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Abstract: Malaria is a deadly infectious disease, which is transmitted to humans via the bites of infected
female mosquitoes. Antimalarial drug resistance has been identified as one of the characteristics of malaria
that complicates control efforts. Typically, the use of insecticide-treated bed-nets (ITNs) and drug treatment
are some of the recommended control strategies against malaria. Here, the use of ITNs, drug treatment,
and their efficacies and evolution of antimalarial drug resistance are considered to be the major driving
forces in the dynamics of malaria transmissions. We formulate a mathematical model of two-strain malaria
to assess the impacts of ITNs, drug treatment, and their efficacies on the transmission dynamics of the
disease in a human population. We propose a simple mosquito biting rate function that depends on both
the proportion of ITN usage and its efficacy. We show that both disease-free and co-existence equilibrium
points are globally-asymptotically stable where they exist. The global uncertainty and sensitivity analysis
conducted show that if about 95% of malaria cases can be treated with fewer than 5% treatment failure in a
population with 95% ITN usage that remains 95% effective, malaria can be controlled. We find that the
order in which numerous intervention measures are taken is important.
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1. Introduction

Malaria is one of the most devastating infectious diseases in the world is caused by the protozoan
Plasmodium and transmitted to humans through the bite of female Anopheles mosquitoes. Four species of
the parasite, Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae, infect
humans. Since the year 2000, significant progress has been made in fighting malaria. According to the report
in [1], between the year 2000 and the year 2015, malaria case incidence was reduced by 41%, and malaria
mortality rates were decreased by 62%. The report further indicates that the endemicity of malaria decreased
from 108 countries and territories in the year 2000 to 91 in 2016. These changes are attributed to wide-scale
deployment of malaria control strategies. These include the use of conventional insecticide-treated bed-nets
(ITNs), long-lasting insecticide nets (LLINs), intermittent preventive treatment (IPT) especially for pregnant
women during the anti-natal period, reducing mosquito population through the destruction of breeding sites
or killing of the larva stage at breading sites that cannot be destroyed, indoor residual spraying (IRS), and the
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use of the sterile insect technique [2–8]. Despite the remarkable progress, malaria remains a major cause of
mortality and morbidity in many parts of the world. It has a devastating impact on public health and the
socio-economic conditions of the people [1,9]. According to the 2015 World Health Organization malaria
report [1], it was estimated that 212 million malaria cases occurred globally in 2015, leading to 429,000 deaths,
most of which were children aged under five years in Africa.

Although malaria vaccines are currently not available (see, for instance, [10]), there are a number
of drugs for malaria treatment. These drugs have varying degrees of efficacy [11]. As reported in [12],
the combination of atovaquone-proguanil is reported to show high efficacy against Plasmodium falciparum
with only modest side-effects. The effectiveness of a drug depends on its ability to clear parasites from the
patient’s blood. Artemisinin-based combination therapy (ACT) is currently identified as the treatment
of choice for uncomplicated Plasmodium falciparum malaria in many parts of the world [13,14]. Another
quality drug reported in [12] is MalaroneW R©, a fixed-dose combination of A-P. This is reported to be highly
effective and convenient with about three-day treatment courses for treating and prevention of multi-drug
resistant falciparum malaria. Cases of poor quality antimalarial drugs have been reported to be in circulation
in the markets of some African countries (see for example [13–16]). Unfortunately, the availability of
these drugs can lead to treatment failure. According to the World Health Organization [17], treatment
failure is defined as the inability to clear parasites from a patient’s blood. The reasons for treatment
failures have been generally attributed to suboptimal dosage, re-infections with a new parasite, or a point
mutation in the pfcytb gene (see [6,9,12,18,19] and the references therein). One problem associated with
treatment failure is that it may lead to antimalarial drug resistance (see [20]), which is defined as the
ability of the parasite to survive the administration of a drug in doses equal to, or higher than, those
usually recommended [18]. In general, drug resistance occurs through mutations that grant lessening of
the sensitivity of a given drug or class of drugs. The consequence of this is that drug treatment will remove
drug-susceptible parasites in infected humans, while resistant parasites endure.

Certain factors combine to give rise to the spread of drug resistance, although their relative
contributions to resistance are not exactly known. Some of these factors include human behavior such
as poor compliance, vector and parasite biology, malaria treatment failure, host immunity, pathogen
superinfection resulting in within-host competition, presence of clinically-immune individuals, the number
of people using the drugs, and poor drug quality [18,19,21–23]. While resistance is detrimental in the
human population because it leads to death (see [6]), it is advantageous to the Plasmodium population
because it confers a survival advantage in the presence of drugs.

