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Abstract: The Chikungunya virus is the cause of an emerging disease in Asia and Africa, and also
in America, where the virus was first detected in 2006. In this paper, we present a mathematical
model of the Chikungunya epidemic at the population level that incorporates the transmission vector.
The epidemic threshold parameter R0 for the extinction of disease is computed using the method
of the next generation matrix, which allows for insights about what are the most relevant model
parameters. Using Lyapunov function theory, some sufficient conditions for global stability of the
the disease-free equilibrium are obtained. The proposed mathematical model of the Chikungunya
epidemic is used to investigate and understand the importance of some specific model parameters
and to give some explanation and understanding about the real infected cases with Chikungunya
virus in Colombia for data belonging to the year 2015. In this study, we were able to estimate the
value of the basic reproduction numberR0. We use bootstrapping and Markov chain Monte Carlo
techniques in order to study parameters’ identifiability. Finally, important policies and insights
are provided that could help government health institutions in reducing the number of cases of
Chikungunya in Colombia.

Keywords: Chikungunya disease; mathematical modeling; nonlinear dynamical systems; numerical
simulations; parameter estimation; Markov chain Monte Carlo

1. Introduction

The Chikungunya virus is a type of arbovirus, so it is only transmitted by hematopoietic
arthropods that become infected after biting some vertebrates. Later, the arthropods can transmit
the virus to a susceptible vertebrate through a bite [1]. The arthropod vectors are usually Aedes
aegypti and Ae. albopictus [2–4]. The virus has had mutations, allowing Aedes albopictus to transmit
the disease [5]. The Chikungunya disease originated in Sub-Saharan Africa, and it has become
endemic in Africa, where there is a natural transmission between mosquitoes and primates to humans
[3]. The Chikungunya disease is an emerging disease in Asia. In America, it was detected in 2006,
and there is an imminent risk of the virus spreading throughout South America. In the last few
years, several outbreaks have occurred on the island of Reunion, in Cambodia, Comoros, Mayotte,
Madagascar, Mauritius, Italy, Seychelles, and the Maldives [3,6–8]. The first outbreak in Europe was in
the warm northeast region of Italy in July 2007. Probably, the virus came from Kerala (India), where

Math. Comput. Appl. 2019, 24, 6; doi:10.3390/mca24010006 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0001-5847-678X
https://orcid.org/0000-0001-7243-4957
https://orcid.org/0000-0003-1596-8383
http://dx.doi.org/10.3390/mca24010006
http://www.mdpi.com/journal/mca


Math. Comput. Appl. 2019, 24, 6 2 of 24

the disease was at its highest peak [7]. The Chikungunya disease causes arthritis, fever, and pain of
the joints. Symptoms of chikungunya are generally resolved within 7–10 days, but some patients are
plagued with chronic arthralgia, which could persist for months or years [9–11]. There is no vaccine
for the Chikungunya virus at this moment that could be used to restrict and control the transmission
of the disease [6,12]. Moreover, no effective drug is available for human use for any alphavirus,
although analgesics and non-steroidal anti-inflammatory drugs can provide relief from symptoms
[12]. The incubation of the virus lasts between 5–12 days and the infectious stage between 5–15 days,
in both primates and humans [13,14].

As mentioned above, the Chikungunya virus is spreading around the world, and due to world
climate change, it is expected that more regions are going to be reached by it. For instance, in [15],
the authors presented results regarding the risk of Zika and Chikungunya virus transmission in human
population centers of the eastern United States. In this way, in order to better understand the dynamics
of how the Chikungunya virus is transmitted, we propose and analyze a mathematical model given
by a system of nonlinear differential equations where the populations of hosts and mosquitoes are
homogeneous. This mathematical modeling approach is the standard way to study the dynamical
behavior of diseases in populations from an epidemiological point of view [16–19]. In particular,
there is a variety of models for vector-borne diseases. For instance, in [20], the authors proposed a
mathematical model for vector-borne disease with delay to consider the incubation period. In addition,
in [21], the authors used optimal control to minimize the number of infections. Recently, some works
extended these types of models using versatile fractional derivatives [22–24].

In [25], the authors proposed a deterministic mathematical model for Chikungunya infection
considering that there is transmission of the virus between humans and mosquitoes. The authors
used two infected human subpopulations designated as symptomatic and asymptomatic to classify
the humans responsible for transmitting the virus. Additionally, they considered the subpopulation
of humans carrying the virus, but had no possibility of spreading it. In this paper, the authors
demonstrated the influence of humans on the infection of the latency period. They also remarked
about the necessity of fitting the model to real data so that it will be useful in controlling the spread of
the virus. Another interesting work was presented in [26], where the authors proposed a mathematical
model of three age-structured transmissions of Chikungunya virus. The authors divided the human
population into juvenile, adult, and senior subpopulations.

In [6], the authors proposed a stochastic mathematical model for a rural region in Cambodia,
considering the fact that a stochastic model fits data better in small populations. These authors also used
a subgroup of latent human and mosquito individuals and additionally included a larvae subgroup in
the mosquito population. An innovation in that work is the introduction of three subclasses of infected
humans. Other mathematical models for the Chikungunya virus propagation that include the latency
stage were given in [27–29].

In the present work, our aim is to understand and explain some dynamics regarding the prevalence
of Chikungunya infection in Colombia. The mathematical model is important since in practice, there are
few economic resources to tackle or fight the Chikungunya virus’ spread. Thus, the model allows one
to decide on the best or most convenient health policies. In the proposed model, we consider a chronic
subpopulation that has not been considered previously. The people in this particular class cannot
transmit the disease, but have some types of chronic rheumatic symptoms. The main reason to consider
this class is that health institutions are interested in the number of chronic cases of Chikungunya
and its evolution. In addition, the latency stage for the human and mosquito populations is also
introduced in the mathematical model, since this stage is observed in the real world. Although the
virus may also spread to other vertebrate populations such as primates [30–33], reservoirs different
from humans are not included in the analysis, since in Colombia, known cases are all human. However,
future work might include reservoirs different from humans and would increase the complexity of the
mathematical model and of the fitting process to the real data.
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Numerical simulations are performed to support the theoretical results. In addition, the proposed
mathematical model of Chikungunya is used to explain and understand the infected cases with the
Chikungunya virus in Colombia. In particular, we use the proposed Chikungunya mathematical
model to perform a fitting process to real data of Colombia. Additionally, we used bootstrapping and
Markov chain Monte Carlo techniques in order to do analysis of the parameters’ identifiability [34–40].
Finally, important policies and insights are provided that could help government health institutions in
lowering the infected cases with the Chikungunya virus in Colombia.

The paper is organized as follows. In Section 2, the mathematical model of Chikungunya
is presented together with a set of definitions and basic underlying hypotheses. The proposed
Chikungunya mathematical model is analyzed in Section 3. The fitting process and numerical
simulations are presented in Section 4. Next, the parameter estimation of the model for a Colombia
case using Markov chain Monte Carlo, as well as bootstrapping is performed in Section 5. The last
part, Section 6, is devoted to the discussion and conclusions.

