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Abstract: A localized radial basis function meshless method is applied to approximate a nonlinear
biological population model with highly satisfactory results. The method approximates the
derivatives at every point corresponding to their local support domain. The method is well suited for
arbitrary domains. Compared to the finite element and element free Galerkin methods, no integration
tool is required. Four examples are demonstrated to check the efficiency and accuracy of the method.
The results are compared with an exact solution and other methods available in literature.
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1. Introduction

Biological population models have attracted many researchers in the last few years. Consider the
nonlinear biological population model [1]

ρt(x, t) = ρ2
xx(x, t) + ρ2

yy(x, t) + σ(ρ), x = (x, y) ∈ Ω ⊆ Rd, d = 1, 2, (1)

where σ is a function of ρ(x, t) subject to the initial condition ρ(x, 0), the solution ρ(x, t) denotes the
density of population in a region Γ, and σ represent the population supply due to births and deaths.
The fields ρ(x, t), V (diffusion velocity) and σ must obey the following population balance law for a
regular subregion of region Γ for all time t.

d
dt

∫
R

ρdV +
∫

∂R
ρV · n dV +

∫
R

σdV (2)

where n denotes the outward unit normal to the boundary ∂R of R. Physically, the equation describes
that rate of population directly supplied to R is equal to the sum of the rate of change of population
and the rate at which individuals leave R across the boundary [1–3]. Several methods have been
applied to consider the uniqueness, existence and regularity of these models.

In recent work, the biological population model (BPM) has been numerically approximated by
various methods [4–6]. Meshless procedures have attracted researchers because they can be applied to
a complex shaped domain with high dimensional problems. These methods include the radial basis
function (RBF) [7–9], smooth particle hydrodynamics methods (SPH) [10], reproducing kernel particle
method (RKPM) [11], element free Galerkin method (EFG) [11], and meshless local Petrov Galerkin
method (MLPG) [12].
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Since from discovery of mutiquadrics by Hardy [13], the RBFs (radial basis function) attracted
researchers. Thin plate splines were proposed by Douchen [14]. Edwards Kansa for the first time used
RBFs to solve PDEs [15], which greatly improved the numerical solution of PDEs. Presently RBFs
are applied to solve a lot of mathematical models arising in engineering and science. During the
past decades, robust kernel based methods have been developed by Atluri [12], Buhumann [16],
Wendland [17], Fasshaur [18,19] and Levesely [20] and many others [21–25]. The convergence theory
of the RBFs method was proved by Schaback [26]. The importance of RBFs for solving PDES is easy to
implement, robustness and applicability to complicated and multi dimensional problems.

To overcome the problems occurring during global RBFs, partition of unity, domain decomposition
method and greedy algorithms have been discovered [26–28]. Another alternative is the
implementation of local RBFs (LRBFs) [29–31]. In LRBFs, small domains centred at each points
are used to give rise to differentiation weights. In the present scenario, we have applied local RBFs to
solve the nonlinear biological model.

2. Description of the Method

2.1. Spatial Approximation

The multivariate data interpolation problem involves recovering an unknown function ρ : R2 → R
from M functional values {ρ(x1) , ..., ρ(xM)} ⊂ R2, where the centres x1, ..., xM ∈ Ω and Ω ⊂ R2 is
bounded domain and the centres are taken anywhere in the domain Ω. In local RBF approximation
techniques, at every centre xj ∈ Ω, the local interpolant

ρ(xj, t) = ∑
xk∈Ωj

ηk(t)φ(‖xj − xk‖), (3)

where η j = [η1, ..., ηm] is expansion coefficients and ‖xj − xk‖ is the Euclidean distance between xj and
xk. Here, φ(r) is a kernel function (Multiquadrics) defined for r ≥ 0 and Ωj ⊂ Ω is the local support
domain for each node xj and have m nearest centres with centre xj. The M number of m×m linear
systems is

Pj = Njη j, j = 1, 2, ..., M, (4)

where matrix entries of Nj are aj
kj = φ(‖xk − xj‖), where xk and xj ∈ Ωj. The matrix Nj is interpolation

matrix corresponding to centre xj. Every system is solved for unknown coefficients corresponding to
each local domain Ωj. Applying the differential operator L to Equation (3)

