while the constraint in Equation (7) yields the optimal number of components to allocate to Product 2

S∗6 =
g1u2T/2− (g1 − g2)u1u2

g1u2 + g2u1
.

The total shortage cost is then computed as

Z∗ =
g1(u1 − S∗3)

2

2u1
+

g2(u2 − S∗6)
2

2u2
.
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4. Model C

Again, there are two end products and each end product results from the assembly of two
different components. However, a common component, Component 7, is used to replace the similar
Components 4 and 5 of the previous model (see Figure 2).

3

1 2

7 6

Figure 2. Model C.

The decision variable Sj(j = 3, 6, 7) represents the allocation to component j. Since the objective is
to minimize the expected shortage cost, we need to solve the following mathematical program

min Z = expected shortage cost

subject to S3 + S6 + S7 = T (13)

S3 ≤ S7

S6 ≤ S7

S3 + S6 ≥ S7

S3, S6, S7 ≥ 0.

To write the objective function, we first calculate the different amounts of shortage. The first type
of shortage happens when the demand X for Product 1 exceeds S3. The amount of shortage is

I1 =
∫ ∞

S3

∫ S7−S3

0
(x− S3) fX(x) fY(y)dydx

= [1− φ3(S7 − S3)] [φ2(S3)− S3φ1(S3)] .

The second type of shortage happens when the demand Y for Product 2 exceeds S6. The amount
of shortage is

I2 =
∫ S7−S6

0

∫ ∞

S6

(y− S6) fX(x) fY(y)dydx

= [1− φ1(S7 − S6)] [φ4(S6)− S6φ3(S6)] .

The third type of shortage happens when the combined demand X + Y for Products 1 and 2
exceeds S7. The amounts of shortage are given by three integrals. The first one is

I3 =
∫ ∞

S3

∫ ∞

S7−S3

(x + y− S7) fX(x) fY(y)dydx

= φ2(S3)φ3(S7 − S3) + [φ4(S7 − S3)− S7φ3(S7 − S3)] φ1(S3).
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The other two integrals can be combined into a single one to get

I4 =
∫ S3

S7−S6

∫ ∞

S6

(x + y− S7) fX(x) fY(y)dydx

+
∫ S3

S7−S6

∫ S6

S7−x
(x + y− S7) fX(x) fY(y)dydx

= F2(S3, S6, S7).

For more details on the calculations of these integrals, we refer, for example, to Jönsson and
Silver [32], Fu and Fong [35], Fong et al. [36], and Fu et al. [37]. Denote by g1, g2, and g12 the unit
shortage costs corresponding to the three types of shortages. Then, the objective function is given by

Z = g1 I1 + g2 I2 + g12(I3 + I4)

= g1

{
[1− φ3(S7 − S3)] [φ2(S3)− S3φ1(S3)]

}
+g2

{
[1− φ1(S7 − S6)] [φ4(S6)− S6φ3(S6)]

}
+g12

{
φ2(S3)φ3(S7 − S3) + [φ4(S7 − S3)− S7φ3(S7 − S3)] φ1(S3) + F2(S3, S6, S7)

}
.

Using the constraint in Equation (13), the problem can be reformulated as follows:

min Z = g1

{
[1− φ3(T − 2S3 − S6)] [φ2(S3)− S3φ1(S3)]

}
+g2

{
[1− φ1(T − S3 − 2S6)] [φ4(S6)− S6φ3(S6)]

}
+g12

{
φ2(S3)φ3(T − 2S3 − S6) + [φ4(T − 2S3 − S6)

−(T − S3 − S6)φ3(T − 2S3 − S6)] φ1(S3) + F2(S3, S6, T − S3 − S6)
}

subject to 2S3 + S6 − T ≤ 0

S3 + 2S6 − T ≤ 0

T − 2S3 − 2S6 ≤ 0

S3, S6 ≥ 0.