2. Mathematical Model

In this section, we set out a continuous mathematical model for the transmission and evolution of
the Chikungunya infection in the human and mosquito populations. In the proposed mathematical
model, vertical transmission is not included because the number of cases is small when compared to
the total number of infected cases. However, if the virus prevalence increases in the female population,
it may be necessary to include it in the proposed model. Furthermore, we do not consider a vaccinated
class since there are no vaccines on the market [12,41].

The proposed model of the Chikungunya virus transmission dynamics incorporates a
cross-transmission between the human and vector populations. In particular, it is assumed that
the Chikungunya virus spreads by the effective contact between a mosquito infected with a human
susceptible, and vice versa. This contact depends on different environmental factors. Some factors
to consider are: the weather, the temperature, the altitude, and the mosquito bite rate. Varying these
values will generate different degrees of the probability of the transmission of the disease. Here, we will
not include seasonal effects or variability in the populations. Using a population-based approach of
an epidemiological type, the population of humans is divided into five groups: susceptibles, latents,
infected, recovered, and the ones with chronic rheumatic symptoms. It is important to remark that the
people with chronic rheumatic symptoms do not have the Chikungunya virus, just some symptoms
related to it, since they were infected previously. In addition, the population of the vector is divided into
three groups: susceptible vector, latent vector, and infected vector. The resulting mathematical model
is a nonlinear system of eight ordinary differential equations, which is analyzed to find the equilibrium
points and their stability, including the well-known epidemic threshold parameter known as the basic
reproduction number, R0. We estimate some of the unknown key epidemiological parameters of the
model from real data, which allow us to compute R0, defined as the average number of secondary
cases generated by a typical infectious individual in a fully-susceptible population. Moreover, we are
able to compute approximately how many individuals are infected during an outbreak. All these
estimates can help assist with outbreak planning, assessment of health strategies, and the design of
future research regarding Chikungunya infection transmission.

Thus, following the basic ideas and structure of mathematical modeling in epidemiology,
the Chikungunya model will be developed under the following basic hypotheses [16,17]:

• The total population of humans Nh(t) is divided into five subpopulations: humans who may
become infected (susceptible Sh(t)), humans exposed, but still not infected due to the existence of
an incubation period of the virus (latent Eh(t)), humans infected by the Chikungunya virus and
that develop the disease (infected Ih(t)), humans who have recovered from the Chikungunya
infection (recovered Rh(t)), and humans who have the disease chronically (chronic Ch(t)).

• The parameter µh is the birth rate of humans. The birth rate µh is assumed equal to natural
death dh.
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• The mortality rate increase due to the disease is a real fact. However, since this rate is small in
comparison with other rates and is not going to affect the dynamics, we assume that ε = 0.

• The total population of mosquitoes Nv(t) is divided into three subpopulations: mosquitoes
who may become infected (susceptible Sv(t)), mosquitoes in a latent stage (latent Ev(t)),
and mosquitoes currently infected or spreading the Chikungunya virus (infected Iv(t)).

• The parameter µv is the birth rate of the mosquitoes, and it is assumed equal to the death rate dv.
• A susceptible human can transit to the latent subpopulation Eh(t) because of an effective

transmission due to a bite of an infected mosquito at a rate of β′1.
• A susceptible mosquito can be infected if there exists an effective transmission when it bites an

infected human, at a rate β2.
• A fraction α of the latent humans passes to infected by the virus.
• A fraction γ of the infected humans recovers, i.e., they do not have the disease anymore.
• A fraction ρ of the recovered humans moves to the chronic class.
• A fraction φ of the latent mosquitoes goes through to infected mosquitoes.
• Homogeneous mixing is assumed, i.e., all susceptible humans have the same probability of being

infected and all susceptible mosquitoes have the same probability of being infected.

It is important to notice that the parameter β′1 depends on two different parameter: the bite rate
of an infected mosquito on susceptible people and the probability per bite to transmit the virus from
the mosquito to the human. On the other hand, β2 depends on the bite rate of a susceptible mosquito
on an infected human and the probability per bite to transmit the virus from the human to the vector.
In reality, these parameters are very difficult to estimate due to different environment conditions. Thus,
the values of these parameters are most likely to vary from one region to another. In fact, the values
might be very different for rural and urban areas. We assume that the natural birth rate is equal to
the natural death rate for the human population since we are interested in fitting the model to the
real data of the year 2015 and study the identifiability of the parameters. This is considered a short
period where the births can be balanced with deaths. For instance, in [25], the authors did not even
consider the births and deaths, even though these might affect the dynamics. For mosquitoes, there are
no reliable data; thus, we adopted a conservative approach similar to the one used in [25]. The model
could be expanded to consider the variation of mosquito populations. This can be done adding a
seasonal forcing function [42], but will introduce additional parameters to the model. Furthermore,
it will compromise the identifiability more, which currently is an important issue.

Under the above hypotheses, the following diagram illustrates the interactions of the
Chikungunya infection in human and mosquito populations; see Figure 1.

Figure 1. Dynamics of the Chikungunya virus with transmission vector. The boxes represent the
subpopulation and the arrows the transition between the subpopulations. Arrows are labeled by their
corresponding model parameters.
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The corresponding mathematical model is given by the following system of ordinary
differential equations:

Ṡh(t) = µhNh(t)− Sh(t)(β′1
Iv(t)
Nh(t)

+ dh),

Ėh(t) = β′1Sh(t)
Iv(t)
Nh(t)

− Eh(t)(dh + α),

İh(t) = αEh(t)− Ih(t)[dh + γ],
Ṙh(t) = γIh(t)− Rh(t)(ρ + dh),
Ċh(t) = ρRh(t)− dhCh(t),

Ṡv(t) = µvNv(t)− Sv(t)(β2
Ih(t)
Nh(t)

+ dv),

Ėv(t) = β2Sv(t)
Ih(t)
Nh(t)

− Ev(t)(dv + φ),

İv(t) = φEv(t)− dv Iv(t).

(1)

Adding the first five equations, one gets:

Ṅh(t) = Ṡh(t) + Ėh(t) + İh(t) + Ṙh(t) + Ċh(t) = 0

and therefore, the human population is constant. Analogously, by adding the last three equations,
we have that:

Ṅv(t) = Ṡv(t) + Ėv(t) + İv(t) = 0

and likewise, the mosquito populations is constant. Thus, we will denote Nh(t) = Nh and Nv(t) = Nv,
without dependency on time.