Lρ(xj, t) = ∑
xk∈Ωi

ηk(t)Lφ(‖xi − xj‖). (5)

The expression in (5) can be written as element wise product of two vectors,

Lρ(xj, t) = Zj · ηj, (6)

where ηj is the m× 1 vector of unknown coefficients, and Zj is 1×m vector with entries

Zj = Lφ(‖xj − xk‖), xk ∈ Ωj. (7)

To eliminate the unknown coefficients, Equation (4)

η j = (Nj)−1Pj, (8)

on substituting the values of η j from (8) in (6) we have ,

Lρ(xj, t) = Zj(Nj)−1Pj = wjPj, (9)
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where,
wj = Zj(Nj)−1, (10)

gives weight to centre xj. For all centres, it gives

Lρ = WP, (11)

where W is M×M sparse differentiation matrix, each row has and M−m zeros elements, where m is
the stencil size in each local domain Ωi.

2.2. Temporal Approximation

After spatial local RBF approximation, we obtained the following system of ODEs

dρ

dt
= F(ρ). (12)

In our case F(ρ) = WP. For discretization any built-in Matlab ODEs solver can be used, such
as ode113 or ode45, and ρ0 has been taken as initial solution vector. Note that ode45 uses an explicit
Runge–Kutta (4,5) formula [32]. For computing ρ(tn), needs solution at the preceding time ρ(tn−1).
For ODEs computation, the fourth-order Runge–Kutta method has been taken and the time step δt
is taken manually [33]. The method of lines approach is the solution of system of ODEs using finite
difference formula (FD) in t. The rule of thumb says if all the eigenvalues of the spatial discretization
operator scaled using δt, lies in the stability region of the time discretization operator, the method of
lines will be stable.

r1 = F(ρn),

r2 = F(ρn +
δt
2

r1),

r3 = F(ρn +
δt
2

r2),

r4 = F(ρn + δtr3), ρn+1 = ρn +
δt
6
(r1 + 2r2 + 2r3 + r4). (13)

In addition we may use some other efficient methods for time integrations such as exponential
integrator schemes [34,35].

2.3. Choosing Optimal Shape Parameter

A large number of kernel functions such as Multiquadrics, Thin Plate Splines, Quadratics and
Inverse Mutiquadrics can be used. We used Multiquadrics φ(r) =

√
1 + (rc)2 with a shape parameter

c. The numerical solution of the problem also depends on the parameter c. Finding most suitable
value of shape parameter analytically for various RBFs is still an open problem. A large number of
papers are available for finding good value of shape parameter (see for example [36] and the references
therein). The matrix condition number (MCN) is used to check the sensitivity of a linear system and
accuracy of the solution. Good conditioning results require small values of shape parameter and large
separation distance between centres. Both results cannot occur at the same time, which is known as
the uncertainty principle [37]. The smallest error occurs when system condition number is kept in
range of Algorithm 1.
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Algorithm 1: Optimal shape parameter.

Start: MCN = 1;
1013 < MCN < 1015

while MCN < MCNmin and MCN > MCNmax do
U, S, V = svd(Ni);
MCN = max(S)/min(S);
if MCN < MCNmin then

c = c− dc;
else

c = c + dc;
end
c (OptimalShape) = c;

end

3. Numerical Experiments

This section is devoted to demonstrate the accuracy and performance of LRBF method by solving
the three test problems of the population model (1). The accuracy is tested in terms of maximum
absolute error (MAE) and root mean squared error (RMSE) defined by the following equations

MAE = max1≤i≤M ‖ ρ(xj, t)− ρ̂(xj, t) ‖, (14)

RMSE =

√
1
M

ΣM
i=1(ρ(xj, t)− ρ̂(xj, t))2, (15)

where ρ(xj, t) and ρ̂(xj, t) are the exact and the approximate solutions, respectively.