The traditional approach for this type of optimization problems is to introduce the
Lagrangian function:

L(S3, S6, u1, u2, u3) = g1 I1 + g2 I2 + g12(I3 + I4)

+u1(2S3 + S6 − T) + u2(S3 + 2S6 − T) + u3(T − 2S3 − S6)

+u4S3 + u5S6.
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The Karush–Kuhn–Tucker (KKT) conditions are thus as follows:

∂L
∂S3

= 0,

∂L
∂S6

= 0,

u1(2S3 + S6 − T) = 0,

u2(S3 + 2S6 − T) = 0,

u3(T − 2S3 − S6) = 0,

u4S3 = 0,

u5S6 = 0,

u1, u2, u3, u4, u5 ≥ 0,

where the first two equations are equivalent to

g1
∂I1

∂S3
+ g2

∂I2

∂S3
+ g12

∂(I3 + ∂I4)

∂S3
+ 2u1 + u2 − 2u3 + u4 = 0,

g1
∂I1

∂S6
+ g2

∂I2

∂S6
+ g12

∂(I3 + ∂I4)

∂S6
+ u1 + 2u2 − 2u3 + u5 = 0,

respectively. To write these two equations explicitly, we calculate the first partial derivatives of the first
shortage type

∂I1

∂S3
= −2 fY(T − 2S3 − S6) [φ2(S3)− S3φ1(S3)]− [1− φ3(T − 2S3 − S6)] φ1(S3),

∂I1

∂S6
= − fY(T − 2S3 − S6) [φ2(S3)− S3φ1(S3)] ,

the second shortage type

∂I2

∂S3
= − fX(T − S3 − 2S6) [φ4(S6)− S6φ3(S6)] ,

∂I2

∂S6
= −2 fX(T − S3 − 2S6) [φ4(S6)− S6φ3(S6)]− [1− φ1(T − S3 − 2S6)] φ3(S6),

and the third shortage type

∂(I3 + I4)

∂S3
= 2 [φ2(S3)− S3φ1(S3)] fY(T − 2S3 − S6)

+ [φ4(S6)− S6φ3(S6)] fX(T − S3 − 2S6)

+φ3(T − 2S3 − S6)φ1(S3) + F1(S3, S6, T − S3 − S6),
∂(I3 + I4)

∂S6
= [φ2(S3)− S3φ1(S3)] fY(T − 2S3 − S6)

+2 [φ4(S6)− S6φ3(S6)] fX(T − S3 − 2S6)

+φ3(T − 2S3 − S6)φ1(S3) + F1(S3, S6, T − S3 − S6).
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We note that the sums of these first derivatives are, respectively, given by

∂(I1 + I2 + I3 + I4)

∂S3
= 2φ1(S3)φ3(T − 2S3 − S6)− φ1(S3) + F1(S3, S6, T − S3 − S6),

∂(I1 + I2 + I3 + I4)

∂S6
= φ1(S3)φ3(T − 2S3 − S6)− φ3(S6) + φ3(S6)φ1(T − S3 − 2S6)

+F1(S3, S6, T − S3 − S6),

which agree with the results of Fu et al. [37]. Once the KKT system has been solved, the next step is to
check whether the critical point obtained yields a global minimum.

5. Numerical Approach to Model C

To check the second-order optimality conditions, we calculate the second partial derivatives
as follows:

∂2 I1

∂S2
3

= 4 f ′Y(T − 2S3 − S6) [φ2(S3)− S3φ1(S3)]

+ [1− φ3(T − 2S3 − S6)] fX(S3) + 4φ1(S3) fY(T − 2S3 − S6)

∂2 I1

∂S2
6

= f ′Y(T − 2S3 − S6) [φ2(S3)− S3φ1(S3)]

∂2 I1

∂S3∂S6
= 2 f ′Y(T − 2S3 − S6) [φ2(S3)− S3φ1(S3)] + fY(T − 2S3 − S6)φ1(S3)

∂2 I2

∂S2
3

= f ′X(T − S3 − 2S6) [φ4(S6)− S6φ3(S6)]

∂2 I2

∂S2
6

= 4 f ′X(T − S3 − 2S6) [φ4(S6)− S6φ3(S6)]

+ [1− φ1(T − S3 − 2S6)] fY(S6) + 4φ3(S6) fX(T − S3 − 2S6)

∂2 I2

∂S3∂S6
= 2 f ′X(T − S3 − 2S6) [φ4(S6)− S6φ3(S6)] + fX(T − S3 − 2S6)φ3(S6)

∂2(I3 + I4)

∂S2
3

= −4
[
φ2(S3)− S3φ1(S3)

]
f ′Y(T − 2S3 − S6)

−
[
φ4(S6)− S6φ3(S6)

]
f ′X(T − S3 − 2S6) + φ3(S6) fX(T − S3 − 2S6)

+
∫ S3

T−S3−2S6

fX(x) fY(T − S3 − S6 − x)dx

∂2(I3 + I4)

