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Abstract: The Ambartsumian delay equation is used in the theory of surface brightness in the
Milky way. The Adomian decomposition method (ADM) is applied in this paper to solve this
equation. Two canonical forms are implemented to obtain two types of the approximate solutions.
The first solution is provided in the form of a power series which agrees with the solution in the
literature, while the second expresses the solution in terms of exponential functions which is viewed
as a new solution. A rapid rate of convergence has been achieved and displayed in several graphs.
Furthermore, only a few terms of the new approximate solution (expressed in terms of exponential
functions) are sufficient to achieve extremely accurate numerical results when compared with a large
number of terms of the first solution in the literature. In addition, the residual error using a few terms
approaches zero as the delay parameter increases, hence, this confirms the effectiveness of the present
approach over the solution in the literature.
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1. Introduction

In astronomy, Ambartsumian [1] derived a delay differential equation (DE) for the surface
brightness in the Milky Way. The standard form of this equation is given as [2],

y′(t) + y(t) =
1
q

y
(

t
q

)
, q > 1, (1)

where q is a constant for the given model and Equation (1) is subjected to

y(0) = λ, (2)

where λ is also a constant. Existence and uniqueness has been proved and discussed by Kato and
McLeod [3]. It is of great importance to search for accurate solution for Equations (1) and (2) due to
its application in astronomy. Very recently, Patade and Bhalekar [2] have obtained a power series
solution for this system by applying the Daftardar-Gejji and Jafari Method [4]. They have discussed
the convergence for all |q| > 1, however, their solution is not valid in the whole domain as will be
shown in this paper. In order to overcome such drawback, a new series solution shall be deduced by
using the Adomian decomposition method (ADM) which possesses more accuracy and validity.

The ADM was applied to solving algebraic/transcendental/matrix equations [5–9], besides
nonlinear integral/differential equations and both IVPs/BVPs, even for irregular boundary
contours [10–24]. The solution of this method is an infinite series which converges when choosing
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an appropriate canonical form. Hence, a few terms achieve good accuracy for the model under
consideration.

A very good analysis for delayed differential equations has been presented by [25,26]. In addition,
theoretical analysis for the convergence of Adomian’s method to differential equations has been
discussed earlier by Abbaoui and Cherruault [27]. We remark that a significant advantage of the
ADM for solution of differential equations is that it neither invokes the fixed-point theorem to
prove convergence nor is the Adomian solution algorithm developed in accordance with its premise.
Also, the speed of convergence and the general error estimation of the series solution using the
standard ADM have been previously reported by Cherruault and Adomian [28]. Moreover, Rach [29]
has introduced an extensive bibliography of the theory, technique, and applications of the Adomian
decomposition method.

The objective of this work is to reinvestigate the Ambartsumian delay equation by using the ADM.
Two different canonical forms will be constructed. It will be shown that our first solution agrees with
the power series solution [2], while the second series solution is expressed in terms of the exponential
functions and this can be viewed as a new type of solution for the current problem. Also, it will be
demonstrated that the sequence of the approximate solutions of the second type (expressed in terms of
the exponential functions) converges faster than the solution in the literatures.

2. Application of the ADM

2.1. Power Series Solution

We rewrite Equation (1) in the following canonical form for the ADM

y(t) = λ +
∫ t

0

[
q−1 y

(
q−1τ

)
− y(τ)

]
dτ. (3)

y(t) is assumed as

y(t) =
∞

∑
i=0

yi(t). (4)

On inserting (4) into (3), we have

y0(t) = λ,

yi(t) =
∫ t

0

[
q−1 yi−1

(
q−1τ

)
− yi−1(τ)

]
dτ, i ≥ 1. (5)

Therefore

y1 =
t
1!

(
q−1 − 1

)
λ,

y2 =
t2

2!

(
q−1 − 1

) (
q−2 − 1

)
λ =

t2

2!

2

∏
k=1

(
q−k − 1

)
λ,

y3 =
t3

3!