All parameters in this model are non-negative. It is easy to prove that the system (1) is well-posed,
in the sense that if the initial data ( Ṡh(0), Ėh(0), İh(0), Ṙh(0), Ċh(0), Ṡv(0), Ėv(0), İv(0) ) are in the
region R8

+, then the solutions will be defined for all time t ≥ 0 and remain in this region.
Normalizing the human and mosquito populations,

sh(t) =
Sh(t)
Nh(t)

, eh(t) =
Eh(t)
Nh(t)

, ih(t) =
Ih(t)
Nh(t)

, rh(t) =
Rh(t)
Nh(t)

, ch(t) =
Ch(t)
Nh(t)

,

and:

sv(t) =
Sv(t)
Nv(t)

, ev(t) =
Ev(t)
Nv(t)

, iv(t) =
Iv(t)
Nv(t)

.

Using the assumptions µh = dh and µv = dv, one can obtain the following system that describes
the dynamics of Chikungunya in each class:

ṡh(t) = dh − sh(t)(β1iv(t) + dh),
ėh(t) = β1sh(t)iv(t)− eh(t)(dh + α),
i̇h(t) = αeh(t)− ih(t)[dh + γ],
ṙh(t) = γih(t)− rh(t)(ρ + dh),
ċh(t) = ρrh(t)− dhch(t),
ṡv(t) = dv − sv(t)(β2ih(t) + dv),
ėv(t) = β2sv(t)ih(t)− ev(t)(dv + φ),
i̇v(t) = φev(t)− dviv(t).

(2)

where β1 = mβ′1 = Nv
Nh

β′1. Now, we can define a more specific region,
Ω = {(sh(t), eh(t), ih(t), ch(t), sv(t), ev(t), iv(t)) ∈ [0, 1]8}, and the solutions will be defined for
all time t ≥ 0 and remain in this region Ω.
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3. Analysis of the Model

3.1. Equilibrium Points and Local Stability of the Chikungunya Mathematical Model

Setting the right-hand side of Equation (2) equal to zero, we can find the equilibrium
points of the model. The first point is denoted as the disease-free equilibrium (DFE),
and the other is called the endemic equilibrium (EE). Thus, we obtain the equilibrium point
DFE = (1, 0, 0, 0, 0, 1, 0, 0). On the other hand, the mathematical expression of the other equilibrium
point EE = (S∗h , E∗h , I∗h , R∗h, C∗h , S∗v , E∗v , I∗v ), is extremely long. Therefore, we will present this endemic
equilibrium (EE) in terms of I∗h . It is important to mention that our main interest is to obtain the
conditions under which the population is free of disease. We will discuss later the endemic equilibria
and under which conditions they exist.

For infectious diseases, the basic reproduction number is denoted asR0 and is one of the most
useful threshold parameters. It can help determine whether or not an infectious disease will spread
throughout a population [43,44]. R0 also has been used for social epidemics [18,45].

In order to compute the basic reproduction numberR0 for the mathematical model (2), we apply
the next generation technique as proposed in [43,44,46]. The infectious classes in this model are eh(t),
ih(t), ev(t), and iv(t). Thus, at the DFE, one gets,

F =


0 0 0 β1

0 0 0 0

0 β2 0 0

0 0 0 0

,

and:

V =


α + dh 0 0 0

−α dh + γ 0 0

0 0 dv + φ 0

0 0 −φ dv

,

K =



0 0 β1φ
dv(dv+φ)

β1
dv

0 0 0 0

β2(αd2
v+αdvφ)

(α+dh)dv(dh+γ)(dv+φ)
β2

dh+γ 0 0

0 0 0 0


,

where the matrix F is related to the rate of increase of secondary infections and V to the rate of the
disease progression, death, and recovery. The next generation matrix, K = FV−1, is non-negative,
and therefore, it has a non-negative eigenvalue R0 = ρ(FV−1) and a non-negative eigenvector ω

associated withR0 [43,46].
There are no other eigenvalues of the matrix K with modulus greater thanR0. Therefore, applying the

next generation matrix, we obtain:

R0 =

√
β1β2αφ

(α + dh)dv(dh + γ)(dv + φ)
, (3)

or in a more compact form:

R0 =

√
β1β2αφ

ABCdv
,
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where A = (α + dh), B = (dh + γ), and C = (dv + φ).
Thus, we obtain the following theorem [43,44]:

Theorem 1. The disease-free equilibrium DFE is locally asymptotically stable for R0 < 1 and unstable for
R0 > 1.

This analysis shows that when the threshold parameter R0 is less than unity, the disease disappears,
while the opposite results show an endemic equilibrium in the human population.

Notice that the basic reproduction numberR0 has in the numerator all the factors that contribute
to having an epidemic outbreak. For instance, we have the Chikungunya transmissibility β1 from
an infected vector to a susceptible human and the Chikungunya transmissibility β2 from an infected
human to a susceptible vector. In addition, we have the incubation rates of the virus for humans and
mosquitoes α and φ, respectively. Notice that both chronic and recovered classes have a limited role in
the Chikungunya dynamics, since their equations are in some sense uncoupled from the rest of the
model and do not play a role in the threshold parameter R0.

3.2. Endemic Equilibria

In order to find the endemic equilibrium point, we set the right-hand side of Equation (2)
equal to zero, and at least one of the infected components of the model (2) is different than zero.
Let EE = (S∗h , E∗h , I∗h , R∗h, C∗h , S∗v , E∗v , I∗v ) represent any arbitrary endemic equilibrium point. Solving the
equations for the steady state, we obtain:

S∗h =
ABC(dv + β2 I∗h )

αφµvβ1β2
, E∗h =

B
α

I∗h , R∗h =
γ

ρ + dh
I∗h ,

C∗h =
ργ

dh(ρ + dh)
I∗h , S∗v =

dv

dv + β2 I∗h
, E∗v =

β2dv

C(dv + β2 I∗h )

I∗v =
β2φI∗h

C(dv + β2 I∗h )
.

Since we assume that I∗h 6= 0, then we can substitute S∗h and I∗v in the first equation of Model (2) at
the steady state. Thus, after some calculations, we get,

dh − ABβ1β2φI∗h −
ABC(dv + β2 I∗h )dh

αφβ1β2
= 0.

Then, solving for I∗h , one gets:

I∗h =

dh −
(

ABCdvdh
αφβ1β2

)
ABβ1β2φ +

ABCdh
αφβ1

.

Using the threshold parameterR0, we can rewrite the value of I∗h as:

I∗h =

dh

(
1− 1
R2

0

)
ABβ1β2φ +

ABCdh
αφβ1

.

Clearly, if R0 < 1, then I∗h is negative. Thus, in order to have a positive realistic endemic
equilibrium point for I∗h , the threshold parameterR0 must be greater than one.
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3.3. Global Stability Analysis

We can study the global stability of the disease-free equilibrium point DFE = (1, 0, 0, 0, 0, 1, 0, 0)
using a Lyapunov function.

Theorem 2. The disease-free equilibrium DFE is globally asymptotically stable on Ω forR0 < 1.