Mathematical models of malaria transmission have been developed by several researchers to gain
insight into the dynamics of the disease transmission so as to contribute towards its eradication. Some of
these models can be found in [18,24–30], where the authors considered several features of malaria disease.
There are a number of characteristics of malaria disease that complicate control effort. One of these is
the existence of strains or races among the Plasmodium species responsible for human malaria. This was
known as far back as 1920. Extensive work on strains in malaria can be found in [31] and the references
therein. The races or strains can be distinguished based on their clinical virulence, infectivity, reaction
to antimalarial remedies, and their antigenic properties [32]. For these reasons, many models have been
developed that have considered two malaria strains based on drug-sensitive and drug-resistant malaria
parasites. Examples of models that consider drug-sensitive and drug-resistant malaria dynamics can be
found in [9,18,19,21,33,34]. Mathematical models for the transmission dynamics of drug-sensitive and
-resistant strains can be useful in providing valuable information that will help in understanding the factors
that influence the spread of drug resistance. This is important in designing rational intervention strategies
for control of drug resistance and malaria transmissions in general. In the model of Tumwiine et al. [19],
the authors considered the infected human population to consist of individuals with drug-sensitive
and -resistant malaria strains. However, the vector population consists of only mosquitoes with
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the drug-sensitive strain. In the model reported in [18], the authors neglected the disease-induced
death rate, which is not realistic for malaria endemic regions. A second characteristic feature of
malaria that complicates eradication is the occurrence of backward bifurcation, which is a situation
where the locally-asymptotically-stable disease-free state co-exists with a locally-asymptotically-stable
endemic equilibrium point. This phenomenon has been observed in many epidemic models. See,
for instance, [9,35–39]. In this scenario, the requirement for the basic reproduction number to be less
than one for the disease to be eradicated no longer holds. In many situations, models with disease-induced
mortality exhibit backward bifurcation. However, there are models with disease-induced mortality where
backward bifurcations have not been reported. Hadeler and Van den Driessche [40] have shown that even
without the disease-induced death rate, backward bifurcation can occur. From the work of Feng et al. [41],
the authors reported that the existence of backward bifurcation depends on the choice of incidence function.
Baba et al. [42] studied a general two-strain epidemic model with linear incidence functions and found no
backward bifurcation. Similarly, in the model of Baba and Evren reported in [43], the authors considered
a linear incidence function for one strain and a non-linear incidence function in the other strain, and
no backward bifurcation was found. The third characteristic of malaria disease that complicate control
efforts is clinical immunity, which is a situation where protection against the clinical symptoms of the
disease are developed despite the presence of the parasites [37,44,45]. The fourth feature is seasonality.
In the context of malaria transmission, seasonality encapsulates complex phenomenon whose definition
varies in many studies. Temperature variations have been reported by many to play a significant role in
the dynamics of malaria transmissions. For example, the report of Roll Back Malaria 2015 indicated that
a rise in temperature by 2–3 ◦C will increase the number of people at climatic risk of malaria by 3–5%.
Furthermore, the abundance of mosquitoes and the transmission risk have been reported to be influenced
by temperature [46–49]. At high temperatures, studies have indicated that people are unlikely to use ITNs
much [50]. See the following for models related to seasonality in malaria transmission [46,48,49,51–55].

The use of ITNs is one of the common forms of protection against malaria transmission. According to the
reports in [25,50,56,57], ITN possession does not translate into use, and the efficacy of ITNs could wane over
time due to frequent washing and exposure to direct sunlight, among other reasons. Despite these drawbacks,
ITNs usage was rated among the most important strategies against malaria transmissions [38,58,59]. One key
constraint in sustainable use of ITNs is the need for regular re-treatment, otherwise they lose their efficiencies.
In the models reported in [4,50], the authors introduced an explicit equation for mosquito biting rates as a
linear decreasing function of the proportion of ITN usage. Although this a plausible approach, the biting
rate function does not contain a parameter that will mimic the efficacy of ITNs. Moreover, Lunde et al. [48]
showed that the biting rate is a non-linear function of temperature.

This study presents a deterministic model for studying the dynamics of malaria transmission in the
presence of antimalarial drug resistance using an autonomous system of differential equations. We divided
the infected vector population into two compartments viz. those infected with drugs-sensitive and
those infected with drug-resistant strains. Furthermore, the recovered human population is divided
into recovered with drug-sensitive and recovered with drug-resistant strains. The new insight that can
be obtained can help policy makers in designing effective malaria control measures. The current study
extends the work of Tumwiine et al. and Agusto et al. [19,50] by:

1. Proposing a simple model of the mosquito biting rate as a non-linear function of ITN usage and
including a parameter in the function that represents ITN efficacy. This will form the basis for
studying ITN usage and its efficacy.

2. Investigating a wide range of intervention strategies through global sensitivity analysis to determine
the impacts of drug treatment and its efficacy and ITN usage and its efficacy in controlling malaria.

