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Abstract: In this paper, a numerical approach is proposed to find a semi analytical solution for
a prescribed anisotropic mean curvature equation modeling the human corneal shape. The method
is based on an integral operator that is constructed in terms of Green’s function coupled with the
implementation of Picard’s or Mann’s fixed point iteration schemes. Using the contraction principle,
it will be shown that the method is convergent for both fixed point iteration schemes. Numerical
examples will be presented to demonstrate the applicability, efficiency, and high accuracy of the
proposed method.
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1. Introduction

Corsato et al. [1] studied the existence, uniqueness, and regularity of solutions of the n-dimensional
prescribed anisotropic mean curvature with Dirichlet boundary conditionsdiv

(
∇h√

1+|∇h|2

)
= ah− b√

1+|∇h|2
in Ω

h = 0 on ∂Ω
, (1)

where a and b are positive constants, n ≥ 2, and Ω ⊂ Rn is a bounded Lipschitz domain.
Okrasiński and Płociniczak modeled the topography of the human cornea [2] by a one-dimensional

form of (1), where the mean curvature operator div(∇h/
√

1 + |∇h|2) is replaced by its linearization
div(∇h) around 0, where Ω = [0, 1], and hence obtaining the nonlinear equationh′′(x)− ah(x) = − b√

1+h′(x)2
in [0, 1]

h′(0) = h(1) = 0
. (2)

It was shown in [3] that Equation (2) has a unique solution for any positive constants a and b.
However, as a closed form solution for the nonlinear boundary value problem (2) cannot be obtained,
researchers tried to obtain approximate solutions by different numerical approaches. With 1% error
of order, an approximate solution based on hyperbolic cosine function was experimentally shown to
fit the original optical data of corneal shape [2]. Płociniczak et al. suggested two other approximate
solutions for problem (2), one method is by linearizing the nonlinear model and the other method
is by applying the perturbation method [3]. In [4], he suggested, in addition to the variational
iteration method, the use of Taylor series method as accessible approach to solve any non-linear
two-point boundary value problems. Converting the boundary value ordinary differential equation
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into a parabolic partial differential equation by adding an initial value derivative (t, pseudo-time),
and then using the method of lines to numerically solve the resulting partial differential equation for
sufficiently large values of t, was another approximate solution attempted by Płociniczak et al. [5].
An interesting approach of obtaining approximate solution was due to Coelho et al. [6], where they
developed a linear iterative scheme for approximating the solution by two monotone sequences of
strict lower and upper solutions starting from an explicit pair of constant lower and upper solutions.
A solution using a meshless method based on radial basis functions was discussed by Griffiths et al. [7].
In a recent work, Okrasiński and Płociniczak constructed lower and upper estimates that bound the
components of the exact solution [8]. Other interesting mathematical models for the human corneal
topography can be viewed in articles [9–12].

For nonlinear boundary value problems, in general, one would consider popular methods such as
Adomian decomposition [13], variational iteration [14,15], differential transformation [16], and spline
interpolation [17]. Green’s function based methods have been intensively employed by researchers to
solution of boundary value problems that arise in science and engineering. For example, Żur [18–22]
presented a series of work to study the vibration of thin circular plates, thin circular plates with
variable thickness, and elastically supported functionally graded annular plates using Green’s and
quasi-Green’s functions. Andrade [23] calculated the exact Green’s function for arbitrary rectangular
potentials. Ahyoune et al. [24] used weighted combination of 2D and 3D analytical Green’s function
to solve quasi-static partial element equivalent circuits. A coupled Green’s function with fixed point
iteration method was employed to solve Bratu problems and boundary value problems that arise in
heat transfer, strong nonlinear oscillation, and electroanalytical chemistry [25–28].

In this paper, a powerful method based on Green’s function and fixed point iteration schemes is
employed to find an approximate solution for the nonlinear boundary value problem (2). The construction
of Green’s function takes into account both end points of the prescribed domain. Therefore, it is natural
to expect that this method will perform better in stability and uniform convergence than methods
that take into account one initial point, and consequently making the possibility of convergence
deterioration grows larger as we move away from the initial point towards the terminal point.
The proposed method begins by identifying the linear and nonlinear parts of Equation (2) and then
use the properties of Green’s function to construct the Green’s function G that mimics the solution of
the corresponding linear part of (2) subject to the homogenous boundary conditions. A tailored linear
integral operator expressed in terms of the constructed Green’s function G is defined. The integrand of
the integral operator is the product of G and the standard form of Equation (2). An iterative procedure
is then obtained by applying the well-known Picard’s or Mann’s fixed point schemes to the integral
operator. For our problem, it was observed that Picard’s iterative scheme yielded a faster convergence
than Mann’s. The initial iterate, h0, was chosen to satisfy the corresponding linear Equation (2).

