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Abstract: The statement of the eigenvalue problem for a tensor–block matrix (TBM) of any order
and of any even rank is formulated, and also some of its special cases are considered. In particular,
using the canonical presentation of the TBM of the tensor of elastic modules of the micropolar
theory, in the canonical form the specific deformation energy and the constitutive relations are
written. With the help of the introduced TBM operator, the equations of motion of a micropolar
arbitrarily anisotropic medium are written, and also the boundary conditions are written down by
means of the introduced TBM operator of the stress and the couple stress vectors. The formulations
of initial-boundary value problems in these terms for an arbitrary anisotropic medium are given.
The questions on the decomposition of initial-boundary value problems of elasticity and thin body
theory for some anisotropic media are considered. In particular, the initial-boundary problems of the
micropolar (classical) theory of elasticity are presented with the help of the introduced TBM operators
(tensors–operators). In the case of an isotropic micropolar elastic medium (isotropic and transversely
isotropic classical media), the TBM operator (tensors–operators) of cofactors to TBM operators
(tensors–tensors) of the initial-boundary value problems are constructed that allow decomposing
initial-boundary value problems. We also find the determinant and the tensor of cofactors to the sum
of six tensors used for decomposition of initial-boundary value problems. From three-dimensional
decomposed initial-boundary value problems, the corresponding decomposed initial-boundary value
problems for the theories of thin bodies are obtained.

Keywords: tensor–operator of equations; stress tensor–operator; tensor–operator of stress and couple
stress; tensor–block matrix operator; canonical presentation of tensor–block matrix; eigenoperator
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1. Introduction

For isotropic materials, eigenmodules (eigenvalues) and eigenstates (eigentensors) are known
since monograph [1]. For anisotropic ones, the said notions were introduced by Kelvin in the middle
of the 19th century (other terms were used). However, the investigation in this area was continued
only about 40 years ago (see, e.g., [2–15] and the bibliography of [10]). In [10], Ostrosablin has studied
the inner structure rather well, classified anisotropic classically linearly elastic materials, and studied
many other important problems (see also [16]). The notion of elastic eigenstates is applied in the
plasticity theory (see [17]) and the flow theory (see [18]).

Representations of general solutions of the Lamé’s equations were made by many scientists (see, for
example, [19–23]), and representations of general solutions of equations in displacements and rotations
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of the micropolar theory of elasticity can be found, for example, in [22,24–26]. Note that in this case
the equations of the classical and micropolar theory of elasticity are decomposed, but for decomposing
the equations, as well as static boundary conditions, the algebraic method turned out to be more
efficient. If this method is used, it is advisable to present the equations and static boundary conditions
in tensors–operators (tensor–block operators) in the case of classical (micropolar) medium, and then
find the tensors–operators (tensor–block operators) of algebraic cofactors for these operators. Of course,
the algebraic method can be used for decomposing the static boundary conditions only for bodies with
piecewise plane boundaries. These questions are described in some detail in [27,28], and in this work,
special attention is paid to the canonical representations of equations and boundary conditions.

Note that in [28] some questions from monograph [27], which was published in Russian in
the Mechanics and Mathematics faculty of Lomonosov Moscow State University, were presented in
English with some clarifications and changes. In particular, the authors presented some questions
of tensor calculus; constructed new versions of theories of single-layer and multi-layer elastic thin
bodies via the developed method of orthogonal polynomials and also obtained the corresponding
decomposed equations of quasistatic problems of classical (micropolar) theory of prismatic bodies with
constant thickness in displacements (in displacements and rotations) from the decomposed equations
of classical (micropolar) theory of elasticity. The above results and eigenvalue problems for tensor and
tensor–block matrices (see [29]) are used in this work for mathematical modeling of the micropolar
thin bodies.

2. Statement of Eigenvalue Problem of a Tensor–Block Matrix of Any Even Rank

Find all tensor columns U which satisfy equation

M
p
⊗U = λU,

where λ is scalar, and

U =


U1

U2
·
·
·
Um

 , M =


A11 A12 A13 · · · A1m
A21 A22 A23 · · · A2m
A31 A32 A33 · · · A3m
· · · · · · · · · · · · · · ·
Am1 Am2 Am3 · · · Amm

 , (1)

M=M j1 j2···jp
i1i2···ip

Ri1···ip Rj1···jp =Mj
iR

iRj, Ri1···ip = r1 ⊗ · · · ⊗ rp,

Ri
p
⊗ Rj = gj

i , Akl =A
i1i2···ip
kl, j1 j2···jp

Ri1i2···ip Rj1 j2···jp =A i ·
kl, · jRiRj,

Uk = Uk, i1i2···ip Ri1···ip , k, l=1, m, i1, i2, . . . , ip, j1, j2, . . . , jp =1, n,

i, j=1, N, N=np.

Note that this problem is solved for the tensor of any even rank and the tensor–block matrix
of any even rank consisting of four tensors, as well as for the tensor and the tensor–block matrix of
the fourth rank, and published in [29]. Therefore, here we will not dwell on the presentation of this
problem with the aim of shortening the letter, but, if necessary, we will refer to the work mentioned in
the previous sentence. We also note that, solving the eigenvalue problem for a tensor–block matrix of
any even rank consisting of four tensors, there is no difficulty in solving the analogous problem for
the tensor–block matrix M (see (1)). Thus, we assume that the eigenvalue problem for a tensor–block
matrix of any order and of any even rank is solved and we will consider some its applications below.
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3. Equations of Motion Relative to the Displacement and Rotation Vectors for an Elastic Material
without a Center of Symmetry

The constitutive relations (CR) given in [25,30,31] for a linearly elastic inhomogeneous anisotropic
material without a center of symmetry for small displacements and rotations and isothermal processes
can be written as

P˜=A˜̃ 2
⊗γγγ˜+B˜̃ 2

⊗κκκ˜ , µµµ˜=C˜̃ 2
⊗γγγ˜+D˜̃ 2

⊗κκκ˜ (γγγ˜=∇u−C
'
· ϕϕϕ, κκκ˜=∇ϕϕϕ), (2)

where P˜ and µµµ˜ are the stress and couple-stress tensors, γγγ˜ and κκκ˜ are the tensors of deformation
and bending-torsion, u and ϕϕϕ are the displacement and rotation vectors, A˜̃ , C˜̃ = B˜̃T and D˜̃
are the material tensors of the fourth rank, C

'
is the discriminant tensor of third rank,

2
⊗ is

the inner two-product [27,29,32–35], the superscript T in the upper right corner of the quantities
denotes transposition.