3. Conducting a global sensitivity analysis to determine the influence of ITN usage, drug treatment,
and their efficacies and other model parameters on the dynamics of malaria transmission. This could
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help in devising optimal intervention strategies that will offer more realistic predictions towards
controlling malaria’s spread.

The paper is organized as follows. We formulate the model in Section 2 and analyze it qualitatively in
Section 3. In Section 4, we conduct a numerical simulation of the model equations. In Section 5, we conduct
global uncertainty and sensitivity analysis. Section 6 is the discussion part, and in Section 7, we present
our conclusions.

2. Model Formulation

In this section, we formulate a mathematical model for the transmission and spread of malaria
using compartments in which individuals move between susceptible, infected, and immune classes in the
human population and between susceptible and infected classes in the mosquito population, respectively.
The model is formulated by neglecting the exposed classes for two reasons: (1) reducing the number of
compartments to make the model analysis easier; (2) following Agusto et al. [50], we assume that the
disease is fast advancing, so that the exposed stage is minimal and therefore neglected. The total human
and mosquito populations are denoted by Nh(t) and Nv(t), respectively. As reported in [50], malaria
transmission is a decreasing function of bed-net usage, and consequently, the authors assumed a linear
decreasing function to represent the mosquito-human biting rate given by β(b) = βmax − b (βmax − βmin) .
In this report, we propose a non-linear decreasing biting rate function of the proportion of ITN usage b
and its efficacy γ defined by:

a =
βmaxβmin

(βmax − βmin) bγ + βmin
, (1)

where 0 ≤ b, γ ≤ 1, βmax, βmin are the maximum and minimum biting rates, respectively. Bed-nets are
generally used at certain times of the night; hence, we follow the assumption made in [50] that even
if the entire host population used fully-efficient bed-nets (b = 1, γ = 1), the transmission can only be
reduced to a minimum value βmin > 0. Likewise, if nobody uses bed-nets (b = 0), transmission will be
at its maximum level. The motivation for the choice of (1) emanates from some reports that a drastic
decline in the disease transmission was witnessed in some parts of Africa due to ITN usage; see [50] and
the references therein. The authors further suggested that using a linear decreasing function is simply a
simplifying assumption and that an exponentially-decreasing function or other functions that decrease
faster might provide a better estimate of the biting rate. Note that Formula (1) provided us with the basis
for studying the efficacy of ITN, which is absent in the work of Agusto et al. [50]. The elasticity index of a
with respect to γ is given by:

γ

a
∂a
∂γ

= − (βmax − βmin) bγa
(βmax − βmin) bγa + βmin

≤ 0, (2)

which clearly indicates that increasing ITN efficacy will decrease the biting rate. We assume that disease
transmission via the biting rate is the same for the human and mosquito populations and is given by
Equation (1).

2.1. Model Structure

2.1.1. Human Dynamics

The total human population Nh(t) is divided into five compartments by modifying the model of
Tumwiine et al. [18,19]. The compartments are Sh(t), Ihs(t), Ihr(t), Rhs(t), Rhr(t), which represent the sizes
of the susceptible, infected with the sensitive strain, infected with the resistant strain, recovered with the
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sensitive strain, and recovered with the resistant strain categories, respectively. All recruitment was assumed
to be into the susceptible human population generated via birth and/or immigration at a rate ψhNh. This
population is further increased by the loss of acquired immunity by individuals from the recovered classes
at the rate αs (sensitive strain) and αr (resistant strain), respectively, and from the inflow of individuals
that are treated successfully from the infected class with the sensitive strain at the rate εTs. The susceptible
human population is decreased by natural death at the rate φh = (µh2Nh + µh) and by the force of infection
following effective contacts with infected mosquitoes, denoted by Λh = ab1(Ivs+Ivr)

Nh
. Here, µh2, µh represents

the density-dependent and density-independent parts of the human death rate and emigration, respectively,
b1 is the probability of infection from mosquito to human giving that there is contact.

The population of individuals in the infected class with the sensitive strain is increased by the
proportion of susceptible humans (β) who become infected. It is decreased by natural death rate φh,
disease-induced death rate δh, individuals who recovered from this class at a rate rs, and individuals who
are treated at the rate Ts.

The population of individuals in the infected class with the resistant strain is increased by the
proportion of susceptible humans (1− β) who become infected and the inflow of infected individuals
with the sensitive strain whose treatment fails at a rate (1 − ε)Ts. It is decreased by the natural and
disease-induced death at the rate φh, δh, respectively individuals who recovered from this class at a rate rr.

The population of individuals in the recovered class with the sensitive strain is increased by
individuals who recover with immunity from the infected class with the sensitive strain at a rate rs

and is decreased by the combination of individuals from this class who lose immunity at a rate αs and
natural death rate φh.