Proof. In order to establish the global stability of the disease-free equilibrium point
DFE = (1, 0, 0, 0, 0, 1, 0, 0), we are going to construct a Lyapunov function V(t) [47,48]. The main

idea is to find some positive constant weights Wi such that
dV(t)

dt
< 0 if R0 < 1. Let us define the

following Lyapunov function:

V(t) = W1

(
sh − 1− log sh

)
+ W2eh + W3ih + W4

(
sv − 1− log sv

)
+ W5ev + W6iv.

Taking the derivative with respect to time along the solutions of the model (2), one gets:

dV(t)
dt

= W1

(
1− 1

sh

)[
dh − shβ1iv − shdh

]
+ W2

[
β1shiv − eh(dh + α)

]
+ W3

[
αeh − ih(dh + γ)

]

+W4

(
1− 1

sv

)[
dv − svβ2ih − svdv)

]
+ W5

(
β2svih − ev(dv + φ)

)
+ W6

(
φev − dviv

)
.

Rearranging and using A = (α + dh), B = (dh + γ), and C = (dv + φ), one gets:

dV(t)
dt

= −W1β1shiv

(
(sh − 1)2

sh

)
−W4β2svih

(
(sv − 1)2

sv

)
+ (W2 −W1)β1shiv

+(W5 −W4)β2svih + (W3α−W2 A)eh + (W6φ−W5C)ev

+(W4β2 −W3B)ih + (W1β1 −W6dv)iv

Then, we have several options in order to obtain
dV(t)

dt
< 0. If we set W4 =

αφβ1β2

ACdv
, we can set

W3 = 1, and then, the coefficient of ih will be negative ifR0 < 1. Then, we can set the other weights

in order to cancel the other terms. Thus, we can set W2 =
α

A
, W5 = W4, W1 = W2, and W6 =

αβ1

Adv
.

Therefore, we have only:

dV(t)
dt

= −W1β1shiv

(
(sh − 1)2

sh

)
−W4β2svih

(
(sv − 1)2

sv

)
+ (R0 − 1)Bih.

Theorem 3. IfR0 > 1, then the epidemiological model (2) is uniformly persistent.

Proof. Let V be defined as above. When sh = 1 and sv = 1, it follows that:

dV(t)
dt

> 0,

assuming (β1β2αφ)− (ABCdv) > 0 by hypothesis. Thus, by continuity, V′ > 0 in a neighborhood
of {(1, 0, 0, 0, 0, 1, 0, 0)} provided R0 > 1. Then, the solutions in the positive cone sufficiently close
to {(1, 0, 0, 0, 0, 1, 0, 0)} move away from {(1, 0, 0, 0, 0, 1, 0, 0)}, implying that {(1, 0, 0, 0, 0, 1, 0, 0)} is
unstable and a repeller in Ω. Since EE = (S∗h , E∗h , I∗h , R∗h, C∗h , S∗v , E∗v , I∗v ) is the only equilibrium that lies
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in Ω and is isolated, therefore, by means of Theorem 2.2 [48], we show that the instability of the DFE
equilibrium point implies the uniform persistence of System (2).

Notice that the uniform persistence and the positive invariance of the compact set Ω imply the
existence of the endemic equilibrium EE of (2).

In order to establish the global stability of the endemic equilibrium EE = (s∗h, e∗h , i∗h , r∗h , c∗h, s∗v , e∗v , i∗v),
we can construct a Lyapunov function. For instance, a general form of Lyapunov functions used in the
literature of mathematical biology is L = ∑n

i=1 Wi(xi − x∗i − x∗i ln xi
x∗i
), originally from the first integral

of a Lotka–Volterra system [48].

Theorem 4. IfR0 > 1, then the EE point is globally asymptotically stable on Ω.

Proof. The main idea is to find some positive constant weights Wi such that
dV(t)

dt
< 0 if R0 > 1.

Let us define the following Lyapunov function:

V(t) = W1

(
sh − s∗h − s∗h log

sh
s∗h

)
+ W2

(
eh − e∗h − e∗h log

eh
e∗h

)
+ W3

(
ih − i∗h − i∗h log

ih
i∗h

)

+W4

(
sv − s∗v − s∗v log

sv

s∗v

)
+ W5

(
ev − e∗v − e∗v log

ev

e∗v

)
+ W6W1

(
iv − i∗v − i∗v log

iv

i∗v

)
.

Taking the derivative with respect to time along the solutions of the model (2), one gets:

dV(t)
dt

= W1

(
1−

s∗h
sh

)
ṡh(t) + W2

(
1−

e∗h
eh

)
ėh(t) + W3

(
1−

i∗h
ih

)
i̇h(t)

+W4

(
1− s∗v

sv

)
ṡv(t) + W5

(
1− e∗v

ev

)
ėv(t) + W6

(
1− s∗v

sv

)
i̇v(t).

Using the equations of Model (2), we obtain:

dV(t)
dt

= W1

(
1−

s∗h
sh

)[
dh − sh(t)(β1iv(t) + dh)

]
+ W2

(
1−

e∗h
eh

)[
β1sh(t)iv(t)− eh(t)(dh + α)

]

+W3

(
1−

i∗h
ih

)[
αeh(t)− ih(t)[dh + γ]

]
+ W4

(
1− s∗v

sv

)[
dv − sv(t)(β2ih(t) + dv)

]

+W5

(
1− e∗v

ev

)[
β2sv(t)ih(t)− ev(t)(dv + φ)

]
+ W6

(
1− s∗v

sv

)[
φev(t)− dviv(t)

]
.

Now, setting W1 = W2 = 1, W3 =
β1s∗hi∗v

αe∗h
, W4 = W5 =

β1s∗hi∗v
β2s∗vi∗h

, and W6 =
β1s∗hi∗v

φe∗v
and using the

information regarding the EE point, one gets:

dV(t)
dt

= dhs∗h

(
2− sh

s∗h
−

s∗h
sh

)
+ β1s∗hi∗v

(
1−

s∗h
sh

)
+ β1s∗hi∗v

(
1−

shive∗h
s∗hi∗veh

)

+β1s∗hi∗v

(
1−

ehi∗h
e∗hih

)
+

β1s∗hi∗vdv

β2i∗h

(
2− sv

s∗v
− s∗v

sv

)
+ β1s∗hi∗v

(
1− s∗v

sv

)

+β1s∗hi∗v

(
1− svihe∗v

s∗vi∗hev

)
+ β1s∗hi∗v

(
1− evi∗v

e∗v iv

)
.
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Doing some rearrangement, we obtain:

dV(t)
dt

= dhs∗h

(
2− sh

s∗h
−

s∗h
sh

)
+

β1s∗hi∗vdv

β2i∗h

(
2− sv

s∗v
− s∗v

sv

)

+β1s∗hi∗v

(
6−

s∗h
sh
−

shive∗h
s∗hi∗veh

−
ehi∗h
e∗hih
− s∗v

sv
− svihe∗v

s∗vi∗hev
− evi∗v

e∗v iv

)
Since the arithmetic mean is greater than or equal to the geometric mean, we have:(

2− sh
s∗h
−

s∗h
sh

)
≤ 0,

(
2− sv

s∗v
− s∗v

sv

)
≤ 0

(
6−

s∗h
sh
−

shive∗h
s∗hi∗veh

−
ehi∗h
e∗hih
− s∗v

sv
− svihe∗v

s∗vi∗hev
− evi∗v

e∗v iv

)
≤ 0

Thus, V̇(t) ≤ 0 for all (sh, eh, ih, rh, ch, sv, ev, iv) ∈ Ω, and the strict equality V̇(t) = 0 holds only
for (sh = s∗h, eh = e∗h , ih = i∗h , rh = r∗h , ch = c∗h, sv = s∗v, ev = e∗v , iv = i∗v). Then, the EE point is globally
asymptotically stable wheneverR0 > 1.