Introducing the tensor columns of the deformation and bending-torsion tensors and stress
and couple-stress tensors, as well as the fourth rank tensor–block matrix (TBM) of the elastic
modulus tensors

X˜ =

(
γγγ

κ̃κκ˜
) (

X˜T =
(

γγγ˜, κκκ˜ )
)

, Y˜ =

(
P
µ̃µµ˜
) (

Y˜T =
(

P˜, µµµ˜
))

,

M˜̃ =

(
A˜̃ B˜̃
C˜̃ D˜̃

) (
M˜̃ T = M˜̃ ), (3)

the specific strain energy and the CR can be written in the form

2Φ(γγγ˜,κκκ˜)=γγγ˜ 2
⊗A˜̃ 2
⊗γγγ˜+2γγγ˜ 2

⊗B˜̃ 2
⊗κκκ˜+κκκ˜ 2

⊗D˜̃ 2
⊗κκκ˜=X˜T 2

⊗M˜̃ 2
⊗X˜ , Y˜=M˜̃ 2

⊗X˜ . (4)

If the material has a center of symmetry in the sense of elastic properties, then B˜̃ = 0˜̃, where 0˜̃ is
the zero tensor of the fourth rank and the tensor–block matrix of the elastic modulus tensors (3) will
take the form of a tensor–block-diagonal matrix.

Substituting (2) in the equations of motion for small displacements and rotations

∇ · P˜ + ρF = ρ∂2
t u, ∇ · µµµ˜+ C

'

2
⊗P˜ + ρm = J˜∂2

t ϕϕϕ,

and introducing the 2nd rank tensor–block matrix operator of the equations of motion and the vector
columns of the displacement and rotation vectors and vectors of volume forces and moments

M˜ =

(
A˜ B˜C˜ D˜

)
, U =

(
u
ϕϕϕ

)
, X =

(
ρF
ρm

)
, (5)

we obtain the equations of motion in displacements and rotations in the form

M˜ ·U+X = 0, (6)

where the differential tensors–operators A˜ , B˜, C˜ and D˜ have expressions

A˜ = A˜ ′ − E˜ρ∂2
t , A˜ ′ = rjrl(Aijkl∇i +∇i Aijkl)∇k,

B˜ = rjrl [(Bijkl∇i +∇iBijkl − Cl · ·
·mn Amnkj)∇k − Cl · ·

·mn∇i Amnij],

C˜ = rjrl(Bklij∇i +∇iBklij + Cj · ·
·mn Amnkl)∇k, D˜ = D˜ ′ − J˜∂2

t ,

D˜ ′= rjrl{[Dijkl∇i+∇iDijkl+(gj
sgl

t−gl
sgj

t)C
s · ·
·mn Bmnkt]∇k

−Cl · ·
· pq(ApqmnC · · jmn ·+∇iBpqij)}.

(7)
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Here and below, E˜ is the unit tensor of the second rank, t is the time, and ∂t is the partial derivative
operator with respect to time.

If we solve the eigenvalue problem for the tensor–block matrix (3), then we obtain its canonical
presentation [29,34]

M˜̃ =
18
∑

p=1
λpW˜p ⊗W˜T

p =
18
∑

p=1
λp

(
u˜p ⊗ u˜p u˜p ⊗ v˜p

v˜p ⊗ u˜p v˜p ⊗ v˜p

)
, (8)

where λp, p = 1, 18, are eigenvalues for positive-definite TBM from Equation (3). Moreover, λ1 ≥ λ2 ≥
λ3 ≥ ... ≥ λ18 > 0, and W˜p = (u˜p, v˜p)T , p = 1, 18, is a complete orthonormal system of eigentensor
columns satisfying the orthonormality conditions [29,34]

(W˜p,W˜q) = W˜T
p

2
⊗W˜q = u˜p

2
⊗u˜q + v˜p

2
⊗v˜q = δpq, p, q = 1, 18. (9)

Taking into account the expressions for TBM in Equation (3), from Equation (8) we get

A˜̃ =
18
∑

p=1
λpu˜pu˜p, B˜̃ = C˜̃T =

18
∑

p=1
λpu˜pv˜p, D˜̃ =

18
∑

p=1
λpv˜pv˜p.

It is not difficult to prove that the inverse TBM M˜̃ −1 to (8) has the form

M˜̃ −1 =
18
∑

p=1
λ−1

p W˜p ⊗W˜T
p =

18
∑

p=1
λ−1

p

(
u˜p ⊗ u˜p u˜p ⊗ v˜p

v˜p ⊗ u˜p v˜p ⊗ v˜p

)
. (10)

Generally speaking, for any integer α we have

M˜̃ α =
18
∑

p=1
λα

pW˜p ⊗W˜T
p =

18
∑

p=1
λα

p

(
u˜p ⊗ u˜p u˜p ⊗ v˜p

v˜p ⊗ u˜p v˜p ⊗ v˜p

)
. (11)

In particular, from (11) for α = 0 we have

E˜̃ = M˜̃ 0 =
18
∑

p=1
W˜p ⊗W˜T

p =
18
∑

p=1

(
u˜p ⊗ u˜p u˜p ⊗ v˜p

v˜p ⊗ u˜p v˜p ⊗ v˜p

)
, (12)

where E˜̃ is the unit TBM of the fourth rank relative to the operations of the inner 2-product. Given (8),
from (4) we get

2Φ(γγγ˜,κκκ˜) = 18
∑

p=1
λpX˜T 2

⊗W˜pW˜T
p

2
⊗X˜ , Y˜ =

18
∑

p=1
λpW˜pW˜T

p
2
⊗X˜ . (13)

Multiplying both sides of the second relation of (13) scalarly by W˜α and taking into account (9), the CR
can be written in the form

(Y˜ ,W˜α) = λα(X˜ ,W˜α)
(
Y˜T 2
⊗W˜α = λαX˜T 2

⊗W˜α

)
, 〈 α = 1, 18 〉. (14)

Note that the formulas in Equation (14) give equivalent records of the CR. Introducing
the notations

Xα =(X˜ ,W˜α)=X˜T 2
⊗W˜α =W˜T

α

2
⊗X˜=u˜α

2
⊗γγγ˜+v˜α

2
⊗κκκ˜ ,

Yα =(Y˜ ,W˜α)=Y˜T 2
⊗W˜α =W˜T

α

2
⊗Y˜=u˜α

2
⊗P˜+v˜α

2
⊗µµµ˜, 〈α=1, 18〉,

(15)



Math. Comput. Appl. 2019, 24, 33 5 of 19

the specific deformation energy (the first equality of (13)) and the CR (14) are represented in the form

2Φ(γγγ˜,κκκ˜) = 18
∑

p=1
λpX2

p, Yα = λαXα, 〈 α = 1, 18 〉.

Multiplying both sides of the first equality of (15) from the left tensorly by W˜α, and then if we
sum the resulting ratio from 1 to 18, by (12) we get

X˜= 18
∑

α=1
XαW˜α =

18
∑

α=1
(u˜α

2
⊗γγγ˜ + v˜α

2
⊗κκκ˜)W˜α,

Y˜= 18
∑

α=1
YαW˜α =

18
∑

α=1
(u˜α

2
⊗P˜ + v˜α

2
⊗µµµ˜)W˜α,

(16)

where the second formula of (16) is obtained by analogy with the first. It should be noted that the
formulas in Equation (16) are decompositions of the tensor columns X˜ and Y˜ with respect to the
orthonormal basis W˜α, α = 1, 18, and Xα and Yα are projections X˜ and Y˜ respectively on W˜α.