∂S2
6

= −4
[
φ4(S6)− S6φ3(S6)

]
f ′X(T − S3 − 2S6)

−
[
φ2(S3)− S3φ1(S3) f ′Y(T − 2S3 − S6)

]
+ φ1(S3) fY(T − 2S3 − S6)

+
∫ S3

T−S3−2S6

fX(x) fY(T − S3 − S6 − x)dx.
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∂2(I3 + I4)

∂S3∂S6
= φ1(S3) fY(T − 2S3 − S6) + φ3(S6) fX(T − S3 − 2S6)

−2
[
φ2(S3)− S3φ1(S3)

]
f ′Y(T − 2S3 − S6)

−2
[
φ4(S6)− S6φ3(S6)

]
f ′X(T − S3 − 2S6)

+
∫ S3

T−S3−2S6

fX(x) fY(T − S3 − S6 − x)dx.

We note that the sums of these second derivatives are, respectively, given by

∂2(I1 + I2 + I3 + I4)

∂S2
3

= 4φ1(S3) fY(T − 2S3 − S6) + [1− φ3(T − 2S3 − S6)] fX(S3)

+φ3(S6) fX(T − S3 − 2S6) +
∫ S3

T−S3−2S6

fX(x) fY(T − S3 − S6 − x)dx,

∂2(I1 + I2 + I3 + I4)

∂S3∂S6
= 2φ1(S3) fY(T − 2S3 − S6) + 2φ3(S6) fX(T − S3 − 2S6)

+
∫ S6

T−S3−2S6

fX(x) fY(T − S3 − S6 − x)dx,

∂2(I1 + I2 + I3 + I4)

∂S2
6

= 4φ3(S3) fX(T − S3 − 2S6) + [1− φ1(T − S3 − 2S6)] fY(S6)

+φ1(S6) fY(T − 2S3 − S6) +
∫ S3

T−S3−2S6

fX(x) fY(T − S3 − S6 − x)dx,

which agree with the results of Fu and Fong [35]. Now, since g1, g2, and g12 are positive, it suffices
that I1, I2, and I3 + I4 be convex functions of S3, S6 for the objective function to be convex. However,
calculating the different determinants shows that these functions may not be convex. Consider I1, for

example. The first leading principal minor ∂2 I1
∂S2

3
of the Hessian matrix is obviously positive. The second

leading principal minor

∂2 I1

∂S2
3
· ∂2 I1

∂S2
6
−
[

∂2 I1

∂S3∂S6

]2

= [1− φ1(T − 2S3 − S6)] fX(S3) f ′Y(T − 2S3 − S6) [φ2(S3)− S3φ1(S3)]

− fY(T − 2S3 − S6)
2φ1(S3)

2,

is not necessarily positive. To cope with the non-convexity of our model, we propose to
mix the augmented Lagrangian method with the proximal point technique, what is known in
mathematical programming literature as the proximal multipliers method (see Rockafellar [39] and the
references therein).

Let u = (u1, u2, u3) denote the Lagrange multipliers and consider the augmented Lagrangian

LA(S3, S6, u, λ) = g1 I1 + g2 I2 + g12(I3 + I4)

+
1

2λ

{[
max

(
u1 + λ(2S3 + S6 − T), 0

)2
− u2

1

]
+
[

max
(

u2 + λ(S3 + 2S6 − T)2, 0
)
− u2

2

]
+
[

max
(

u3 + λ(T − 2S3 − 2S6)
2, 0

)
− u2

3

]}
.
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Algorithm 1 shows how the proximal multipliers method is implemented. The primal and dual
variables are initialized in the first step. The primal variables are calculated in Step 2 while Step 3
updates the dual variables.

Algorithm 1: Implementation of the proximal multipliers method.

1. Initialize: (S0
3, S0

6) ∈2, u0 = (u0
1, u0

2, u0
3) ∈3: c > 0, λ > 0, k = 0.

2. Compute:

(Sk+1
3 , Sk+1

6 ) := arg min
(S3,S6)∈2

{
LA(S3, S6, uk, λ) +

1
2c
‖(S3, S6)− (Sk

3, Sk
6)‖2

}
.

3. Update the multipliers:

uk+1
1 = max

(
uk

1 + λ(2Sk
3 + Sk

6 − T), 0
)

,

uk+1
2 = max

(
uk

2 + λ(Sk
3 + 2Sk

6 − T), 0
)

,

uk+1
3 = max

(
uk

3 + λ(T − 2Sk
3 − 2Sk

6), 0
)

.