The rest of the paper is organized as follows. Section 2 presents the method in details from
constructing the Green’s function to applying Picard’s and Mann’s iterative schemes. In Section 3,
the convergence analysis is established. In Section 4 numerical examples are presented, where the
accuracy and convergence of the proposed method will be tested. A comparison between the proposed
method and other approximate methods that addressed this problem will be detailed. Concluding
remarks are given in Section 5.

2. Description of the Method

In this section, the properties of Green’s function will be used to create an integral operator that
will be embedded into Picard’s fixed point iteration procedure.
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2.1. Construction of Green’s Function

Express Equation (2) in the convenient form

L[h] = F(b, x, h′),

h(1) = 0, h′(0) = 0,
(3)

where
L[h] = h′′ − ah, F(b, x, h′) = − b√

1 + h′2
.

It is known that Green’s function G(x, s) satisfies the equation

L[G(x, s)] = δ(x− s), (4)

subject to the corresponding homogeneous boundary conditions:{
G(x, s)|x=1 = 0
d

dx G(x, s)|x=0 = 0
, (5)

where δ(x− s) is the Dirac delta function. A particular solution to Equation (3) can be expressed as

hp(x) =
∫ 1

0
G(x, s)F(b, s, h′p)ds. (6)

Let hg be a solution to the homogenous equation L[h] = 0, then

hg(x) = C1e−
√

ax + C2e
√

ax. (7)

The Green’s function can, then, be set as

G(x, s) =


C1e−

√
ax + C2e

√
ax, 0 ≤ x < s

C3e−
√

ax + C4e
√

ax, s < x ≤ 1
. (8)

The constants C1, C2, C3, and C4 will be determined using the following properties of
Green’s function:

First, G(x, s) satisfies the homogeneous boundary conditions (5), and hence

− C1
√

a + C2
√

a = 0, (9)

and
C3e−

√
a + C4e

√
a = 0. (10)

Second, the continuity of G(x, s) at x = s implies that

G(x, s)|x→s+ − G(x, s)|x→s− = 0,

or equivalently
C1e−

√
as + C2e

√
as − C3e−

√
as − C4e

√
as = 0. (11)

Third, G′(x, s) has a jump discontinuity at x = s, that is

∫ s+

s−

d2

dx2 G(x, s)dx =
∫ s+

s−
δ(x− s)dx,
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therefore,
− C3

√
ae−
√

as + C4
√

ae
√

as + C1
√

ae−
√

as − C2
√

ae
√

as = 1. (12)

The unique solution to system (9)–(12) is

C1 = C2 =
e
√

a(s−1) − e−
√

a(s−1)

D
, (13)

C3 = − e
√

a(e−
√

as + e
√

as)

D
,

C4 =
e−
√

a(e−
√

as + e
√

as)

D
,

where
D = 2

√
a(e−

√
a + e

√
a). (14)

2.2. Green-Picard Fixed Point Iteration

Consider the linear integral operator

Λ[hp] =
∫ 1

0
G(x, s)L[hp]ds. (15)

Within the integrand of Equation (15), adding and subtracting F(b, x, h′p) followed by the use of
Equation (6) leads to

Λ[hp] =
∫ 1

0
G(x, s)

{
L[hp(s)] + F(b, x, h′p)− F(b, s, h′p)

}
ds

= hp +
∫ 1

0
G(x, s)

{
L[hp(s)]− F(b, s, h′p)

}
ds (16)

When applying Picard’s fixed point iteration formula

hn+1(x) = Λ[hn](x), n = 0, 1, . . . . (17)

to Equation (16), the approximate solution to boundary value problem (2) is, iteratively, obtained in
the form

hn+1(x) = hn(x) +
∫ 1

0
G(x, s)

h′′n(s)− a hn(s) +
b√

1 + h′n
2

 ds, (18)

in which the initial approximation, h0, is the solution of the IVP{
L[h] = 0

h(1) = h′(0) = 0
. (19)

2.3. Green-Mann Fixed Point Iteration

For Mann’s fixed point iteration, we replace Equation (18) with

hn+1(x) = hn(x) + αn

∫ 1

0
G(x, s)

h′′n(s)− a hn(s) +
b√

1 + h′n
2

 ds, (20)
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where αn are constants. Notice that for the special case αn = 1, Picard’s fixed point iteration is obtained.
Mann’s iteration provides more flexibility to achieve fast convergence since the optimal choice of αn is
obtained by finding the minimum L2 norm of the residual error given by