It is not difficult to see that, taking into account the first equality of (15), from the second relation
of (13) we obtain the following presentations of stress and couple-stress tensors:

P˜= 18
∑

p=1
λpXpu˜p =

18
∑

p=1
λp(u˜p

2
⊗γγγ˜+v˜p

2
⊗κκκ˜)u˜p,

µµµ˜=
18
∑

p=1
λpXpv˜p =

18
∑

p=1
λp(u˜p

2
⊗γγγ˜+v˜p

2
⊗κκκ˜)v˜p.

(17)

It is not difficult to write the reverse CR. In fact, for example, from the second equality of (4) by
virtue of (10) and the second equality of (15) we find

X˜ = M˜̃ −1 2
⊗Y˜ =

18
∑

p=1
λ−1

p W˜pW˜T
p

2
⊗Y˜ =

18
∑

p=1
λ−1

p YpW˜p,

Xα = λ−1
α Yα, 〈 α = 1, 18 〉.

(18)

Taking into account the second equality of (15), from the first equality of (18) similarly to (17)
we have

γγγ˜=
18
∑

p=1
λ−1

p Ypu˜p =
18
∑

p=1
λ−1

p (u˜p
2
⊗P˜+v˜p

2
⊗µµµ˜)u˜p,

κκκ˜= 18
∑

p=1
λ−1

p Ypv˜p =
18
∑

p=1
λ−1

p (u˜p
2
⊗P˜+v˜p

2
⊗µµµ˜)v˜p.

It is not difficult to see that X˜ can be represented as

X˜=
(

γγγ

κ̃κκ˜
)
=

(
riE˜∇i − C

'
riE˜∇i

)
·
(

u
ϕϕϕ

)
=H
'
·U, H

'
=

(
riE˜∇i − C

'
riE˜∇i

)
. (19)

By virtue of Equation (19), the CR in Equation (4) can also be written in the form

Y˜ = M˜̃ 2
⊗H
'
·U. (20)

4. On Static Boundary Conditions in the Linear Three-Dimensional Micropolar Theory of
Elasticity. Tensor–Operator of Stress and Couple-Stress

Given (2), the static boundary conditions can be written as follows:

n · P˜ = T˜(1) ·u+T˜(2) ·ϕϕϕ=P, n ·µµµ˜ = T˜(3) ·u+T˜(4) ·ϕϕϕ =µµµ, (21)
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which by virtue of (20) is still equivalent to equalities

n ·Y˜ =

(
T˜(1) T˜(2)T˜(3) T˜(4)

)
·
(

u
ϕϕϕ

)
= n ·M˜̃ 2

⊗H
'
·U. (22)

Here P and µµµ are the stress and couple-stress vectors given on the body surface and the following
differential tensors–operators are introduced:

T˜(1) = rjrlni Aijkl∇k, T˜(2) = rjrlniBijkl∇k − n ·A˜̃ 2
⊗ C
'

,

T˜(3) = rjrlniCijkl∇k, T˜(4) = rjrlniDijkl∇k − n · C˜̃ 2
⊗ C
'

.
(23)

Introducing the tensor–block matrix operator stress and couple-stress and the vector column of
stress and couple-stress vectors

T˜ =

(
T˜(1) T˜(2)T˜(3) T˜(4)

)
= n ·M˜̃ 2

⊗H
'

, Q =

(
P
µµµ

)
, (24)

the static boundary conditions (21), taking into account the notation given by the second relation of (5),
can be written in the form

T˜ ·U∣∣S = Q. (25)

We note that the kinematic boundary conditions are represented in the form

U
∣∣
S = Z

(
Z =

(
f
ψψψ

))
, (26)

mixed boundary conditions can be written as follows:

T˜ ·U∣∣S1
= Q; U

∣∣
S2

= Z, (27)

and the initial conditions have the form

U|t=t0 = U0 V|t=t0 = V0, (28)

where

U0 =

(
u0

ϕϕϕ0

)
, V0 =

dU
dt

∣∣∣
t=t0

=

(
v0

ωωω0

)
, v0 =

du
dt

∣∣∣
t=t0

, ωωω0 =
dϕϕϕ

dt

∣∣∣
t=t0

.

Here f and ψψψ are the displacement and rotation vectors given on the body surface, u0 and ϕϕϕ0

are the displacement and rotation vectors given at the initial instant of time (for t = t0), v0 and ωωω0

are the velocity and angular velocity vectors given at the initial instant of time, S is the body surface,
S1 ∪ S2 = S, S1 ∩ S2 = ∅.

5. Formulation of Initial-Boundary Value Problems

Let us introduce the definitions.

Definition 1. If the displacement and rotation vectors (kinematic boundary conditions) are given on the body
boundary S, then such conditions are called boundary conditions of the first kind, and the problem of the
micropolar solids mechanics (SM), using these conditions, and also the initial conditions is called the first
initial-boundary value problem.

In the case under consideration, the first initial-boundary value problem includes: the equations
of motion (6), the kinematic boundary conditions (26) and the initial conditions (28).
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Definition 2. If static boundary conditions (stress and couple-stress vectors) are given on the body boundary S,
then such boundary conditions are called boundary conditions of the second kind, and the problem of micropolar
SM using them and initial conditions is called the second initial-boundary value problem.

In the case under consideration, the second initial-boundary value problem includes: the equations
of motion (6), the static boundary conditions (25) and the initial conditions (28).

Definition 3. If kinematic boundary conditions are given on one part of the body boundary S1, and on the
remaining part of it S2 are given the static boundary conditions, where S1 ∪ S2 = S, S1 ∩ S2 = ∅, then such
boundary conditions are called mixed boundary conditions, and the problem of micropolar SM, using them and
initial conditions is called the mixed initial-boundary value problem.

In this case, the mixed (third) initial-boundary value problem includes: the equations of motion (6),
the kinematic boundary conditions (26) on one part of the body boundary and the static boundary
conditions (25) on the rest of the body boundary and the initial conditions (28) (see also (27)).

Note that, excluding the characteristics of the micropolar theory from the above definitions, we
obtain the corresponding definitions for classical SM.

It should be noted that the kinematic boundary conditions and the initial conditions do not need
to be split, since they were set in a split form. Hence, for the splitting of the first initial-boundary
value problem, it is sufficient to split only the equations of motion, since, as already mentioned in the
previous proposition, the kinematic boundary conditions and the initial conditions are split. In this
connection, the splitting of the static boundary conditions is of great interest. If the equations of
motion (6) and the static boundary conditions (25) can be split under some conditions, then under the
same conditions all the initial-boundary value problems formulated above can be split. Hence, it is
necessary to establish the conditions under which the equations of motion (6) and the static boundary
conditions (25) are split.