Remark 1. It is well established nowadays in the literature that there is no optimal way to tune the penalty
parameter λ and the proximal parameter c. Many heuristics are available to update these parameters. In this
case, we used a fixed parameters strategy and, when the feasibility was slow, we increased the parameter λ by
some factors.

6. Illustrative Examples

Assume demands follow independent non-identical Erlang distributions with parameters (α1, β1)

and (α2, β2), respectively:

fX(x) =
βα1

1 xα1−1e−β1x

(α1 − 1)!
, x > 0, and fY(y) =

βα2
2 yα2−1e−β2y

(α2 − 1)!
, y > 0.

In this case, we have

φ1(a) = e−β1a
α1−1

∑
m=0

(aβ1)
m

m!
, φ3(a) = e−β2a

α2−1

∑
m=0

(aβ2)
m

m!
,

φ2(a) =
α1

β1
e−β1a

α1

∑
m=0

(aβ1)
m

m!
, φ4(a) =

α2

β2
e−β2a

α2

∑
m=0

(aβ2)
m

m!
,

F1(a1, a2, a3) =
βα1

1 e−β2a3

(α1 − 1)!

α2−1

∑
m=0

βm
2

m

∑
i=0

ai
3(−1)m−i

i!(m− i)!
I(a1, a2, a3; m− i + α1, β1 − β2),

F2(a1, a2, a3) =
βα1

1 e−β2a3

(α1 − 1)!

[
α2−1

∑
m=0

βm
2

m

∑
i=0

ai
3(−1)m+1−i

i!(m + 1− i)!
I(a1, a2, a3; m− i + α1 − 1, β1 − β2)

+
α2

∑
m=0

βm
2

m

∑
i=0

ai
3(−1)m−i

i!(m− i)!
I(a1, a2, a3; m− i + α1, β1 − β2)

]
,
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where

I(a1, a2, a3; n, β1 − β2) =



an
1 − (a3 − a2)

n

n
, β1 = β2,

(n− 1)!
(β1 − β2)n

[
e−(β1−β2)(a3−a2)

n−1

∑
j=0

[(a3 − a2)(β1 − β2)]
j

j!

−e−(β1−β2)a1
n−1

∑
j=0

[a1(β1 − β2)]
j

j!

]
, β1 6= β2.

For Model N, the optimal allocation S∗3 is the numerical solution of Equation (11), which is
equivalent in this case to

g1e−β1S3
α1−1

∑
m=0

(S3β1)
m

m!
= g2eβ2( T

2−S3)
α2−1

∑
m=0

[(
T
2 − S3

)
β2

]m

m!
.

The optimal allocation S∗6 is found using Equation (7) as

S∗6 =
T
2
− S∗3 .

The optimal expected shortage cost is given by

Z∗ = g1 [φ2(S∗3)− S∗3φ1(S∗3)] + g2 [φ4(S∗6)− S∗6φ3(S∗6)] .

For Model C, we implemented Algorithm 1 above.
We now present some numerical results. We take the following values for the parameters of the

Erlang distributions of demands: α1 = 5 and β1 = 1 for Product 1 and α2 = 5 and β2 = 0.5. Assuming
there is a total of T = 50 components and the following unit shortage costs g1 = 20, g2 = 10, and
g12 = 15; the results obtained are shown in Table 2.

Table 2. Optimal allocations and optimal costs for each model.

Unit Shortage Costs Model C Model N

S3C S6C ZC S3N S6N ZN

g1 = 1, g2 = 1, g12 = 1 8.3333 16.6667 8.5318 5.2310 19.7690 0.3868
g1 = 20, g2 = 10, g12 = 15 9.1207 15.8793 91.3565 6.1513 18.8487 4.8524

When the unit shortage costs are the same, the allocations are S3C = 8.3333 and S6C = 16.6667
and, when the unit shortage costs are different, then S3C = 9.1207 and S6C = 15.8793. Recalling that
S3C components are used to make Product 1 and S6C components are used to make Product 2, we see
that allocation S3C has increased by 9.45% while allocation S6C has decreased by 4.72%. This is because
Product 1 has a higher shortage cost than Product 2. Thus, a higher unit shortage cost induces a higher
allocation. The relative gain of S3C and the relative reduction of S6C are not equal because the demand
parameters are different.