3.1. Example 1

We consider the biological population model (1)

ρt(x, t) = ρ2
xx(x, t) + ρ2

yy(x, t) + hαρ(x, t)(1− hβρ(x, t)), x = (x, y) ∈ [0 1]2, (16)

with the initial condition
ρ(x, 0) =

√
xy, (17)

where h = 1
2 , α = 1 and h = 0 with exact solution [6]

ρ(x, t) = et√xy. (18)

The present problem is solved by the proposed method in the square domain Ω = [0, 1]2 for
various number of nodes in the global domain Ω and local sub-domains Ωi. For time integration,
the RK4 method with time step δt = 0.0001 is used. The sparsity of differentiation matrix W and
distribution of nodes in the global and local sub-domains corresponding to an interior and boundary
points are shown in Figure 1. Figure 2 shows the point wise error and Figure 3 shows the problem
solution ρ(x, 0.5) at different times. The results for M = 400 total number of nodes in the global
domain, different stencil size ns of local sub-domain, matrix condition number (MCN) and shape
parameter are shown in Table 1. The comparison of our method is made with the results in [5] in
Table 2, which shows that our results are more accurate and stable.
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Figure 1. (a) Sparsity of matrix W, when ns = 30 and M = 400, and (b) centre distribution in domain
[0, 1]2 corresponding to Example 1.
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Figure 2. (a) Nodes M against MAE and RMSE norms for ns = 20, and (b) stability plots of our
numerical scheme corresponding to Example 1.
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Figure 3. (a) Numerical solution ρ(x, 0.5) at different times t, and (b) point wise error when t = 1,
ns = 20 and δ = 0.0001 when M = 400 corresponding to Example 1.
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Table 1. Numerical results when N = 400 for domain [0, 1]2 (Example 1).

ns MCN MAE RMSE C-Time Shape (c)

RK4 (MQ RBF)

5 3.099 × 1014 1.931 × 10−5 8.336 × 10−6 0.950 0.010
11 1.241 × 1013 1.915 × 10−5 7.935 × 10−6 0.858 0.520
21 7.732 × 1013 1.215 × 10−5 7.643 × 10−6 2.319 1.160
49 2.929 × 1014 4.109 × 10−5 1.269 × 10−5 1.869 1.990
60 2.941 × 1014 2.725 × 10−5 1.121 × 10−5 2.504 2.150
80 5.096 × 1014 2.961 × 10−5 1.287 × 10−5 4.199 2.320

Table 2. Numerical solution of ρ(x, y, t) at x = 0.5, y = 0.5 compared with exact solution and
Zhang et al. [5] (Example 1).

Number of Nodes = 13 × 13 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5

Present Solution 1.2628 1.1426 1.0339 0.9355 0.8465
Zhang et al. Solution [5] 1.2574 1.1382 1.0302 0.9325 0.844

Exact Solution 1.2628 1.1426 1.0339 0.9355 0.8465

3.2. Example 2

The biological population model defined by (1) with the initial condition

ρ(x, y, 0) =
1
4

√
2x2 + 2y2 + y + 5, (19)

with the parameters values h = 1
96 , α = −1, h = 48 and β = 1. The exact solution of this problem

given in [6] is

ρ(x, y, t) =
1
4

√
2x2 + 2y2 + y +

t
3
+ 5. (20)

The problem is solved in the square domain Ω = [0, 1]2, the numerical scheme is advanced in
time with step size δt = 0.0001. Figure 4 compares the exact and numerical solutions and Figure 5
shows the problem solution ρ(x, 0.5) at different times.
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Figure 4. (a) Exact against (b) numerical solutions, when t = 1, δt = 0.0001, ns = 20, M = 400,
corresponding to Example 2.
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Figure 5. Numerical solution at different times t for ρ(x, 0.5), corresponding to Example 2.

3.3. Example 3

The biological population model defined by (1) with initial condition

ρ(x, y, 0) = e
x+y

3 , (21)

with the values of parameters h = −1, α = 1, h = −8
9 and β = 1. The exact solution [6] is given by

ρ(x, y, t) = e
x+y

3 −t. (22)

The results are obtained by the present local kernel based method in the domain [0.1]2. Figure 6
compares the exact and numerical solution and Figure 7 shows the point wise error and the model
solution ρ(x, 0.5) at different times. The results for different M and ns are obtained and the matrix
condition number MCN and shape parameter c are shown in Table 3. The comparison of the present
method is made with [5] in Table 4.
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Figure 6. (a) Exact against (b) numerical solutions, when t = 1, δt = 0.0001, ns = 20, M = 400
corresponding to Example 3.
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Figure 7. (a) Point wise error, when t = 1, ns = 20 and δt = 0.0001, and (b) numerical solution,
corresponding to Example 3.