6. Decomposition of the Equation of Motion in the Case of a Homogeneous Isotropic
Micropolar Medium

In this case, as many authors (see, for example, [25,30,31]) consider B˜̃ = 0 and differential
tensors–operators A˜ , B˜, C˜ and D˜ (see (7)) have the form

A˜ =E˜Q2+d∇∇, B˜ =C˜=−2αC
'
· ∇, D˜ =E˜Q4+m∇∇, J˜= JE˜,

Q2=b∆−ρ∂2
t , Q4= g∆−l− J∂2

t , Q1 = Q2 + d∆, Q3 = Q4 + m∆,

d = λ + µ− α, l = 4α, b = µ + α, g = δ + β, m = γ + δ− β,

where Q1, Q2, Q3 and Q4 are wave operators, and the elasticity tensors have expressions

A˜̃ = a1C˜̃ (1)+a2C˜̃ (2)+a3C˜̃ (3), D˜̃ =d1C˜̃ (1)+d2C˜̃ (2)+d3C˜̃ (3). (29)

Here C˜̃ (1), C˜̃ (2) and C˜̃ (3) are the basic isotropic tensors of the fourth rank, and for material
constants we use the notation a1 = λ, a2 = µ, a3 = α, b1 = γ, b2 = δ and b3 = β.

Denoting by

M˜ ∗ =
(

Â˜ B̂˜(1)
B̂˜(2) Ĉ˜

)
(30)
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the tensor–block matrix operator of the cofactors for the tensor–block matrix operator M˜ of Equation (6),
after cumbersome calculations we obtain [27,28,32]

Â˜ = Q3PR˜ , B̂˜ = B̂˜(1) = B̂˜(2) = Q1Q3PB˜ (B̂˜T = −B̂˜),
Ĉ˜ = Q1PT˜; R˜ = E˜Q1Q4−(dQ4−4α2)∇∇, B˜ = −2αC

'
·∇,

T˜ = E˜Q2Q3−(mQ2−4α2)∇∇, P = Q2Q4 + 4α2∆.

(31)

It is easy to see that by virtue of Equation (31) the tensor–block matrix operator of the cofactors (30)
can be represented as follows:

M˜ ∗=P

(
Q3R̂˜ Q1Q3B˜

Q1Q3B˜ Q1T̂˜
)
=

(
PQ3 0

0 PQ1

)
N˜ (1) = N˜ (2)

(
PQ3 0

0 PQ1

)
,

where tensor–block matrix operators are introduced

N˜ (1) =
(

R˜ Q1B˜
Q3B˜ T˜

)
, N˜ (2) =

(
R˜ Q3B˜

Q1B˜ T˜
)

.

It is easy to prove the relations

M˜ ·N˜ (1)T = N˜ (2)T ·M˜ =

(
E˜Q1P O˜

O˜ E˜Q3P

)
, det(M˜ ) = Q1Q3P2. (32)

Then if we shall seek the solution of Equation (6) in the form (similar to Galerkin)

U = N˜ (1)T ·V
(
U =

(
u
ϕϕϕ

)
, V =

(
v
ψψψ

))
,

then, by virtue of the appropriate relation (32), we obtain the following split equations:

Q1(Q2Q4 + 4α2∆)v + ρF = 0, Q3(Q2Q4 + 4α2∆)ψψψ + ρm = 0. (33)

Note that similar equations were obtained by [26]. Similar equations in another way were obtained
by [22]. Finally, Sandru and Nowacki gave the same representations of the displacement and rotation
vectors and they are reduced to (33). The paper [24] deserve great attention because the system of
equilibrium equations for the isotropic elastic body without a center of symmetry and in the absence
of mass loads is decomposed into two independent systems of equations.

Applying the operator N˜ (2)T to the left of (6), by the first relation of (32) we will have

Q1[(Q2Q4 + 4α2∆)u+2α(C
'
·∇)·(ρm)]+R˜ ·(ρF)=0,

Q3[(Q2Q4+4α2∆)ϕϕϕ + 2α(C
'
·∇)·(ρF)]+T˜ ·(ρm)=0.

(34)

For α = 0 (the case of a reduced medium), the classical equation follows from the first equation
of (34), and the second equation has a similar form.
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7. Decomposition of Static Boundary Conditions

In the case of an isotropic micropolar material without a center of symmetry, by virtue of
Equation (29) and B˜̃=b1C˜̃ (1)+b2C˜̃ (2)+b3C˜̃ (3), from Equation (23) we have

T˜(1)= a2E˜n ·∇+a1n∇+a3(n∇)T ,

T˜(2)=b2E˜n ·∇+b1n∇+b3(n∇)T−(a2−a3)n · C' ,

T˜(3)=b2E˜n ·∇+b1n∇+b3(n∇)T ,

T˜(4)=d2E˜n ·∇+d1n∇+d3(n∇)T−(b2−b3)n · C' .

It should be noted that some authors (see, for example, [25,30,31]) consider that B˜̃ is an asymmetric
tensor, therefore in the case of an isotropic medium it is zero, as was done above. However, some
authors prove that B˜̃ is a symmetric tensor, therefore, in the case of an isotropic medium, it is not equal
to zero, and how any isotropic fourth-rank tensor is generally determined by three parameters, as is
customary in this case. Further it is easy to see that

T˜(2)=T˜(3)−(a2−a3)n · C', T˜(4)=T˜ ′(4)−(b2−b3)n · C',

T˜ ′(4)=d2E˜n · ∇+d1n∇+d3(n∇)T .

Assuming that the body has a piecewise-plane boundary and denoting by T˜(1)∗ and |T˜(1)|, T˜(3)∗
and |T˜(3)|, T˜ ′(4)∗ and |T˜ ′(4)| the differential tensors–operators of the cofactors and determinants for the
tensor–operators T˜(1), T˜(3) and T˜ ′(4) respectively, after simple calculations we obtain

T˜(1)∗ = [(a1 + a2)(a2 + a3)E˜n·∇ − a3(a1 + a2)n∇

−a1(a2 + a3)(n∇)T ]n·∇+ a1a3[∇∇+ (nn− E˜)∆],
|T˜(1)|= a2[(a1+a2)(a2+a3)nn

2
⊗∇∇−a1a3∆]n·∇,

T˜(3)∗ = [(b1 + b2)(b2 + b3)E˜n·∇ − b3(b1 + b2)n∇

−b1(b2 + b3)(n∇)T ]n·∇+ b1b3[∇∇+ (nn− E˜)∆],
|T˜(3)|=b2[(b1+b2)(b2+b3)nn

2
⊗∇∇−b1b3∆]n·∇,

T˜ ′(4)∗ = [(d1 + d2)(d2 + d3)E˜n·∇ − d3(d1 + d2)n∇

−d1(d2 + d3)(n∇)T ]n·∇+ d1d3[∇∇+ (nn− E˜)∆],
|T˜ ′(4)| = d2[(d1 + d2)(d2 + d3)nn

2
⊗∇∇− d1d3∆]n·∇.