Effect of g1

To answer the question whether the shortage cost g1 affects the sizes of relative gain and relative
reduction, we gave g1 different values and obtained the results shown in Table 3.

As the shortage cost of component S3C increases while the shortage cost of component S6C remains
constant, both the relative gain and the relative reduction increase. This intuitively makes sense as to
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avoid a shortage situation, a product that is more and more expensive would be allocated more and
more components.

Table 3. Effect of g1 on relative gain of S3C and relative reduction of S6C.

Shortage Cost g1 10 20 30 40 50 60 70 80 90 100

% gain of S3C 0.00 3.56 5.64 7.11 8.25 9.18 9.97 10.65 11.25 11.79
% reduction of S6C 0.00 −1.78 −2.82 −3.56 −4.13 −4.59 −4.99 −5.33 −5.63 −5.89

The next three figures further compare our results with those of previous research. Figures 3–5
show that, as g1 increases, allocation S3C increases and then becomes constant; allocation S6C decreases
and then becomes constant; and the cost increases to become constant. The quantities S3C, S6C, and ZC
are always constant if the shortage costs are the same as in previous research.
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Figure 3. Effect of g1 on S3C.
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Figure 4. Effect of g1 on S6C.
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Figure 5. Effect of g1 on ZC.

7. Managerial Aspects and Implications

Some of the managerial implications of the commonality of components to manufacturing the
different products as presented in this research paper could impact the industry in general and any
manufacturing organization in particular, which are explained as follows:

1. The commonality of the components to remanufacturing the products reduces the inventory
carrying cost. The quantity and variety of the parts to be kept and maintained in the warehouse
reduces to a greater extent as compared to non-commonality of the parts and components.
This will significantly improve the commercial viability of a firm as inventory carrying cost will
be reduced to a greater extent.

2. The movement of the common components would also be faster as most of the products would
be using the same component. Thus, the probability of an item becoming dead stock becomes
negligible even if some products of the product line of a firm are not in high demand.

3. If no commonality, then inventory management and control shall require extra efforts and
different means. That further results into more difficulty in managing components and extra cost.
Thus, commonality can provide a competitive edge to a firm in the era of globalization.

4. The commonality of the components can reduce the requirement of extra inventory. This may
boost the manufacturing companies to implement the concept of “Just-in-Time”, which may
further result into extra profit margins to a firm.

5. The shortage of common components can block the production of many products.
The commonality of an item thus may result in higher shortage cost. This paper has tried to find
out this shortage impact on any manufacturing firm. This impact may further be extended to the
service industry. The shortage of any common component is difficult to afford. Thus, the common
component becomes the critical component for the firm.

6. This research paper has tried to find out some measures and solutions to the shortage problem
with the help of quantitative techniques. This paper is able to develop a mathematical solution
to achieve the desired objectives of maximum commonality of items and minimal inventory of
components. Thus, it takes the manufacturing firm to a better position of efficient management
and control of its inventory.

7. Technical, precise, and high accuracy components should not be made common for many final
products. If something goes wrong with the common component, it could affect the production
of many finished products. Since the chances of design error in simple components is lower, it
can be afforded to make simple components common.
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8. Conclusions

We have considered in this paper a standard two-product newsboy problem with a common
component. The aim is to derive the optimal components allocation that minimizes the total expected
shortage cost. Our objective differs from the objective of previous studies that minimize the shortage
quantity instead of the shortage cost. We have assumed that the unit shortage costs are known with
certainty while the demand rates for the two products are random variables.

It is customary to solve minimization problems with a nonlinear objective function and linear
constraints by using the first-order optimality conditions to obtain critical points and the second-order
optimality conditions to check the convexity of the objective function. This procedure fails when the
objective function is non-convex, which is the case for our problem. This paper shows the way to
deal with such a problem. The proximal multipliers method has been adapted to the mathematical
problem and implemented in an illustrative example. The optimal components allocations are
obtained numerically.

The augmented Lagrangian approach is not without limitations. For example, it is impossible
to obtain the optimal components allocations in closed-form. In addition, sensitivity analysis on the
system parameters can only be conducted numerically, as shown in the illustrative example.

For future research, the procedure applied in this paper could be applied to more complex product
structures or to other non-convex mathematical problems. In addition, we have assumed that the
total number T of components to allocate is constant and known with certainty. It may be worth
investigating the case where T is a random variable.
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