4. Numerical Simulation

In this section, a set of numerical simulations using the mathematical model of Chikungunya (2)
is performed in order to support the presented theoretical results and validate the importance of
the threshold parameter R0. Those simulations also help us to better understand the relationships
among the different groups of the human and vector populations, the parameters, and the dynamics of
Chikungunya at the population level. The numerical simulations are presented using the proportions
of the subpopulations in Model (2) in order to observe easily the dynamics of Chikungunya. In addition,
the simulation results are presented using the parameter values presented in Table 1, which corresponds
approximately to the current Colombian scenario. All simulations were done using an adaptive
Runge–Kutta–Fehlberg method of order four [49].

Table 1. Parameter values for mathematical model of Chikungunya (2).

Parameter Symbol Values Rate

Average life-span of the human host [50] 1
µh

25.000 Days 0.00004

Average life-span of the vector [51] 1
µv

14 Days 0.07133

Average incubation time of the virus (latency in the humans) [52] 1
α 5–12 Days 0.133

Average incubation time of the virus (latency in the vector) [28,53] 1
φ 3 Days 0.33

Average infection time (infection in humans) [51] 1
γ 5–15 Days 0.066

Chronic time [54,55] 1
ρ 300 Days 0.0033

4.1. Numerical Simulations forR0 < 1

First, we perform numerical simulations of the Chikungunya model (2) when the threshold
parameter R0 < 1 in order to corroborate that the infected populations vanish and to observe the
dynamics of the susceptible recovered and chronic populations. We run the simulations for a time long
enough so we can observe both the transient dynamics and the steady states of the system.

For this first numerical simulation, the parameter values used are those presented in Table 1,
but β1 = 1/720. In this particular scenario, the numerical value of β1 is chosen such thatR0 < 1.
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As can deducted directly from the Chikungunya model (2), the units of all these parameters are
in days−1, except βi, which measures the effective contacts per day, i.e., the total number of contacts,
effective or not, per unit day, multiplied by the risk of infection with Chikungunya virus.

In Figure 2, it can be observed that forR0 ≈ 0.93, the infected population I(t) dies out, and the
susceptible population approaches the disease-free steady state value Sd = 1. Moreover, the steady
state is as expected the disease-free equilibrium DFE = (1, 0, 0, 0, 0, 1, 0, 0). In this way, if health
institutions have to reduce the Chikungunya prevalence in the population, then they need to introduce
changes in the health policies that affect the corresponding parameters related toR0 in order to reduce
its value.
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Figure 2. Numerical simulation of the Chikungunya model (2) when the threshold parameter
R0 = 0.987. The parameter values are those presented in Table 1, but β1 = 1/720.

4.2. Numerical Simulations forR0 > 1

The second numerical simulation of the Chikungunya model (2) is when the threshold parameter
R0 > 1. For this particular scenario, the infected populations persist over time, as well as the susceptible
and recovered populations. As in the previous scenario, we run the simulations for a time long enough
so we can observe both the transient dynamics and the steady states of the system.

In Figure 3, it can be observed that for R0 ≈ 1.1977, the infected subpopulations i(t) and iv(t)
persist and approach an endemic steady state value. However, notice that despite the time-invariant
parameter values, the infected subpopulations oscillate at the beginning and then reach a steady
state. Thus, some slight changes of the parameter values due to environmental events may change the
outcome dynamics. It is important to remark that if health institutions want to reduce the Chikungunya
prevalence in the population, then they need to introduce changes in the health policies that affect the
corresponding parameters related toR0 in order to reduce its value.

4.3. Sensitivity Analysis of the Transmission Parameters

Here, we investigate the relevance of each transmission parameter of the Chikungunya model (2)
on the dynamics of the subpopulation of humans infected by the virus. To answer this key question,
we need to compare the impact of those parameters on the outcome of the infected. As has been
mentioned, the threshold parameterR0 plays a determinant role in the different subpopulations of
the model.

In the previous numerical simulation, we can see in Figure 4 that varying the transmission
parameter β2 allows us to observe the effect of this parameter on the dynamics transmission of
the disease in the human and mosquito population. In all these simulated scenarios, the human
population is exposed to the mosquitoes infected by the Chikungunya virus. Based on the fact that the
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human population exposed to the Aedes aegypti in Colombia is 19 million [51] and assuming different
values of the transmission parameter β2, we can roughly estimate the number of infected humans by
Chikungunya virus, as given in Table 2.
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Figure 3. Numerical simulation of the Chikungunya model (2) when the threshold parameter
R0 = 1.1977. The parameter values are those presented in Table 1, but β1 = 1/600.
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Figure 4. The dynamics of the different subpopulations are sensitive to the changes of the parameter β2.

Table 2. Variation of the β2 parameter and its effects on the infected human population.

Value β2
3
8

14
50

2
25

Value ofR0 4.94 4.27 2.28
Value of Infected Population 7.142 million 6.993 million 5.551 million

5. Estimation of Parameters for the Colombian Scenario

The dynamics of systems are, in general, too complex to allow intuitive predictions and require
the support of mathematical modeling for quantitative assessments and a reliable understanding of
the system functioning [56]. Moreover, one of the most difficult tasks of mathematical modeling is the
estimation of model parameters.

The proposed Chikungunya mathematical model (2) establishes mathematical relationships
among the eight different sub-populations and allows for the flux of individuals between
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sub-populations. Therefore, several parameters that regulate these relationships and fluxes appear in
the model. However, the estimation of these model parameters is not a straightforward task.

5.1. Fitting Algorithm

In order to use the Chikungunya mathematical epidemiological model (2) to simulate the
dynamics of Chikungunya virus in the Colombian population, it is necessary to set the parameter
values of the model. However, some of the parameter values are not accurately known or belong to
different regions. Here, we rely on some parameter values that are available in scientific journals or
based on medical considerations. One aim here is to explain the qualitative and quantitative behavior
of the Chikungunya infection dynamics at the population level in Colombia for the year 2015.