Note that we want to obtain boundary conditions separately for u and ϕϕϕ. In order to shorten the
letter, we consider the case when b2 = b3, a2 = a3. Then T˜(2) = T˜(3), T˜(4) = T˜ ′(4) and the boundary
conditions from Equation (25) can be written in the form

T˜(1) ·u+T˜(3) ·ϕϕϕ = P, T˜(3) ·u+T˜ ′(4) ·ϕϕϕ = µµµ.
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In this case, it is easy to obtain the boundary conditions separately for u and ϕϕϕ(
|T˜ ′(4)|T˜(3)∗ T ·T˜(1) − |T˜(3)|T˜ ′(4)∗ T ·T˜(3)

)
· u

= |T˜ ′(4)|T˜(3)∗ T ·P− |T˜(3)|T˜ ′(4)∗ T ·µµµ,(
|T˜(3)|T˜(1)∗ T ·T˜(3) − |T˜(1)|T˜(3)∗ T ·T˜ ′(4)

)
· ϕϕϕ

= |T˜(3)|T˜(1)∗ T ·P− |T˜(1)|T˜(3)∗ T ·µµµ.

Note that the eigenvalue problem can also be considered for differential tensor–operator and
tensor–block matrix operator. Consequently, in this case the eigenvalues are differential operators
whose product, taking into account their multiplicities, will be equal to the determinant of the object
for which the eigenvalue problem is considered. Of course, we can find our eigenoperators from
the solution of the characteristic equation. For example, the characteristic equation for an arbitrary
tensor–block matrix M˜ of the second rank consisting of four second-rank tensors of three-dimensional
space has the form [29,34]

η6 − I1(M˜ )η5 + I2(M˜ )η4 − I3(M˜ )η3 + I4(M˜ )η2 − I5(M˜ )η + I6(M˜ ) = 0, (35)

Sk = Ik(M˜ ) = 1
k !

∣∣∣∣∣∣∣∣∣∣∣

s1 1 · · · 0 0
s2 s1 · · · 0 0
· · · · · · · · · · · · · · ·
sk−1 sk−2 · · · s1 k

sk sk−1 · · · s2 s1

∣∣∣∣∣∣∣∣∣∣∣
, k = 1, 6, (36)

Sk = Ik(M˜ ), sk = I1(M˜ k), k = 1, 6, M˜ k =

k︷ ︸︸ ︷
M˜ ·M˜ · . . . ·M˜ ,

where Ik(M˜ ), k = 1, 6, denote the invariants of the tensor–block matrix M˜ . In this case, the inverse
relations to Equation (36) are represented in the form

sk = I1(M˜ k)=

∣∣∣∣∣∣∣∣∣
S1 1 0 · · · 0

2S2 S1 1 · · · 0
· · · · · · · · · · · · · · ·
kSk Sk−1 Sk−2 · · · S1

∣∣∣∣∣∣∣∣∣ , k=1, 6. (37)

Replacing in Equations (35)–(37) M˜ by the tensor–block matrix operators of the equations of
motion in displacements and rotations under various anisotropic media, we obtain the characteristic
equations for them. If we find the roots (eigenoperators) of the obtained characteristic equations for
the above tensor–block matrix operators, then their determinants can be represented as a product of
simple eigenoperators. Thus, the equations are split.

8. Decomposition of the Canonical Equations of the Classical Elasticity Theory for the
Transversely Isotropic Body

Under the canonical equations we call equations that are obtained by the canonical presentations
of the material tensors. In a similar sense, the term canonical mechanics can also be used. Thus, in this
case the elastic tensor A˜̃ is represented in the canonical form [29,34], that is

A˜̃ =
6
∑

k=1
λkw˜ kw˜ k, (38)
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where λk and w˜ k, k = 1, . . . , 6, are the eigenvalues and eigentensors for A˜̃ . Then by Equation (38) the
vector equation with respect to the displacement vector can be written in the form

L˜·u + ρF = 0, L˜ =
6
∑

k=1
λkw˜ k ·∇w˜ k ·∇. (39)

It is seen that for the splitting of the last equation it is necessary to find the cofactors L˜∗ for L˜ (see
the second relation of (39)), and for this, in turn it is necessary to find expressions for the determinant
of a linear combination of several tensors of the second rank (from two to six). We give below the
expressions for the determinant and the cofactors of the sum of six second-rank tensors without proofs,
from which, in turn, it is easy to obtain analogous expressions for the sum of a smaller number of
tensors. The expressions for the determinant and the cofactor tensor of the sum of six tensors of the
second rank are presented as follows:

|
6
∑

k=1
A˜ k| =

6
∑

k=1
|A˜ k|+

6
∑

i=1
I2(A˜ i)

[
δi

6
∑

j=1
I1(A˜ j)− I1(A˜ i)

]
+

3
∏
i=1

[
I1(A˜ 2i−1)+ I1(A˜ 2i)

]
+

3
∑

i=1
I1(A˜ 2i−1)I1(A˜ 2i)

[
δi

6
∑

k=1
I1(A˜ k)− I1(A˜ 2i−1)

−I1(A˜ 2i)
]
+

6
∑

i=1

[ 6
∑

j=1
I1(A˜ 2

i ·A˜ j)− I1(A˜ 3
i )
]
+

4
∑

i=1

5
∑

j=i+1

6
∑

k=j+1
I1
[
A˜ i ·(A˜ j ·A˜ k

+A˜ k ·A˜ j)
]
−
[ 6

∑
i=1

I1(A˜ i)
][ 5

∑
j=1

6
∑

k=j+1
I1(A˜ j ·A˜ k

]
, δi =

6
∑

j=1
δij, (i=1, 6);

( 6
∑

i=1
A˜ i
)
∗=

6
∑

i=1
A˜ i∗+

5
∑

i=1

6
∑

j=i+1

4A˜ i∗ ·A˜ j; A˜ i∗≡
∂|A˜ i|
∂A˜ i

, 4A˜ i∗≡
∂2|A˜ i|

∂A˜ i∂A˜ i
.

Given I1(
4A˜ i∗ ·A˜ j)= I1(A˜ i)I1(A˜ j)− I1(A˜ i ·A˜ j), we obtain from the previous formula

I1
[( 6

∑
i=1

A˜ i
)
∗
]
=I2

( 6
∑

i=1
A˜ i
)
=

6
∑

i=1
I2
(
A˜ i
)
+

5
∑

i=1

6
∑

j=i+1

[
I1(A˜ i)I1(A˜ j)− I1(A˜ i ·A˜ j)

]
.