(
q−1 − 1

) (
q−2 − 1

) (
q−3 − 1

)
λ =

t3

3!

3

∏
k=1

(
q−k − 1

)
λ,

y4 =
1
4!

(
q−1 − 1

) (
q−2 − 1

) (
q−3 − 1

) (
q−4 − 1

)
λ =

t4

4!

4

∏
k=1

(
q−k − 1

)
λ, (6)

.

.

.

yi =
ti

i!

(
q−1 − 1

) (
q−2 − 1

)
. . .
(

q−(i−1) − 1
) (

q−i − 1
)

λ =
ti

i!

i

∏
k=1

(
q−k − 1

)
λ.
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Hence

y(t) = y0 +
∞

∑
i=1

yi,

= λ + λ
∞

∑
i=1

ti

i!

i

∏
k=1

(
q−k − 1

)
, (7)

= λ

[
1 +

∞

∑
i=1

(
i

∏
k=1

(
q−k − 1

)) ti

i!

]
,

and this is the same closed form solution obtained by Patade and Bhalekar [2]. Therefore, the m-term
approximate solution of the power series (7) is given by

ψm(t) = λ

[
1 +

m−1

∑
i=0

(
i+1

∏
k=1

(
q−k − 1

)) ti+1

(i + 1)!

]
, m ≥ 1. (8)

2.2. Approximate Solution in Terms of Exponential Functions

Equation (1) can be rewritten in the following canonical form

y(t) = λ e−t +
1
q

e−t
∫ t

0
eτy

(
τ

q

)
dτ. (9)

On using (4) into (9), we obtain the following recurrence scheme

y0(t) = λ e−t,

yi(t) = 1
q e−t ∫ t

0 eτyi−1

(
τ
q

)
dτ, i ≥ 1,

(10)

and hence,

y1 =
λ

q− 1

(
e−t/q − e−t

)
,

y2 =
λ

(q2 − 1)(q + 1)

[
q e−t/q2 − (q + 1)e−t/q + e−t

]
,

y3 =
λ

(q3 − 1)(q + 1)

[
q3e−t/q3 − (q3 + q2 + q)e−t/q2

+ (1 + q + q2)e−t/q − e−t
]

, (11)

.

.

.

and so on. The n-term approximation Φn(t) for Ambartsumian equation is

Φn(t) =
n−1

∑
i=0

yi(t). (12)

In the following section, it will be illustrated that the sequence of the approximate solutions in (12)
is convergent in a wider range than those in the literature at q > 1. Moreover, the present approximate
numerical results will be validated by calculating the absolute residual error |REn(t)| defined by

|REn(t)| =
∣∣∣∣Φ′n(t) + Φn(t)−

1
q

Φn

(
t
q

)∣∣∣∣ , n ≥ 1. (13)
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In addition, the advantage and the effectiveness of the present low-order approximate analytic
solutions for the Ambartsumian delay equation over the existing method in the literature will be
proved for certain higher values of the parameter q.

3. Discussion

In the previous section, the ADM was applied to obtain two types of approximate solutions for
the system (1) and (2). These two types are investigated in this discussion to stand on their domains
of applicability and validity. Usually, we begin by graphically demonstrating the convergence of the
approximate solutions Φn(t) in Equation (12). In Figures 1–3, Φ7(t), Φ9(t), and Φ11(t) are plotted at
a fixed value of λ = 1 and different values for q, where q = 1.5 (Figure 1), q = 1.6 (Figure 2), and q = 2
(Figure 3). a rapid convergence is observed from these figures using only a few terms of the Adomian
approximate solutions of exponential terms (11). The main notice here is that the rate of convergence
is increased for higher values of q, where at q ≥ 2 the 7-term, 9-term, and 11-term are nearly identical.
Hence, Φ11(t) of the decomposition method is sufficient to provide a remarkably accurate solution as
will be shown later by discussing the absolute residuals |RE7|, |RE9|, and |RE11|, while at the lower
values of q in the domain 1 < q < 2, a higher-order approximate solution such as Φn(t) for n ≥ 11 is
required to achieve a similar high accuracy.
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Figure 1. Plots of approximate solutions (12) at λ = 1 and q = 1.5.
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Figure 2. Plots of approximate solutions (12) at λ = 1 and q = 1.6.
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Figure 3. Plots of approximate solutions (12) at λ = 1 and q = 2.