The Chikungunya disease data were collected using available cumulative data from a national
health institution in Colombia. In Table 3, we can see the seroprevalence of Chikungunya infection for
different weeks of 2015 in Colombia.

Table 3. Data provided by the National Institute of Health-SIVIGILA, Colombia. The first row
corresponds to the number of the week of the year 2015. The second row shows the number of
infectious individuals for whom Chikungunya was detected in each week because those people went
to see a doctor and it was reported.

Week 1 2 3 4 5 6 7 8

Cases 15,000 16,200 16,100 14,800 13,900 14,000 12,950 12,100
Week 9 10 11 12 13 14 15 16
Cases 13,900 13,000 12,200 11,900 8300 12,200 12,000 11,800
Week 17 18 19 20 21 22 23 24
Cases 13,700 13,600 11,900 11,700 11,500 9800 7900 8000
Week 25 26 27 28 29 30 31 32
Cases 7800 6100 6200 5000 5700 4000 2900 2300
Week 33 34 35 36 37 38 39 40
Cases 2100 2000 1900 1900 1950 1800 1900 1700
Week 41 42 43 44 45 46 47 48
Cases 1750 1750 1650 1600 1650 1500 1600 1000
Week 49 50 51 52
Cases 1000 1600 1000 900

In order to adjust the Chikungunya mathematical model (2) to the time-series data of Chikungunya
seroprevalence in Colombia, the only parameters to be estimated by a fitting process to real data
are the Chikungunya transmissibility β1 from infected vector to susceptible human, Chikungunya
transmissibility β2 from an infected human to a susceptible vector, and the initial infected human
and mosquito proportions. The parameters β depend on the number of bites per unit of time and the
transmission probability per bite [57].

In regard to initial conditions for the year 2015, we have several assumptions due to the lack of
real data for the vector and human populations. However, we think that the assumptions are biological
plausible since we take into account some available data in conjunction with parameter values that
are known from the related literature. As we have mentioned before, we used the proportions of the
subpopulations in the Chikungunya mathematical model (2). It is important to point out that the
data presented in Table 3 are related to individual cases, but we transform these data to proportional
values related to the real demographic data of Colombia. We use a total population of 19,471,223,
since this is the number of inhabitants that live within the 2200 m where the mosquitoes that transmit
the Chikungunya virus live [51,58]. The following initial conditions based on the proportion of infected
humans i0(ih(0)) are assumed: e0 = i0/2 based on the fact that the latent or exposed stage is half of
the infected one; r0 = i0/40 based on the fact that it takes 300 days for a recovered person to start
suffering chronic symptoms and with a probability of approximately 5% [54,55]. Finally, we set the
initial condition for the proportion of chronic individuals as c0 = 0.05× r0, and the initial condition
for the susceptible population is just found using the relation s0 = 1− e0 − i0 − r0 − c0. For the vector
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population, we do not have any real data. We will assume that the proportion of vectors at the eclipse
phase is a tenth of the infected vectors based on the duration of the latent and infectious stages of the
mosquitoes. Here, the simulation interval period of 2015 has been chosen according to the available
Chikungunya seroprevalence data in Colombia.

The fitting process to adjust the Chikungunya mathematical model (2) to the time-series data of
Chikungunya in Colombia corresponding to the year 2015 is done minimizing the sum of squared errors
(SSR). We use two algorithms to find the minimum SSR. We initially used a genetic algorithm [59],
which performs a broad search of the parameter space and is less dependent on the initial guess.
Once the genetic algorithm had found a good fit, these parameters were used as the initial guess for
the trust-region-reflective and interior point algorithms [60,61], which search a more localized region
of the parameter space. The use of several different algorithms increases the probability of finding the
global minimum for the SSR.

In order to compute the best fitting, we carried out computations, and we implemented the
SSR function,

F : R3 −→ R
(β1, β2, iv(0)) −→ F (β1, β2, iv(0))

where β1, β2, and iv(0) are variables such that:

1. For a given (β1, β2, iv(0)), numerically solve the system of differential Equation (2) and obtain
a solution Ŷj(t) = ( ˆshj, ˆehj, ˆihj, ˆrhi, ˆchj, ˆsvj, ˆevj, ˆivj), which is an approximation of the real data
solution Y(t).

2. Set t0 = 0 (the fitting process starts at Week 0), and for t = 0, 1, 2, . . . , 51, corresponding to weeks
where data are available, evaluate the computed numerical solution for subpopulation ih(t); i.e.,
îh(0), îh(1), îh(2),. . ., îh(51).

3. Compute the sum of square of the difference between îh(0), îh(1), îh(2),. . ., îh(51), and infectious
data in Table 1. This function F returns the sum of squared errors (SSR), where for the Colombia
data are given by:

SSR =
51

∑
j=0

(îh(j)− ih(j))2

4. Find a global minimum for the the sum of squared errors (SSR) using genetic,
trust-region-reflective, and interior point algorithms.

The function F takes values in R3 and returns a positive real number, the SSR that measures
the closeness of the scaled infectious population (ih(t)), provided by the model, to time-series data.
In order to ensure that parameter estimates are biologically realistic, we placed bounds on some of the
parameters. Thus, for instance, we can obtain values for iv(0) only from the interval (0, 1) or positive
values for β1 and β2.

5.2. Numerical Simulation of the Chikungunya Mathematical Model

In this section, numerical results for the solution of the Chikungunya mathematical model (2)
are presented. Since no analytic solution to the nonlinear fractional system (2) is available, we use
a Runge–Kutta-type method to compute the solution numerically. The data from Colombia related
to Chikungunya are from Weeks 1–52. It is important to remark that the data only show a small
increasing interval for infected cases and the full decreasing interval. This is due to the fact that at
the beginning of the Chikungunya epidemic, the health institutions diagnosed the cases using just
symptoms instead of the lab tests that confirm a real infected case. Therefore, health institutions
in Colombia disregarded most of the first increasing period in order to avoid inaccurate reports of
Chikungunya. Notice that Dengue virus causes similar symptoms to the Chikungunya virus in human
populations. Thus, lab tests are necessary to differentiate between both epidemics.

In order to fit the Chikungunya mathematical model (2) to the time-series data of Chikungunya
cases in Colombia, we need to estimate the parameters β1, β2, and iv(0). As a first approach, we set
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the initial proportion of latent and infected humans based on the real data. Thus, we only need to
estimate initially β1, β2, and iv(0). In other works, different assumptions regarding the initial infected
and latent populations for humans and vectors have been assumed. For instance, in [62], the authors
assumed that the initial numbers of latent and infectious people were equal, and analogously for the
mosquito population.