‖Errn(x, αn)‖2 =
∫ 1

0
Err2

n(x, αn)dx (21)

in which the residual error is defined by

‖Errn(x, αn)‖ = L[hn]− F(b, x, h′n) (22)

Remark 1. One desirable feature of the proposed method is that it gives some freedom in choosing the linear part
of a prescribed differential equation. For example, in case of Equation (2), if we let L[h] = h′′, then F(b, x, h′) =
ah− b√

1+(h′)2
, and hence the Greens’ function is constructed as

G(x, s) =


C1x + C2, 0 ≤ x < s

C3x + C4, s < x ≤ 1
, (23)

where

C1 = −C2 = 1, C3 = 0, C4 = s− 1. (24)

Remark 2. Notice that the main part of the proposed method is the construction of the Green’s function which,
as was pointed out in Remark 1, depended only on the linear part of (2). Hence, the proposed method imposes no
restrictions or limitations on the nonlinearity of any differential equation that may be treated numerically by the
proposed method. However, the nonlinear part of the differential equation, which appears in the integrand in the
approximate solutions represented by Equations (18) and (20) may cause slower convergence for some strong
nonlinear equations like Bratu type or strong nonlinear elliptic boundary value problems.

3. Convergence Analysis

In this section, the contraction principle [29] is used to show that the proposed method is
convergent for Picard’s fixed point iteration scheme. Consider the scheme

hn+1(x) = hn(x)−
∫ 1

0
G(x, s)

h′′n(s)− a hn(s) +
b√

1 + (h′n(s))
2

 ds, (25)

where {hn(x)} are particular solutions and G is the Green’s function for the operator L[h] = h′′− ah = 0
subject to the specified BCs given by

G(x, s) =

 c3e−
√

ax + c4e
√

ax, 0 < x < s

c1e−
√

ax + c2e
√

ax, s < x < 1
, (26)

where

c1 =
e
√

a(s−1) − e−
√

a(s−1)

2
√

a
(

e
√

a + e−
√

a
) ,

c2 =
e
√

a(s−1) − e−
√

a(s−1)

2
√

a
(

e
√

a + e−
√

a
) ,
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c3 = −
e
√

a
(

e
√

as + e−
√

as
)

2
√

a
(

e
√

a + e−
√

a
) ,

and

c4 =
e−
√

a
(

e
√

as + e−
√

as
)

2
√

a
(

e
√

a + e−
√

a
) .

Theorem 1. Assume that f
(

x, h, h′
)
=

1√
1 + (h′(x))2

is a continuous function that satisfies a Lipschitz

condition with Lipschitz constant Lc. Also, assume that

K =
bLc

a
(

e2
√

a + 1
) ∣∣∣−e2

√
a + 2e

√
a − 1

∣∣∣ < 1, (27)

then, the iterative sequence {hn(x)}∞
n=1, given by (25) and (26), where x ∈ [0, 1] and using any bounded

starting function on [0, 1], converges uniformly to the exact solution, h(x), of problem (2).

Proof of Theorem 1. We use the function space C[0, 1] equipped with the maximum norm defined by

‖h‖ = max
0≤t≤1

|h(x)|. (28)

Using integration by parts twice and taking into account that G, Gs, and Gss are continuous on
[0, 1], the iterative scheme (25) becomes

hn+1(x) = hn(x) + G(x, 0)h′n(0)− Gs(x, 0)hn(0)− G(x, 1)h′n(1) + Gs(x, 1)hn(1)

−
∫ 1

0
(Gss(x, s)− a G(x, s)) hn(s) ds−

∫ 1

0
G(x, s)

b√
1 + (h′n(s))

2
ds. (29)

Since G(x, s) satisfies the boundary conditions Gs(x, 0) = G(x, 1) = 0, and hn’s satisfies the
boundary conditions hn(1) = h′n(0) = 0, then Equation (29) simplifies to

hn+1(x) = hn(x)−
∫ 1

0
(Gss(x, s)− a G(x, s)) hn(s) ds−

∫ 1

0
G(x, s)

b√
1 + (h′n(s))

2
ds. (30)

But (Gss(x, s)− a G(x, s)) hn(s) = δ(x, s), therefore

∫ 1

0
(Gss(x, s)− a G(x, s)) hn(s) ds =

∫ 1

0
δ(s, x)hn(s) ds = hn(x), (31)

and hence Equation (30) reduces to

hn+1(x) = −
∫ 1

0
G(x, s)

b√
1 + (h′n(s))