The population of individuals in the recovered class with the resistant strain is increased by
individuals who recover with immunity from the infected class with the resistant strain at a rate rr

and is decreased by the combination of individuals from this class who lose immunity at a rate αr and
natural death rate φh.

2.1.2. Mosquitoes’ Dynamics

The total mosquito population denoted by Nv(t) has three epidemiological classes denoted by Sv(t),
Ivs(t), Ivr(t), which represent the sizes of susceptible, infected with the sensitive strain, and infected with
the resistant strain classes, respectively.

The population of the susceptible mosquito is generated by recruitment through birth at a rate ψvNv

and is decreased by the force of infection denoted by Λv = ab2(Ihs+Ihr)
Nh

, where b2 is the probability of
infection from infected humans to susceptible mosquitoes. This population is reduced by natural death
φv = µv2Nv + µv and death following contact with ITNs at the rate bγµv3. Here, µv2, µv represents the
density-dependent and density-independent parts of the mosquitoes’ death rate, respectively, and µv3

represents the ITN-induced death rate.
The population of infected mosquitoes with the sensitive strain is generated by the proportion (1− α)

of infected vectors. It is decreased by natural death rate φv.
The population of infected mosquitoes with the resistant strain is generated by the proportion (α) of

infected vectors. It is decreased by natural death rate φv.

2.2. The Model

It follows, based on the above derivations and assumptions, that the model for the transmission
dynamics of malaria is given by the following deterministic system of non-linear differential equations.
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The flow diagram of the model is depicted in Figure 1, and the state variables and parameters of the model
are described in Tables 1 and 2, respectively:

dSh
dt

= ψhNh + ε Ts Ihs + αsRhs + αrRhr − φh Sh −ΛhSh,

dIhs
dt

= βΛhSh − Ihs (φh + Ts + δh + rs) ,

dIhr
dt

= (1− β)ΛhSh + (1− ε) Ts Ihs − Ihr (rr + δh + φh) ,

dRhs
dt

= rs Ihs − (φh + αs) Rhs, (3)

dRhr
dt

= rr Ihr − (φh + αr) Rhr,

dSv

dt
= ψvNv −ΛvSv − φvSv,

dIvs

dt
= (1− α)ΛvSv − φv Ivs,

dIvr

dt
= α ΛvSv − φv Ivr,

together with the total human and vector populations given by:

dNh
dt

= ψhNh − δh (Ihs + Ihr)− φh Nh, (4)

dNv

dt
= ψvNv − φvNv − bγµv3. (5)

Rhs Ihs Sh Ihr Rhr

Ivs Sv Ivr
(1− ε)Ts

εTs

(1− β)ΛhβΛh

ψhNh

φh

αΛv(1− α)Λv

ψvNv

φv
φvφv

rs

φh δhφh
αs

rr

φh δh φh
αr

Figure 1. Susceptible humans Sh can be infected by infectious mosquitoes. They then move to the respective
infectious compartments, Ihs, Ihr, before entering the recovered classes Rhs, Rhr, respectively. Recovered
humans can enter the susceptible class again or die. The susceptible mosquitoes, Sv, can become infected
when they bite infectious humans. The infected mosquitoes then move to one of the infected classes Ivs, Ivr.
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Table 1. Description of the state variable of the model.

Variable Description

Sh Population of susceptible humans
Ihs Population of infected humans with the sensitive strain
Ihr Population of infected humans with the resistant strain
Rhs Population of recovered humans with the sensitive strain
Rhr Population of recovered humans with the resistant strain
Nh Total human population
Sv Population of susceptible mosquitoes
Ivs Population of infected mosquitoes with the sensitive strain
Ivr Population of infected mosquitoes with the resistant strain
Nv Total population of mosquitoes

Table 2. Parameters and their descriptions. ITN, insecticide-treated bed-net.

Parameters Description and Dimension

ψh Recruitment rate into human population (humans × day−1)
ψv Recruitment rate into the mosquitoes’ population (mosquitoes × day−1)
Ts Treatment rate of infected humans with the sensitive strain (day−1)
a Average daily biting rate by a single mosquito of humans (day−1)
b2 Probability of transmission of infection from infected humans to susceptible mosquitoes
b1 Probability of transmission of infection from infected mosquitoes to susceptible humans
ρ1 Number of mosquitoes per human host
b Proportion of ITN usage

βmax Maximum biting rate per mosquito (day−1)
βmin Minimum biting rate per mosquito (day−1)