Here A˜ i∗ and 4A˜ i∗, i = 1, 6, are tensors of cofactors of second rank and second order and fourth
rank and first order, respectively.

Further, before we consider the canonical presentations of tensors, we introduce the following
definition.

Definition 4. The symbol {α1, α2, . . . , αk}, where k is the number of different eigenvalues of the tensor, and αi
is the multiplicity of the eigenvalue λi (i = 1, 2, . . . , k), is called the anisotropy symbol (structure symbol) of
the tensor.

We note that on the basis of this definition, the classification of classical and microcontinuum
anisotropic materials is given in [29,34]. By virtue of this classification, classical (micropolar) isotropic
materials are special cases of materials in which the anisotropy symbol consists of not more than
two (three) elements. A similar situation occurs for other anisotropies [29,34]. In particular, classical
transversely isotropic materials are special cases of anisotropic materials whose anisotropy symbols
consist of four elements, and orthotropic materials are special cases of anisotropic media whose
structure symbols consist of no more than 6 elements. The anisotropy symbol of an orthotropic
micropolar material with a symmetry center consists of not more than nine elements [29,34]. It should
also be noted that the mathematical structure of elastic media was investigated in [13], and the
classification of classical elastic media is given in [9].
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We now consider the canonical representation of the transversely isotropic elastic modulus tensor
with the anisotropy symbol {1,1,2,2} [29,34]:

A˜̃ =µ1w˜ 1w˜ 1+µ2w˜ 2w˜ 2+µ3(w˜ 3w˜ 3+w˜ 4w˜ 4)+µ5(w˜ 5w˜ 5+w˜ 6w˜ 6). (40)

(by force of the classification of materials adopted in [29,34], transversely isotropic materials can be
of the following types: {1,1,2,2}, {1,2,1,2}, {1,2,2,1}, {2,1,1,2}, {2,1,2,1}, {2,2,1,1}). For the material under
consideration, the eigenvalues are determined by the formulas [29,34]

µ1 = 1/2(A11 + A12 + A33 −
√
(A11 + A12 − A33)2 + 8A2

13),

µ2 = 1/2(A11 + A12 + A33 +
√
(A11 + A12 − A33)2 + 8A2

13),

µ3 = µ4 = A11 − A12, µ5 = µ6 = A55,

(41)

and the eigentensors are represented in the form

w˜ 1 = −
√

2
2

sin α(e˜1 + e˜2) + cos αe˜3 = −
√

2
2

sin αI˜+ cos αe˜3,

w˜ 2 =

√
2

2
cos α(e˜1 + e˜2) + sin αe˜3 =

√
2

2
cos αI˜+ sin αe˜3,

w˜ 3 =

√
2

2
(e˜1 − e˜2), w˜ 4 = e˜4, w˜ 5 = e˜5, w˜ 6 = e˜6;

(42)

e˜α =eαeα, α = 1, 2, 3, e˜4=
1√
2
(e3e2+e2e3), e˜5=

1√
2
(e1e3+e3e1),

e˜6=
1√
2
(e2e1+e1e2), ei · ej =δij, i, j=1, 2, 3, tg2α=

2
√

2A13

A11+A12−A33
,

e˜m
2
⊗ e˜n = δmn, m, n = 1, 6, I˜= e1e1 + e2e2 = e˜1 + e˜2.

The canonical representations of the tensor–operator of the equations and its determinant and the
tensor of cofactors and its components, as well as the stress tensor–operator, its determinant and the
components of the tensor–operator of cofactors by virtue of Equations (40)–(42) have the form

L˜=(a1I˜+a3e3e3)∆+a2∇0∇0+a5[e3∇0+(e3∇0)T ]∂3+(a3I˜+a4e3e3)∂
2
3;

|L˜|=A∆3+B∆2∂2
3+C∆∂4

3+D∂6
3= k(∆+k1∂2

3)(∆ + k2∂2
3)(∆ + k3∂2

3),

k=A, k1 + k2 + k3=B/A, k1k2 + k1k3 + k2k3=C/A, k1k2k3=D/A;

L˜∗= a(a3I˜+ a1e3e3)∆2 − a2a3∆∇0∇0 − a1a5[e3∇0 + (e3∇0)T ]∂3

+
{[

[(a2+a3)a4+c(a3+a5)]I˜+a3(a+a1)e3e3

]
∆+(a2

5−a2a4)∇0∇0
}

∂2
3

−a3a5[e3∇0 + (e3∇0)T ]∂3
3 − a3(a4I˜− a3e3e3)∂

4
3;

T˜=(a1I˜+a3e3e3)n0 ·∇0−bn0∇0+a1(n0∇0)T+n3[−ce3∇0+a3(e3∇0)T ]

+[n3(a3I˜+ a4e3e3)− cn0e3 + a3e3n0]∂3;

|T˜|= a1a3{[b−(b+c)n2
3]∆+2a2n0n0 2

⊗∇0∇0}n0 ·∇0

+{b(a1a4−a2
3)+a1c2 − [(c−b)a2

3+a(c2+ba4)]n2
3}n3∆∂3

+2a1[(a3+c)a5+a2a4]n3n0n0 2
⊗∇0∇0∂3 + a3{−a1c

+[a1c+(a+a1)a4−c2]n2
3}n0 ·∇0∂2

3−a2
3[c−(c+a4)n2

3]n3∂3
3;

(43)
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T˜∗ = a3n0 ·∇0[aI˜n0 · ∇0 + bn0∇0 − a1(n0∇0)T ] + ca3n2
3(I˜∆−∇0∇0)

+
1
2
{[(3a1+a2)a4−c2]I˜n0 ·∇0+(ba4+c2)n0∇0−(2a1a4−a2

3)(n
0∇0)T}n3∂3

+a3[(a4n2
3+c|n0|2)I˜−cn0n0]∂2

3−C˜ 2
⊗n0∇0{ba3[n3C˜ · (e3∇0)T−e3C˜ · n0∂3

−a1c(C˜ · n0e3∂3 − n3e3C˜ · ∇0)} − a1n0 · ∇0{a3[n3(e3∇0)T + e3n0∂3]

−c(n0e3∂3+n3e3∇0)}−a2
3[n

2
3(e3∇0)T∂3+n3e3n0∂2

3]

+ca3(n2
3e3∇0∂3+n3n0e3∂2

3) + e3e3[a1b|n0|2∆+2a1a2n0n0 2
⊗∇0∇0

+(a1a5+a2a3)n3n0 ·∇0∂3+a2
3n2

3∂2
3],

where the following notations are introduced:

A= aa1a3, B= a(a2
3+a1a4)+ca1(a3+a5), C= a3[(a + a1)a4+c(a3+a5)];

a= a1+a2, b = a1 − a2, c = a3 − a5, D = a2
3a4, a1 = (1/2)µ3,

a2 = (1/2)(µ1 sin2α+µ2 cos2α), a3 = (1/2)µ5, ∆ = ∂2
1 + ∂2

2,

a4 = µ1 cos2α+µ2 sin2α, a5 = (1/2)[
√

2(µ2 − µ1) sinα cosα + µ5],

C˜ = CI JeIeJ , n0=nIeI , ∇0=eI∂I , n0n0 2
⊗∇0∇0=nInJ∂I∂J .