2
ds. (32)

Define TG : C[0, 1]→ C[0, 1] to be the right side of Equation (32), that is

TG(h) ≡ −
∫ 1

0
G(x, s)

b√
1 + (h′(s))2

ds. (33)
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According to Banach-Picard fixed point theorem, to prove convergence it suffices to show that TG
is a contraction mapping. We have

|TG(h)− TG(v)| =

∣∣∣∣∣∣
∫ 1

0
G(x, s)

 b√
1 + (h′(s))2

− b√
1 + (v′(s))2

 ds

∣∣∣∣∣∣ . (34)

Since
√

1 + (v′(s))2 ≥ 1, then from Equation (34) and the hypothesis of the theorem, we conclude

|TG(h)− TG(v)| ≤ b
∣∣∣∣∫ 1

0
G(x, s) ds

∣∣∣∣
∣∣∣∣∣∣
∫ 1

0

1√
1 + (h′(s))2

− 1√
1 + (v′(s))2

ds

∣∣∣∣∣∣
≤ bLc

∣∣∣∣∫ 1

0
G(x, s) ds

∣∣∣∣ ∫ 1

0

∣∣h′(s)− v′(s)
∣∣ ds,

(35)

and hence ∫ 1

0
G(x, s) ds =

1

a
(

e2
√

a + 1
) [e√a(x+1) + e−

√
a(x−1) − e2

√
a − 1

]
≡ g(x). (36)

As the maximum value of |g(x)| on the interval [0, 1] occurs either at the critical points or at the
endpoints, then straightforward calculations show that

|g(x)| ≤ 1

a
(

e2
√

a + 1
) ∣∣∣−e2

√
a + 2e

√
a − 1

∣∣∣ . (37)

From Equations (35)–(37), we have

‖TG(h)− TG(v)‖ ≤
bLc

a
(

e2
√

a + 1
) ∣∣∣−e2

√
a + 2e

√
a − 1

∣∣∣ ‖h− v‖

= K ‖h− v‖,
(38)

where ‖h− v‖ = max
0≤x≤1

|h(x)− v(x)|. Since 0 < K < 1, then TG is a contraction mapping.

Remark 3. The convergence for Mann’s fixed point iteration can be established in a similar manner.

4. Results and Discussions

In this section, two examples are presented, where the proposed method is applied to solve
boundary value problem (2) for different parameters a and b. Since closed form solution cannot be
found, the numerical solution obtained by fourth order Runge-Kutta method will be referred to as the
exact solution. The proposed method will be tested against the following four approximate methods:

1. The zero-order solution based on the hyperbolic cosine function [2]:

h0(x) =
b
a

(
1− cosh

√
ax

cosh
√

a

)
. (39)

2. The linearization approach [3]:

hL(x) =
b
a

(
1− r2er1x − r1er2x

r2er1 − r1er2

)
, (40)

where

r1,2 =
−bk±

√
b2k2 + 4a
2

, (41)
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in which

k =

√
5
2
(1 +

√
5)−

√
2(1 +

√
5). (42)

3. The perturbation method [3]:

hP(x) =
b
a
(1− p1) +

b3

4a2 cosh2√a
(1 + p2x− p1 (1 + p2)) , (43)

where

p1 =
cosh

√
ax

cosh
√

a
,

p2 =
1
3

cosh
√

2a.

(44)

4. Taylor series method [4]:

hT(x) = T0 +
1
2
(aT0 − b)x2 +

1
24

[
a(aT0 − b) + b(aT0 − b2)

]
, (45)

where

T0 =
−T1 +

√
T1 + 4a2b(12b + ab− b3)

2a2b
, (46)

in which
T1 = 24 + 12a + a2 − 2ab2. (47)

Example 1. Consider BVP (2) with a = b = 1. Figure 1 shows a comparison between the approximate solution
obtained by the proposed method (using 5 iterations) and the aforementioned approximate methods. Figure 1a
shows the entire time domain while a closer look at the approximate solutions using the first half of the domain is
depicted in Figure 1b. It is clear from both figures that the approximate solution obtained by the proposed method
is more accurate than all other methods.

In Table 1, the relative error computed by the formula

Relative Error (%) =
|Approx Solution− Exact Solution|

Exact Solution
× 100 (48)

confirms that the proposed method is in better agreement with the exact solution than all other
four methods.