In addition, the approximate solutions Φ7(t), Φ9(t), and Φ11(t) of the second type (exponential)
are valid in the whole domain of t (≥ 0). However, the approximate solution χ100 of the first type
(power series) is only valid in sub-domains as shown from Figures 4–6. The comparisons between the
two types of the Adomian approximate solutions reveal that the second type posses some advantages
over the first type that was expressed as power series. Moreover, a few terms of the second type is
sufficient to achieve accurate numerical results in a wider range when compared with the 100-term of
the power series solution (8).
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Figure 4. Comparison between approximate solutions (12) and Ref. [2] at λ = 1 and q = 1.5.
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Figure 5. Comparison between approximate solutions (12) and Ref. [2] at λ = 1 and q = 1.6.
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Figure 6. Comparison between approximate solutions (12) and Ref. [2] at λ = 1 and q = 2.

The impacts of the initial condition λ and the delay parameter q on the approximation Φ11(t) for
the fluctuations of the surface brightness y(t) are respectively depicted in Figures 7 and 8. It can be
seen from Figure 7 that the surface brightness is increased by increasing the given initial condition
λ. However, a rapid decrease in the surface brightness has been remarked by increasing the delay
parameter q. This latest notice reveals that the curves of Φ11(t) tend faster to zero at higher values of q.
Moreover, as q→ ∞ we have from Equation (11) that

lim
q→∞

y1 = lim
q→∞

y2 = lim
q→∞

y3 = . . . lim
q→∞

yj = 0, ∀j ≥ 1, (14)

and accordingly,
lim
q→∞

(u(t)) = y0(t) = λ e−t. (15)
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Figure 7. Impact of λ on approximate solution (12) at q = 2.0 20 40 60 80 1000.00.20.40.60.81.0 t �11; � =1, q=3.5�11; � =1, q=2.5�11; � =1, q=1.5
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Figure 8. Impact of q on approximate solution (12) at λ = 1.
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For a further validation of the current numerical results, two additional plots for the absolute
residual error |RE11| versus t at different values of λ (q = 2) and at different values of q (λ = 1) in
Figures 9 and 10, respectively.
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Figure 9. Impact of λ on the absolute remainder error at q = 2.

0 20 40 60 80 100

0

5.´10-10

1.´10-9

1.5´10-9

2.´10-9

t

R
es

id
u
al

ÈRE11 È; Λ=1, q=4

ÈRE11 È; Λ=1, q=3

ÈRE11 È; Λ=1, q=2

Figure 10. Impact of q on the absolute remainder error at λ = 1.

The results obtained from these two figures reveal that the approximate solution using only
eleven terms of the Adomian’s series of exponential orders is highly accurate. Moreover, the absolute
residual error |RE11| approaches zero even at higher values of the delay parameter q. This proves
the several remarkable advantages of Adomian’s method over the existing power series method in
the literature [2]. The preceding discussion shows that the ADM can be effectively used to solve
similar delay equations. In a future work, some delay equations of higher-orders will be also solved by
applying the ADM to prove the effectiveness of this method.

4. Conclusions

In this paper, the Ambartsumian delay equation for the fluctuations of the surface brightness in
the Milky way has been analytically solved by using the Adomian decomposition method (ADM).
The obtained approximate solutions were of two types. The first was expressed as a power series
solution which agreed with a previous solution in the literatures, while the second was expressed
in terms of exponential functions. Unfortunately, the solution in the literatures was only effective
in sub-domains while our second type solution was valid in the whole domain. Besides, very small
absolute residual errors have been achieved using only eleven terms of the Adomian decomposition
series. It was also found that the absolute residual errors tend to zero for higher values of the delay
parameter q.
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