ε Treatment efficacy (day−1)
γ ITN efficacy (day−1)
αs Rate at which humans with sensitive strains lose immunity (day−1)
αr Rate at which humans with resistant strains lose immunity (day−1)
α Proportion of infected vectors that developed resistance
rr Rate at which humans with resistant strains acquire immunity (day−1)
rs Rate at which humans with sensitive strains acquire immunity (day−1)
β Proportion of susceptible humans who become infected with the sensitive strain
δh Disease-induced death rate for infected humans (day−1)

µh2 Density-dependent part of the death and emigration rate for humans (human × day−1)
µh Density-independent part of the death rate for humans (human × day−1)
µv Density-independent part of the death rate for mosquitoes (mosquitoes × day−1)
µv2 Density-dependent part of the death rate for mosquitoes (day−1)
µv3 ITN-induced death rate for mosquitoes (day−1)

The state variables of the model are given in Table 1, while Table 2 gives the model parameters and
their descriptions. Our model provides a basis for studying treatment and ITN efficacy.

3. Basic Properties of the Model

In this section, the mathematical analysis of Model (3), will be explored.

3.1. Basic Properties of the Model

Lemma 1. Let kh, kv be the carrying capacities of human and mosquito populations, respectively. The closed set
D = {(Sh, Ihs, Ihr, Rhs, Rhr, Sv, Ivr, Ivs) ∈ R8

+ : Nh ≤ kh, Nv ≤ kv}
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is positively invariant and attracting.

Proof. Adding the first five equations and the last three equations of Model (3), we obtain:

dNh
dt

= ψhNh − δh (Ihs + Ihr)− φh Nh,

dNv

dt
= ψvNv − φv(Nv)Nv.

The mosquito and human populations are modeled by logistic growth with carrying capacity kv =
ψv−µv−µv3bγ

µv2
, kh = ψh−µh

µh2
, respectively. It is easy to see that dNh

dt ≤ (ψh − µh) Nh

(
1− Nh

kh

)
and dNv

dt ≤

(ψv − µv − bγµv3) Nv

(
1− Nv

kv

)
. This shows that dNh

dt ≤ 0 if Nh
kh
≥ 1, and it approaches kh. Similarly,

dNv
dt ≤ 0 if Nv

kv
≥ 1, and it approaches kv. Hence, using comparison theory (see [9] and the references therein),

Nh(t) ≤
khNh(0)

Nh(0)
(
1− e−(ψh−µh)t

)
+ khe−(ψh−µh)t

,

Nv(t) ≤
kvNv(0)

Nv(0)
(
1− e−(ψv−µv−µv3bγ)t

)
+ kve−(ψv−µv−µv3bγ)t

.

If Nh(0) ≤ kh, then Nh(t) ≤ kh, and if Nv(0) ≤ kv, then Nv(t) ≤ kv. Thus, the region D is positively
invariant for the model. Moreover, if Nh(0) ≥ kh, Nv(0) ≥ kv, then either the solution enters the region
D in finite time or Nh(t) → kh, Nv(t) → kv, as t → ∞. Thus, the region attracts all solutions in R8

+. Now
that we have shown that D is positively invariant, the requirement for the existence and uniqueness of
solutions holds for Model (3) (see [9]).

3.2. Possibility of Backward Bifurcation

In this section, we will investigate the possibility of backward bifurcation in Model (3). The equilibrium
solutions of the total human and mosquito population are important in determining the endemic equilibrium
point of the model. The mosquitoes’ population has a positive equilibrium solution N∗v if ψv− µv− bγµv3 > 0.

Theorem 1. If N∗v exist, then the number of endemic equilibrium points of the malaria model (3) is equivalent to the
number of positive roots of one of the polynomials in N∗h :

PRM = B2µh2
2Nh

∗3 − B2µh2 (B2F3δh − 2 µh + ψv) Nh
∗2

− (B2µh (B2F3δh − µh + ψv) + K1µh2) N∗h + K1ψv − F3K2δh − K1µh, (6)

PRN = B3µh2
2Nh

∗3 − B3µh2 (B2F3δh − 2 µh + ψv) Nh
∗2

+ (F2µh2 − B3µh (B2F3δh − µh + ψv)) N∗h + F1F3δh + F2µh − F2ψv, (7)

provided RN > 1 or RM > 1,

where
RM =

β A1B4N∗v α1φ∗v ψv

φ∗h B2N∗h
, RN =

A1B1B5N∗v α1β1ψ∗v
φ∗h B2B3N∗h

,

B4 = δh
2 + ((1− β) rs + (−β ε + 1) Ts + β rr + 2 φh) δh + (1− β) φ∗h rs + (−β ε + 1) φ∗h Ts + β rrφ∗h + φ∗h

2,

B5 = A1β1 (β T2ψh + T1β1ψh) , RR = φ∗h + δh + rr, T1 = φ∗h + Ts + δh + rs, T2 = (1− ε) Ts,

B1 = A2 (β RR + β T2 + T1β1) , B2 = β T2φ∗v + T1β1φ∗v , B3 = (RR + T2) (β T2 + T1β1) ,
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S1 =
rs

αs
, S2 =

rr

αr
, A1 = a1b1, A2 = a2b2,

F1 = A1B1B5Nvα1β1ψv, F2 = A1B4Nvα1β1ψv, F3 =
β RR + β T2 + T1β1

B1 (β T2 + T1β1)
,

K1 = β A1B4Nvα1φ∗v ψv, K2 = β A1B1B5Nvα1φ∗v ψv.