If we apply the operator L˜∗ from the left with a single multiplication to the equation (the first
relation in Equation (39)), and the operator T˜T

∗ (see the corresponding relations from Equation (43)) to the
boundary conditions T˜ · u = P, then we obtain the following split equations and boundary conditions:

|L˜|u+L˜T
∗ ·(ρF)=0, |T˜|u = T˜T

∗ · P, (44)

and if we look for the solution u in the form u=L˜∗ ·v, then we have the following split equations and
boundary conditions:

|L˜|v+ρF=0, |T˜|(L˜∗ · v) = T˜T
∗ · P. (45)

When obtaining Equations (44) and (45), we took into account the relation F˜ · F˜T
∗ = F˜T

∗ · F˜ =

E˜|F˜|, ∀ F˜.
Further, applying, for example, to the split equations from (45), the k-th moment operator [27,32],

the equations for prismatic bodies in moments with respect to any system of orthogonal polynomials
can be represented in the form

A∆3(k)v + B∆2(k)v ′′ + C∆
(k)
v IV + D

(k)
v VI + ρ

(k)
F = 0, k = 0, ∞ ,

(46)

where in the application of the system of Legendre polynomials, the expressions for
(k)
v ′′,

(k)
v IV and

(k)
v VI are defined using the following relationship:

(n)
v (2m)

(x′)=(2n+1)
∞
∑

k=1
C2m−1

k+2m−2

2m−1
∏

s=1
(2n+2k+2s−1)

(n+2k+2m−2)
v ,

n∈N0, m∈N.

(47)
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Note that analogous to Equation (46) equations with respect to u can be easily obtained from
Equation (44). In order to shorten the letter, we will not write them out. By virtue of the first relation
of (43), it is not difficult to calculate that

2I1(L˜) = (3a + b + 2a3)∆ + (a4 + 2a3)∂
2
3,

2I2(L˜) = [(3a + b)a3 + a(a + b)]∆2, I3(L˜)= [(3a + b)a4

−2c(c + 2a3) + (2a3 + 3a + b)a3]∆∂2
3 + 2(2a4 + a3)a3∂4

3.

(48)

Note that the dynamic equations (equilibrium equations) in displacements for any homogeneous
anisotropic body can be written in the form

M˜·u + ρF=0 (L˜·u + ρF=0);

M˜=L˜ − E˜ρ∂2
t , L˜ =

6
∑

k=1
λkw˜ k ·∇w˜ k ·∇.

It is easy to see that

I3(M˜) = |M˜| = I3(L˜)− I2(L˜)ρ∂2
t + I1(L˜)ρ2∂4

t − ρ3∂6
t ,

M˜∗=M˜2− I1(M˜)M˜+ I2(M˜)E˜=L˜∗+[L˜− I1(L˜)E]ρ∂2
t +E˜ρ2∂4

t

= L˜2 − L˜[I1(L˜)− ρ∂2
t ] + E˜[I2(L˜)− I1(L˜)ρ∂2

t + ρ2∂4
t ],

L˜∗ = L˜2 − I1(L˜)L˜ + I2(L˜)E˜.

(49)

Consequently, the decomposed equations will have the form

|M˜|u + M˜∗ ·(ρF) = 0,
(
|L˜|u + L˜∗ ·(ρF) = 0

)
.

Next, we represent |M˜| (see the first equality of Equation (49))) as a product of simple operators

|M˜|= I3(L˜)− I2(L˜)ρ∂2
t + I1(L˜)ρ2∂4

t−ρ3∂6
t

= (b1−ρ∂2
t )(b2−ρ∂2

t )(b3−ρ∂2
t )

= b1b2b3 − (b1b2 + b1b3 + b2b3)ρ∂2
t + (b1 + b2 + b3)ρ

4∂4
t − ρ3∂6

t ;

I1(L˜) = b1 + b2 + b3, I2(L˜) = b1b2 + b1b3 + b2b3, I3(L˜) = b1b2b3.

(50)

From this we see that b1, b2 and b3 are eigenoperators for L˜, and b1−ρ∂2
t , b2−ρ∂2

t and b3−ρ∂2
t are

the eigenoperators for M˜.
Note that, knowing the expressions for Ik(L˜), k = 1, 2, 3, (the case of a transversally isotropic

medium, see Equation (48)), the simple (linear) operators bk, k = 1, 2, 3, can be found using Equation (50).
Based on the above, it is not difficult to consider other cases of anisotropic media, as well as cases

of classical and micropolar isotropic materials, but in order to reduce the writing we will not dwell
on them.

9. Quasistatic Canonical Problem of the Micropolar Theory of Elasticity in Displacements
and Rotations

To reduce the letter, we consider an isotropic material with a center of symmetry. The mechanical
properties of such a linear material are characterized by two fourth-rank tensors, each of which in turn
is determined by three essential components. These materials are special cases of materials whose
anisotropy symbols consist of three elements and the number of which, according to the classification
adopted above, is 28 [29,34], among which the materials {1, 5, 3} and {5, 1, 3} are. The first of them
has a positive Poisson’s ratio, and the second one has negative Poisson’s ratio. Under the canonical
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problem we mean the problem, in the formulation of which the material tensors are written in the
canonical form. We confine ourselves to the isotropic material {1, 5, 3}. In this case, the material tensors
have the expressions

A˜̃ =
1
3
(λ1 − λ2)C˜̃ (1) + 1

2
(λ2 + λ7)C˜̃ (2) + 1

2
(λ2 − λ7)C˜̃ (3),

D˜̃ =
1
3
(µ1 − µ2)C˜̃ (1) + 1

2
(µ2 + µ7)C˜̃ (2) + 1

2
(µ2 − µ7)C˜̃ (3).

(51)

Then, by virtue of (51), it is not difficult to obtain equations analogous to (34), from which in the
case of a quasistatic we have

∆2
[ 1

12
(λ1+2λ2)(λ2+λ7)(µ2+µ7)∆−

1
3

λ2λ7(λ1+2λ2)
]
u+S∗=0,

∆
{ 1

12
(µ1 + 2µ2)(µ2 + µ7)(λ2 + λ7)∆2−λ7[

1
3

λ2(µ1 + 2µ2)

+
1
2
(µ2 + µ7)(λ2 + λ7)]∆ + 2λ2λ2

7

}
ϕϕϕ+H∗=0,

(52)

S∗ = λ7Q∗1(C' ·∇)·(ρm) + [E˜Q∗1Q∗4−(dQ∗4−λ2
7)∇∇]·(ρF),

H∗ = λ7Q∗3(C' ·∇)·(ρF) + [E˜Q∗2Q∗3−(mQ∗2−λ2
7)∇∇]·(ρm),

Q∗1 = (b + d)∆, Q∗2 = b∆, Q∗3 = (g + m)∆− l, Q∗4 = g∆− l,

d =
1
6
(2λ1 + λ2)−

1
2

λ7, l = 2λ7, b =
1
2
(λ2 + λ7),

m =
1
6
(2µ1 + µ2)−

1
2

µ7, g =
1
2
(µ2 + µ7).