The confirmed cases of Chikungunya from the year 2015 in Colombia and the best model fit
along with the best fit parameter values are shown in Figure 5. It can be seen graphically that the
Chikungunya mathematical model (2) produces a good adjustment to the real data and predicts
that the epidemic will disappear in Colombia due to a R0 = 0.79. In addition, the epidemic
peak of the mathematical model approximates well the peak of the real data. It is important to
mention that the Chikungunya mathematical model (2) generates epidemic data that fit well in
terms of the SSR. The Chikungunya mathematical model (2) gives a smoother curve due to its
deterministic nature, as was expected. In order to catch the natural irregularity of the real data,
it would be necessary to introduce stochastic factors to the model, which allows one to obtain a more
accurate fitting [63]. However, introducing stochastic or temporal factors would require more detailed
information regarding the dynamics of the population in Colombia, and the complexity of the model
would increase. It is important to mention that the irregularity of the real data has been observed
in many other studies related to other diseases, and can be explained due to different reasons such
as weather, under-reporting, the stochastic nature of the virus diffusion, spatial effects, or even the
heterogeneity of the human and mosquito population [19]. In Figure 6, the long-term dynamics of the
humans with chronic rheumatoid symptoms can be observed. It can be seen that this class population
will reach a peak and then start to decrease due to the natural death rate and the decay of new infected
humans over the long term.

Additionally, we considered different scenarios fixing the initial conditions for the mosquito
infected population iv(0) and fitting the initial infected human population ih(0). However, the most
important difference with the previous best fit scenario is that the values of the parameters β2 and β1

varied in such way that they compensated each other in order to be able to fit the real data level of
infected humans. This compensation makes total sense since the transmission parameters βs are going
to depend on the initial infected vector population iv(0). The smaller iv(0) is, the greater should be
the transmission parameter from vector to humans in order to reproduce the real number of infected
cases. However, we notice that the basic reproduction numberR0 stays approximately constant for all
the scenarios. Thus, from the results, we obtained a robust numerical value for the basic reproduction
numberR0, regardless of the initial proportion of infected mosquitoes.

Finally, we present the numerical simulations for larger values of iv(0). We vary iv(0) from 0.2
(20%) to 0.5 (50%) in order to observe other potential realistic scenarios. The idea is to test hypotheses
that consider larger values for the initial proportion of infected vectors iv(0). The best model fits can
be seen in Figure 7. It can be observed graphically that the mathematical model (2) does not fit the real
data well for large values of iv(0). Based on these results and the real data available, we can infer that
these large value scenarios are unlikely for Colombia in 2015. Moreover, notice that for larger values of
the initial proportion of infected vectors iv(0), the model fits to the real data deteriorate. Thus, we have
highlighted some likely scenarios for the parameter values of β1, β2, iv(0), and i0 that can help to
analyze some potential scenarios beyond the data and with some intervention strategies. Moreover,
this allows us to compare with different regions where other parameter values have been obtained and
then raise some questions regarding the explanations of these differences. In the next section, we will
provide further analysis regarding the identifiability of the parameters, the initial conditions, and the
basic reproduction numberR0.
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Figure 5. Best fit of the Chikungunya mathematical model (2) to the time-series data of Chikungunya
in Colombia corresponding to the year 2015. Red points give the real data, and the blue line shows the
best model fit. The best fit parameter values are given in the table. SSR, sum of squared errors.
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Figure 6. Dynamic of the chronic infected individual humans using the fit of the Chikungunya mathematical
model (2) to the time-series data of Chikungunya in Colombia corresponding to the year 2015.
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Figure 7. Best fits of the Chikungunya mathematical model (2) to the time-series data of Chikungunya
in Colombia corresponding to the year 2015. The initial proportion of infected vectors iv(0) varies from
0.2 (20%) to 0.5 (50%).
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5.3. Identifiability of the Parameters

As we mentioned before, the parameters β1 and β2 are not fully identifiable. Moreover, we do
not have real data regarding initial conditions for the different subpopulations, but based on our
assumptions, all of them can be set in terms of the initial conditions for the infected human and vector
populations. Here, we use two approaches: for the first one, we fixed the initial condition of the
infected humans to the real data, and consequently, we minimized the function F in R3; the second
approach was just to leave the initial condition of infected humans as a parameter, and then, we
minimized the function F in R4.

We now extend our parameters’ identifiability analysis, by incorporating two numerical
techniques. These techniques are bootstrapping [34,64] and Markov chain Monte Carlo [35,36,39],
which allow us to introduce further information regarding the identifiability of the parameters and
corroborate the identifiability of the basic reproduction numberR0. It is recommended to ensure that
the optimum parameter values of the model can be uniquely determined by the available real data.
For non-linear-based models, the issue of identifiability is not straightforward.

An important numerical tool often used to assess the uncertainty in estimated values is
bootstrapping [34,64]. The bootstrapping process begins with the generation of artificially-generated
datasets, which are created by sampling the best fit curve and adding error such that the SSR is equal
to the SSR of the original data. The mathematical model (2) is fitted to each of the surrogated datasets,
leading to new parameter estimates. A total of 3000 bootstrap replicates were performed using the
real data. In this way, we obtained estimates of the distribution of each parameter, as can be seen
in Figure 8. Roughly, it can be seen from the histograms that all the parameter estimates follow a
Gaussian distribution. These distributions were used to give the 95% confidence intervals, which are
shown in Table 4. This information is useful to have a measure of error in the parameter estimates.
There is some small skew present in the histograms of parameters Th and TM, which can be explained
by their correlation. However, we are more interested in the threshold parameterR0, which as can be
seen in Figure 9, is relatively stable aroundR0 = 0.78.

The bootstrapping method allows us to find correlations between estimated parameters.
In Figure 9, several two-parameter scatter plots for each of the 3000 bootstrap replicates can be
observed. In order to have two uncorrelated parameters, the scatter plot should be roughly a circle,
with no clear relationship between the two parameters. For the parameter iv(0), the plots show a little
bit of correlation, and this was in some way expected since iv(0) is a factor on how strongly the epidemic
starts. There is a clear correlation between the transmission parameters β1 and β2. This correlation in
some way is expected since both transmission parameters are related to the exposure of humans to
mosquitoes and vice versa. However, it is important to remark that we are more interested in their
product since the epidemic threshold parameter R0 is proportional to this product. These results
suggest that the threshold parameterR0 of the mathematical model (2)) is identifiable. Thus, we can
use the model with caution to describe the dynamics of the spread of Chikungunya in the population
of Colombia in the year 2016.

Table 4. Estimated parameters using the mathematical model (2) and the prevalence data of
Chikungunya in the population of Colombia in the year 2016.

Parameters R0 iv(0)

Values 0.78 (0.74–0.84) 2.18 × 10−4 (1.95 × 10−4–2.45 × 10−4)
Parameters β1 β2

Values 0.36 (0.34–0.38) 0.012 (0.011–0.13)

The 95% confidence intervals (bootstrap fits) are given in parentheses.
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Figure 8. Identifiability assessment of the mathematical model (2) fit to the prevalence data of
Chikungunya in the population of Colombia in the year 2016. Correlation plots generated with
parameter estimates from bootstrap fits.