To find the equilibrium point of (3), we set the right-hand side of the equations to zero. We then express
S∗h , in terms of I∗vs, S∗v , and I∗hr, S∗v in terms of I∗hr, I∗hs in terms of I∗hr, R∗hs in terms of I∗hs, and R∗hr in terms of
I∗vr as follows:

I∗vr =
α S∗v A2

(
I∗hs + I∗hr

)
N∗h φ∗v

,

I∗hs =
I∗hrRRβ

β T2 + T1β1
,

S∗h =
I∗hr Nh

∗2RRT1φ∗v
α B1 I∗hrS∗v + B2N∗h I∗vs

,

S∗v =
N∗h N∗v ψv (β T2 + T1β1)

B1 I∗hr + B2N∗h
, (8)

R∗hs = S1 I∗hs, (9)

R∗hr = S2 I∗hr. (10)

Similarly, we express I∗vs as:

I∗vs =


I∗hrφ∗h N∗h B2

A1β (B4 I∗hr−B5 N∗h )φ∗v
, i f A1β

(
B4 I∗hr − B5N∗h

)
φ∗v > 0

I∗hrφ∗h N∗h B3

A1β1(−B4 I∗hr+B5 N∗h )
, i f A1β

(
B4 I∗hr − B5N∗h

)
φ∗v < 0.

(11)

Depending on which condition in (11) holds, we then solved for I∗hr explicitly in terms of parameters as:

I∗hr =


Nh
∗2(RN−1)φ∗h B2B3

B1(A1B4 N∗v α1β1ψv+φ∗h B3 N∗h )
, if the first condition in (11) holds

β A1B1B5 N∗v α1φ∗v ψv+φ∗h B2
2 N∗h

φ∗h B2B1(RM−1) , if the second condition in (11) holds,
(12)

Using Equation (12), we find an explicit expression of I∗hs from the second equation in (9) in terms of the
parameters alone. We then substitute for I∗hs and I∗hr in Equation (4) to obtain cubic polynomials in N∗h as:

PRM = B2µh2
2Nh

∗3 − B2µh2 (B2F3δh − 2 µh + ψv) Nh
∗2

− (B2µh (B2F3δh − µh + ψv) + K1µh2) N∗h + K1ψv − F3K2δh − K1µh, (13)

PRN = B3µh2
2Nh

∗3 − B3µh2 (B2F3δh − 2 µh + ψv) Nh
∗2

+ (F2µh2 − B3µh (B2F3δh − µh + ψv)) N∗h + F1F3δh + F2µh − F2ψv. (14)

It is possible to have zero, one, two, or three positive values of N∗h , and for each of these values,
we can find the corresponding equilibrium point for Model (3) provided the conditions of Theorem 1 are
satisfied. Theorem 1 provides the possibilities for backward bifurcation because the existence of multiple
endemic equilibria may lead to one of them co-existing with the disease-free equilibrium point when the
reproduction number of the full model is less than unity. We have not explored this possibility any further
in this work.
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3.3. Scaling and Non-Existence of Backward Bifurcation

To analyze the malaria model (3), we think it is easier to work with a fractional population instead
of actual populations by scaling the population of each class by the total species population. We let:
Sv = zNv, Ivr = hNv, Sh = uNh, Ivs = gNv, Rhs = xNh, Rhr = yNh, Ihr = wNh, Ihs = vNh. Following [27],
we scaled the total human and vector populations in Model (3) using their respective carrying capacities
as Nh = khN∗h , Nv = kvN∗v . After simplifying, we have a six-dimensional system of equations as:

dv
dt

= β ξ1 (1− w− v− x− y) (g + h)− vp1,

dw
dt

= ξ1 (1− w− v− x− y) ((1− β)(g + h))− wp2 + vp3,

dx
dt

= rsv− xc1,

dy
dt

= rrw− yc2, (15)

dg
dt

= k1 (1− g− h) ((1− α)(v + w))− gψv,

dh
dt

= k1 (1− g− h) α (v + w)− hψv,

where p1 = (rs + δh + Ts + ψh) , p2 = (rr + δh + ψh) , p3 = Ts (1− ε) , c1 = (αs + ψh) , c2 = (αr + ψh) ,
and ξ1(Nh, Nv) =

ab1 Nv
Nh

= ab1kvρ1
kh

, where k1 = ab2, ρ1 = N∗v
N∗h

, in line with the work of Ngwa and Shu [27].