Table 3. Numerical results corresponding to Example 3 in [0, 1]2.

ns MCN MAE RMSE C-Time Shape (c)

RK4 (MQ RBF)

5 3.099 × 1014 1.35 × 10−4 8.85 × 10−5 0.14538 0.01
10 5.136 × 1013 6.93 × 10−5 4.70 × 10−5 0.76946 0.43
15 4.549 × 1013 6.90 × 10−5 4.75 × 10−5 0.77773 0.85
25 1.367 × 1014 7.50 × 10−5 5.47 × 10−5 0.88658 1.41
50 3.225 × 1014 7.34 × 10−5 4.67 × 10−5 1.26577 1.99
70 3.558 × 1014 6.92 × 10−5 4.72 × 10−5 1.57271 2.26
80 5.096 × 1014 7.53 × 10−5 4.53 × 10−5 1.74231 2.32

Table 4. Numerical solution of ρ(x, y, t) at x = 0.5, y = 0.5 compared with exact solution and
Zhang et al. [5] (Example 3).

Number of Nodes = 13×13 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5

Present Solution 1.2628 1.1426 1.0339 0.9355 0.8465
Zhang et al. Solution [5] 1.2574 1.1382 1.0302 0.9325 0.844

Exact Solution 1.2628 1.1426 1.0339 0.9355 0.8465

3.4. Example 4

In this problem the present method is applied over irregular domains for example Ameoba and
Cassini like shaped domains for solving same model discussed in Example 1 above. The parametric
equations of such types irregular boundaries ∂Ω are defined as

∂Ω = {(x, y)|x = r(θ) cos(θ), y = r(θ) sin(θ), 0 ≤ θ < 2π}, (23)

where for Ameoba-shaped boundary r(θ) is defined by

r(θ) = esin(θ) sin2(2θ) + ecos θ cos2(2θ), (24)

while for Cassini-shaped boundary r(θ) is defined by

r(θ) =
3

√
cos(4θ) +

√
18
5
− sin2(4θ), (25)

The irregular domains with inner and boundary stencils are shown in Figure 8. The exact
and numerical solutions corresponding to Ameoba-like domain with 100 boundary points and
Cassini-shape domain with M = 220 are shown in Figures 9 and 10 and Table 5, respectively.
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Table 5. MAE and RMSE for Ameoba and Cassini-shaped domains at t = 1 with different stencil sizes.

Ameoba Cassini

ns MAE RMSE MAE RMSE

5 9.40 × 10−4 3.52 × 10−4 1.63 × 10−4 1.02 × 10−4

15 2.40 × 10−4 2.21 × 10−4 7.33 × 10−4 4.32 × 10−4

30 3.20 × 10−3 9.12 × 10−3 6.36 × 10−4 3.82 × 10−4

45 1.78 × 10−4 1.51 × 10−4 2.51 × 10−4 1.56 × 10−4

60 1.20 × 10−4 2.12 × 10−4 4.45 × 10−4 2.22 × 10−4
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Figure 8. (a) Ameoba and (b) Cassini-shaped domain with interior (red) and boundary (green) stencil.
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Figure 9. (a) Exact against (b) numerical solution of Ameoba-shaped domain when t = 1, δt = 0.0001,
ns = 10, M = 291 to Example 4.
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Figure 10. (a) Exact against (b) numerical solution of Cassini-shaped domain when t = 1, δt = 0.0001,
ns = 10, M = 220 to Example 4.
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4. Concluding Remarks

In the present paper, the nonlinear biological population model has been numerically simulated
using localized RBF method. The multiquadric RBF has been used as the radial kernel. The shape
parameter has been chosen using the uncertainty principle. The nonlinear equation is converted to
a system of ODEs, which is then advanced in time by the RK4 method. The numerical results are
compared with the benchmark problems. The present numerical scheme is more accurate and stable
as compared to other numerical methods for solving the biological model considered in this work.
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