The second numerical technique is based on Markov chain Monte Carlo [35,36]. In particular,
we used a stable algorithm of the affine-invariant ensemble sampler for Markov chain Monte Carlo
(MCMC) proposed in [65]. An algorithm that is affine invariant performs equally well under all
linear transformations; it will therefore be insensitive to covariances among parameters [66]. Markov
chain Monte Carlo is designed to sample from—and thereby provide sampling approximations
to–the posterior PDF efficiently [35,66]. In the algorithm that is used here, we draw samples from a
multivariate Gaussian density. It is necessary to set up the specific values of the hyperparameters in
three dimensions (β1, β2, iv(0)). In addition, we need to decide how many walkers there are, which are
in some way independent paths to reach the maximum of the likelihood function [65]. There are
different options to initialize each of the walkers. One of the best techniques is to start in a small ball
around the a priori preferred position [66]. It is important to mention that the walkers will spread
out and explore the whole space for the parameters. The main goal is to find the maximum of the
likelihood function, which is a Gaussian where the variance is underestimated by some fractional
amount. We can use Markov Chain Monte Carlo to obtain estimates and confidence intervals for
each of the parameters β1, β2, and iv(0). Moreover, we can observe some possible correlations among
the parameters.

In Figure 10, all the one- and two-dimensional projections of the posterior probability distributions
of the parameters can be seen. This allows us to observe all of the covariances between parameters.
In addition, the histograms show the marginalized distribution for a parameter or a set of parameters
using the results of Markov chain Monte Carlo. Thus, Figure 10 shows the marginalized distribution
for each parameter independently in the histograms along the diagonal and then the marginalized
two-dimensional distributions in the other panels [66]. Notice that the maximum likelihood function
profile is also presented. We can say that in order to have two uncorrelated parameters, the level
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curves’ plot should be close to circles, with no clear relationship between the two parameters. For the
parameter iv(0), the plots show less correlation in comparison with the ones with respect to β1 and β2,
and this was in some way expected since iv(0) is a factor of how strongly the epidemic starts. There
is a clear correlation between the transmission parameters β1 and β2, as we also observed with the
bootstrapping results. In fact, this relationship has the same pattern. This correlation in some way is
expected since both transmission parameters are related to the exposure of humans to mosquitoes and
vice versa. However, it is important to remark that we are more interested in their product since the
epidemic threshold parameterR0 is proportional to this product, as we have mentioned before. These
results agree with previous results regarding identifiability for epidemic models with vectors [67].
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Figure 9. Identifiability assessment of the mathematical model (2) fit to the prevalence data of
Chikungunya in the population of Colombia in the year 2016. Correlation plots generated with
parameter estimates from bootstrap fits. Correlation between the parameters β1, β2, iM(0), andR0.
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Figure 10. Identifiability assessment of the mathematical model (2) fit to the prevalence data of
Chikungunya in the population of Colombia in the year 2016. Correlation plots generated with Markov
chain Monte Carlo for three (β1, β2, iv(0)) and four parameters (β1, β2, iv(0), ih(0)), respectively.

6. Conclusions

We present a mathematical model of the spread of the Chikungunya disease at the population
level that incorporates the transmission vector by including cross-transmission between the human
and vector populations. The proposed model includes a chronic subpopulation, which to the best
of our knowledge has not been considered in other mathematical models. We determined the
epidemic threshold parameterR0 for the extinction of disease using the method of the next generation
matrix. Using Lyapunov function theory, some sufficient conditions for the global stability of the the
disease-free equilibrium were obtained. Based on this parameter, we found the parameters that affect
the basic reproduction numberR0 and therefore what would be the best policies to control the spread
of the Chikungunya disease. We verified that when the threshold parameter R0 is less than unity,
the disease disappears, while when threshold parameter values are larger than one, the disease persists
in the population. Numerical simulations were presented to support the established theoretical results.

Using the proposed mathematical model of Chikungunya diffusion, we were able to analyze the
dynamics of infection during the 2015 outbreak in Colombia. In particular, we estimated the numerical
values of the epidemiological parameters β1, β2, and the reproduction numberR0. Based on numerical
results of the model of Chikungunya, we were able to better explain and understand the variation of
the number of infected cases with the Chikungunya virus in Colombia. We found that the transmission
parameters β1 and β2 were highly correlated.

Our estimated values for the reproduction number R0 ranged from 0.74–0.84 across the three
different scenarios proposed and also from the results of bootstrapping and Markov chain Monte
Carlo methods. However, notice that rain seasons have been changing recently due to climate change,
and that could affect some of the parameter values, which is one limitation of this model. The fitting of
the model to the observed weekly reports during the 2015 outbreak in Colombia is relatively good,
despite the natural irregularity of the real data. This irregularity of the data has been observed in
many other studies related to other diseases and can be due to different reasons such as weather,
under-reporting, the stochastic nature of the virus diffusion, spatial effects, or even the heterogeneity
of the human and mosquito population. All these factors were not considered here explicitly and are
other limitations of this work. Other limitations are the fact that the initial proportion of the different
subpopulations is unknown. More complex models are necessary to study all the aforementioned
factors, and future works might consider these factors or at least some of them. Another important
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aspect that we found in this study, based on the previous numerical simulations of the different
scenarios, is that the initial infected population of mosquitoes is likely no greater than 20% for the year
2015 in Colombia. To the best of our knowledge, we do not know if there are real data regarding this
particular description.

In this paper, we performed identifiability analysis in order to estimate some parameters of
the model and found correlations among the parameters of the model. We used the bootstrapping
technique and Markov chain Monte Carlo in order to assess the identifiability of the parameters of
the model. We found out that the parameters were not fully identifiable with the prevalence of the
real data that we had. However, we were able to identify that the reproduction number R0 ranged
from 0.74–0.84. It is important to notice that this result depends on some fixed parameter values
such as the duration of the infectious stage and the life-span of the mosquitoes. Changing values for
these parameters can change the aforementioned range for the reproduction numberR0. However,
regardless of some potential changes, we presented a study with a methodology to deal with these
types of epidemic models when real data are available.

Finally, we can conclude that in order to reduce the Chikungunya disease diffusion, it is important
first to decrease the transmission parameters. For instance, people could use clothes covering most of
the body to avoid mosquito bits and could also use repellents. Any action that could reduce the infected
mosquitoes’ bites will affect the reproduction numberR0. The aforementioned actions would reduce
the transmission of the virus in both directions. Another way to reduce the value of the reproduction
number R0 is to increase the mortality of the mosquito population. Therefore, a health policy that
could be implemented is to increase this mortality. Other parameters that are included inR0 such as
incubation or infected period are natural characteristics of the Chikungunya virus and are difficult
to modify.
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