It is sufficient to study Model (15) in the subspace Ω × [0, ∞) of R6
+ where Ω = {v, w, x, y, g, h : 0 ≤

v, w, x, y, g, h < 1, 0 ≤ v + w + x + y < 1, g + h < 1}. The dynamics of the system in the region Ω will
henceforth be investigated.

3.4. Stability of the Disease-Free Equilibrium Point

The model (15) has a disease-free equilibrium (DFE) given by EDFE = (v∗, w∗, x∗, y∗, g∗, h∗) =

(0, 0, 0, 0, 0, 0). By using the next-generation operator method, the non-negative matrix, F, of the infection
terms and the non-singular matrix V, of the transition terms, are respectively obtained as:

F =



0 0 0 0 β ξ1 β ξ1

0 0 0 0 ξ1 (1− β) ξ1 (1− β)

0 0 0 0 0 0

0 0 0 0 0 0

k1 (1− α) k1 (1− α) 0 0 0 0

α k1 α k1 0 0 0 0


, (16)
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V =



p1 0 0 0 0 0

−p3 p2 0 0 0 0

−rs 0 c1 0 0 0

0 −rr 0 c2 0 0

0 0 0 0 ψv 0

0 0 0 0 0 ψv


(17)

ρ = ±
√
−p2 p1ψvξ1k1 (β p1 + β − p3 − β p2 − p1)

p2 p1ψv
, (18)

where ρ is the spectral radius of the next-generation matrix. We define the effective reproduction number
Re f f as:

Re f f =
ξ1k1 (1− β)

p2ψv
+

k1ξ1β (p2 + p3)

p2 p1ψv
. (19)

The formula in Equation (19) is made up of two parts: the reproduction number due to drug-resistant and
the reproduction number due to drug-sensitive strains, which might be written as:

Re f f = Rr + Rs, (20)

where Rr = ξ1k1(1−β)
(rr+δh+ψh)ψv

, Rs = ξ1k1β (rr+δh+ψh+Ts(1−ε))
(rr+δh+ψh)(rs+δh+Ts+ψh)ψv

. Hence, using Theorem 2 of [60], we have
established the following result:

Lemma 2. The disease-free equilibrium EDFE of Model (15) is locally-asymptotically stable (LAS) if Re f f < 1,
and unstable if Re f f > 1.

The threshold quantity Re f f measures the average number of secondary cases generated by a single
infected individual in a population where some infected individuals are treated and some are using ITNs.
In the absence of treatment and ITN usage, we set Ts = 0, b = 0, and ξ1 ≡ ξ2 with a = βmax in the formula
for ξ1. Hence, ξ2 > ξ1. The effective reproduction number reduces to the basic reproduction number
denoted by R00

e f f where:

R00
e f f =

ξ2k1 (1− β)

(rr + δh + ψh)ψv
+

ξ2k1β

(rs + δh + ψh)ψv
. (21)

Lemma 2 shows that malaria can be eradicated if the initial populations of the model are confined in the
basin of attraction of the DFE. To guarantee the elimination of disease irrespective of initial population
sizes, a global stability analysis of the DFE is required. This is done below, using the Lyapunov function.

3.5. Global Stability of the DFE

Theorem 2. Assume Re f f < 1, then the disease-free equilibrium point EDEF of Model (15) is globally asymptotically stable.

Proof. Consider the Lyapunov function:

F = L1v + L2w + L3(x + y) + L5(g + h), (22)
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where L5 = ξ1 (p1rr (1− β) + β p2rs + β p3rr) , L3 = p1 p2

(
1− Re f f

)
, L2 =

p1 p2(1−Re f f )rr+L5k1
p2

, L1 =

p1 p2(1−Re f f )(p2rs+p3rr)+L5k1(p2+p3)
p1 p2

. Some calculations shows that the time derivative becomes:

dF
dt = −ξ1 (L1 β + L2 β1) (g + h) (x + y)− L3 c1x− L3 c2y

+ (− ((L1 β + L2 β1)ξ1 + L5 k1) (g + h) + L5 k1 − L1 p1 + L2 p3 + L3 rs) v
+ (− (L1 β ξ1 + L2 β1ξ1 + L5 k1) (g + h) + L5 k1 − L2 p2 + L3 rr)w
+ ξ1 (L1 β + L2 β1) (g + h)− ψvL5 (g + h) .