Table 1. Comparison of relative errors obtained by different numerical schemes for problem (2) with
parameters a = b = 1.

x Proposed Method Taylor Linearization Zero-Order Perturbation
h5 Equation (45) Equation (40) Equation (39) Equation (43)

0.0 0.00005 0.32318 3.23315 3.31177 9.93049
0.1 0.00002 0.32800 3.27178 3.36031 9.97343
0.2 0.00004 0.34291 3.35877 3.50557 10.10180
0.3 0.00005 0.36958 3.46262 3.74615 10.31389
0.4 0.00005 0.41066 3.56295 4.07985 10.60702
0.5 0.00005 0.46910 3.64695 4.50375 10.97761
0.6 0.00005 0.55066 3.70707 5.01426 11.42121
0.7 0.00004 0.65862 3.73951 5.60723 11.93270
0.8 0.00007 0.79862 3.74304 6.27816 12.50642
0.9 0.00018 0.97608 3.71836 7.02218 13.13624
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(a)

(b)

Figure 1. Comparison of approximate solutions obtained by the proposed method (h5(x)) and other
methods for Equation (2) with a = 1 and b = 1. (a) Entire domain (0 ≤ x ≤ 1). (b) Closeup
(0 ≤ x ≤ 0.5).
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Example 2. For two data sets consisting of 123× 123 points representing interior and exterior surfaces of
cornea, it was calculated that ain ≈ 1.72281, bin ≈ 1.59638, aex ≈ 1.37641, and bex ≈ 1.3084 [2]. In this
example, we consider BVP (2) with the typical values of corneal parameters a = 1.6 and b = 1.7.

Figure 2 shows a comparison between the approximate solution obtained by the proposed method
(using 5 iterations) and the aforementioned approximate methods. Figure 2a shows the entire time
domain while a closer look at the approximate solutions using the first half of the domain is depicted
in Figure 2b. It is clear from both figures that the approximate solution obtained by the proposed
method is more accurate than all other methods. From Table 2, where the relative error is computed
for all methods, we notice that the accuracy of the proposed method surpasses all other methods.

Table 2. Comparison of relative errors obtained by different numerical schemes for problem (2) with
parameters a = 1.6, b = 1.7.

x Proposed Method Taylor Linearization Zero-Order Perturbation
h5 Equation (45) Equation (40) Equation (39) Equation (43)

0.0 0.00023 1.36905 3.30851 5.91347 4.92646
0.1 0.00021 1.39359 3.35215 6.01828 4.95513
0.2 0.00016 1.46981 3.43570 6.33032 5.03704
0.3 0.00012 1.60514 3.51105 6.84277 5.16019
0.4 0.00007 1.81087 3.55219 7.54513 5.30551
0.5 0.00001 2.10070 3.54752 8.42437 5.44798
0.6 0.00007 2.48944 3.49474 9.46589 5.55769
0.7 0.00017 2.99174 3.39741 10.65448 5.60064
0.8 0.00027 3.62121 3.26263 11.97477 5.53921
0.9 0.00029 4.38984 3.09960 13.41166 5.33237

(a)

Figure 2. Cont.
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(b)

Figure 2. Comparison of approximate solutions obtained by the proposed method (h5(x)) and other
methods for Equation (2) with a = 1 and b = 1. (a) Entire domain (0 ≤ x ≤ 1). (b) Closeup
(0 ≤ x ≤ 0.5).

5. Conclusions

In this paper, a semi-analytic method was successfully applied to solve a one-dimensional
curvature equation problem that models the human corneal shape. The proposed recursive method
is based on the use of Green’s functions with fixed point iterative procedure. Using the contraction
mapping principle, the convergence of the method was established for both Picard and Mann’s fixed
point iterations. To assess the stability and convergence, we presented two examples to compare
between the proposed method and other methods that addressed this problem. The proposed method
shows a higher rate of accuracy and remained stable on the entire prescribed domain.

Tables 1 and 2 highlight a more desirable feature of the proposed method, that is the relative error
resulting from the proposed method shows a uniform convergence throughout the given time domain
while convergence deteriorates for the other methods as x moves away from the initial point towards
the terminal point. The reason for this is that the proposed method, which is based on Green’s function,
takes into consideration both end points of the interval for the boundary value problem, while other
methods considered in this study take into account only the initial point.

Another advantage of the proposed method is that there is no restriction on the nonlinearity
of a boundary value problem. This was obvious since the construction of the Green’s function
in the proposed method depends only on the linear part of the differential equation. However,
the presence of strong nonlinear terms may require large number of iterations to reach an acceptable
small relative error.

Author Contributions: Both authors discussed the problem and set up the mathematical formulation. S.K. proved
the convergence theorem and M.A. wrote Maple code and performed the simulations. Both authors wrote
the paper.
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