(53)

For α = 0, that is, in the case of a reduced medium from Equations (52) and (53) we obtain

∆2u + G = 0, ∆2ϕϕϕ + H = 0, (54)

G =
1

λ2(λ1 + 2λ2)
[2E˜(λ1 + 2λ2)∆− (2λ1 + λ2)∇∇] · (ρF),

H=
1

(µ1+2µ2)(µ2+µ7)
[2E˜((µ1+2µ2)∆−(2µ1+µ2−3µ7)∇∇]·(ρm),

where the first relation of Equation (54) is a classical equation, and the second has a similar form.

10. The Quasistatic Canonical Problem of the Micropolar Theory of Prismatic Bodies of Constant
Thickness in Displacements and Rotations and in the Moments of Displacement and
Rotation Vectors

Let us consider a prismatic body of constant thickness 2h. As the base plane, we take the middle
plane. Then in this case gP̂

M = δP
M, g3

P̂
= 0, g33 = h−2 and the nabla-operator ∇̂F, the Laplacian ∆̂, ∆̂2

and ∆̂3 are represented in the form

∇̂F = (rP∂P + r3∂3)F = (rP∂P + h−1n∂3)F, −1 ≤ x3 ≤ 1,

∆̂F = (gPQ∇P∇Q + g33∂2
3)F = (∆̄ + h−2∂2

3)F, ∆̄ = gPQ∇P∇Q,

∆̂2= ∆̄2+
2
h2 ∆̄∂2

3+
1
h4 ∂4

3, ∆̂3= ∆̄3+
3
h2 ∆̄2∂2

3+
3
h4 ∆̄∂4

3+
1
h6 ∂6

3.

(55)
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By the corresponding formula (55), Equation (52) for the theory of prismatic bodies of constant
thickness in displacements and rotations can be written in the form

[∆̄3 + A∆̄2 +
1
h2 (3∆̄ + 2A)∆̄∂2

3 +
1
h4 (3∆̄ + A)∂4

3 +
1
h6 ∂6

3]û

+Ŝ∗∗ = 0,

[∆̄3 +(B∆̄+A)∆̄+
1
h2 [(3∆̄+2B)∆̄+C]∂2

3 +
1
h4 (3∆̄+B)∂4

3+
1
h6 ∂6

3]ϕ̂ϕϕ

+Ĥ∗∗ =0;

(56)

Ŝ∗∗=
12Ŝ∗

(λ1+2λ2)(λ2+λ7)(µ2+µ7)
, Ĥ∗∗=

12Ĥ∗

(µ1+2µ2)(µ2+µ7)(λ2+λ7)
,

A=− 4λ2λ7

(λ2+λ7)(µ2+µ7)
, C =

24λ2λ2
7

(µ1 + 2µ2)(µ2 + µ7)(λ2 + λ7))
,

B = −2λ7[2λ2(µ1+2µ2)+3(λ2+λ7)(µ2+µ7)]

(µ1+2µ2)(µ2+µ7)(λ2+λ7)
.

Applying the k-th moment operator of some system of orthogonal polynomials (Legendre,
Tchebyshev) to the equations in (56), we find the following equations for the micropolar theory
of prismatic bodies of constant thickness in the moments of the displacement and rotation vectors:

[∆̄3+A∆̄2]
(k)
u+

1
h2 (3∆̄+2A)∆̄

(k)
u ′′+

1
h4 (3∆̄+A)

(k)
u IV+

1
h6

(k)
uVI

+
(k)

S∗∗=0,

[∆̄3+(B∆̄+A)∆̄]
(k)
ϕϕϕ+

1
h2 [(3∆̄+2B)∆̄+C]

(k)
ϕϕϕ ′′+

1
h4 (3∆̄+B)

(k)
ϕϕϕ IV

+
1
h6

(k)
ϕϕϕVI+

(k)

H∗∗=0, k∈N0.

(57)

Having Equation (57), by the formula (47) it is easy to obtain systems of equations of any
approximation in moments with respect to the system of Legendre polynomials. We note that the
equations of the fifth (in the classical case) and the 8th (in the micropolar case) approximations in
moments were obtained in the papers [27,28,32] for isotropic material in the traditional form, as well
as the similarly to Equations (52), (54), (56) and (57) in the traditional form are given in [27,28,32].
Equations in moments for thin bodies with two small dimensions and thin multi-layered structures
are also given there.

Adding the corresponding canonical boundary conditions to Equation (57), we obtain a canonical
statement of quasistatic boundary value problems for prismatic bodies. In order to shorten the letter,
we shall not dwell on this in this paper, but refer to the interested reader in the papers [27,32], in which
the formulations of boundary-value problems in the traditional form are given in detail, and they
easily extend to canonical statements.

It should be noted that for the theory of thin bodies, the decomposed equations at equilibrium,
depending on the order of approximation, are equations of elliptical type of high order [27,28,32] and
using the Vekua method [36], for them it is possible to write out analytical solutions. Note also that
some questions about the application of problems on eigenvalues of tensor objects are set out in the
works [37–40].

Note that using canonical representations of material objects, based on differential statements of
initial-boundary value problems, it is easy to obtain variational statements, and then the application of
this method can be generalized to the case of media considered, for example, in [41–44].
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11. Conclusion

The statement of the eigenvalue problem for TBM of any order and any even rank is formulated,
and also particular cases are considered. The canonical form the specific deformation energy and
the CR are written. The equations of motion of a micropolar arbitrarily anisotropic medium and the
boundary conditions are obtained by means of the introduced TBM operators. The formulations of
initial-boundary value problems in terms of the introduced TBM operators for an arbitrary anisotropic
medium are given. In particular, the initial-boundary value problems of the micropolar (classical) theory
of elasticity are presented with the help of the introduced TBM operators (tensors–operators). In the case
of an isotropic micropolar elastic medium (isotropic and transversely isotropic classical media) with the
constructed TBM operator (tensors–operators) of cofactors to TBM operator (tensors–tensors) of the
initial-boundary value problems the initial-boundary value problems are decomposed. The determinant
and the cofactor tensor for the sum of six tensors are obtained. From three-dimensional decomposed
initial-boundary value problems, the corresponding decomposed initial-boundary value problems for
the theories of thin bodies are given.
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