(23)

We simplify (23) to get:

dF
dt = −ξ1

(
(p1 p2(1−Re f f )(p2rs+p3rr)+L5k1(p2+p3))β

p2 p1

+
(p1 p2(1−Re f f )rr+L5k1)β1

p2

)
(g + h) (x + y + w + v)

− p1 p2

(
1− Re f f

)
(xc1 + yc2)− L5k1 (g + h) (v + w) .

(24)

Hence, we have dF
dt < 0 for all (x, y, v, w, g, h) 6= (0, 0, 0, 0, 0, 0). Thus, by Lyapunov’s theorem,

the disease-free equilibrium is globally asymptotically stable.

3.6. Boundary Equilibria

In this section, we investigate the existence and stability of positive equilibria involving only one strain.

3.6.1. Boundary Equilibria for the Drug-Sensitive Strain Only

This is an equilibrium where only the sensitive strain is present. The following results are obtained:

Lemma 3. Model (15) has a sensitive strain type-only boundary equilibrium, given by Es, whenever RS = k1ξ1
p1ψv

> 1.

Proof. To get an equilibrium point Es = (v∗s , w∗s , x∗s , y∗s , g∗s , h∗s ) = (v∗s , 0, x∗s , 0, g∗s , 0), of Model (15), we must
have β = 1, α = 0, ε = 1. Substituting these values, we obtain the equilibrium point as:

Es = (v∗s , w∗s , x∗s , y∗s , g∗s , h∗s ) =
(
(RS − 1)ψh

d1
, 0,

(RS − 1) rs

d1
, 0,

ψh (RS − 1)
d2

, 0
)

,

where d1 = (p1ψh + ξ1 (ψh + rs)) k1 p1ψv, d2 = ξ1 (k1ψh + ψv (ψh + rs)) p1ψv. This establishes that the
boundary equilibrium point for the sensitive strain only exists when RS > 1.

3.6.2. Local Stability of Es

Lemma 4. Es is locally asymptotically stable.

Proof. The local stability of Es is investigated by evaluating the Jacobian of Model (15) with β = 1, α = 0,
ε = 1, and the coordinates taken in the following order v, x, g, w, y, h to obtain:

J(Es) =

[
M1s M2s

0 M4s

]
,
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where M1s =


−ξ1g∗s − p1 −ξ1g∗s ξ1 (1− v∗s − x∗s )

rs −c1 0

k1 (1− g∗s ) 0 −k1v∗s − ψv

 , M4s =


−p2 0 0

rr −c2 0

0 0 −ψv

 . The

eigenvalues of J(Es) can be obtained by finding the eigenvalues of the matrices M1s and M4s only.
The eigenvalues of M4s are −p2,−c2,−ψv which are all negatives. The characteristic polynomial of
M1s is given by:

A = η3 + B2η2 + B1η + B0, (25)

where B2 = g∗s ξ1 + v∗s k1 + p1 + c1 + ψv, B1 = (k1ξ1v∗s + ξ1 (c1 + ψv + rs)) g∗s + k1 (p1 + c1) v∗s +

c1 (p1 + ψv) , B0 = ξ1 (c1 + rs) (v∗s k1 + ψv) g∗s + v∗s k1 p1c1. By the Routh–Hurwitz criterion, all the
roots of Equation (25) have negative real parts if the following holds: B0, B1, B2 > 0, and
B1B2 − B0 > 0. Clearly, Bi > 0, i = 0, 1, 2. We simplify B1B2 − B0 to get Ps = A1(g∗s )

2 +

A2g∗s + A3(v∗s )
2 + A4v∗s + A5 > 0, where A1 = k1ξ1

2v∗s + ξ1
2 (c1 + ψv + rs) , A2 = k1

2ξ1v∗s
2 +

2 k1ξ1 (p1 + c1 + ψv) v∗s + ξ1
(

p1 (2 c1 + ψv + rs) + c1 (c1 + 2 ψv + rs) + ψv
2) , A3 = k1

2 (p1 + c1) , A4 =

k1 (p1 (p1 + 2 c1 + ψv) + c1 (c1 + 2 ψv)) , A5 = c1 (p1 + ψv) (p1 + c1 + ψv) . It follows from the
Routh–Hurwitz criterion that all the roots of the characteristic polynomial of M1s have negative real
parts. Hence, all the roots of J(Es) have negative real parts, which establishes the stability of Es.

3.6.3. Boundary Equilibria for the Drug-Resistant Strain Only

This is an equilibrium where only the resistant strain is present. We state the following:

Lemma 5. The model (15) has a resistant strain type-only boundary equilibrium, given by Er, whenever RR =
k1ξ1
p2ψv

> 1.

Proof. To get an equilibrium point Er = (v∗r , w∗r , x∗r , y∗r , g∗r , h∗r ) = (0, w∗r , 0, y∗r , 0, h∗r ), of Model (15), we must
have β = 0, α = 1. Substituting these values, we obtain the equilibrium point as:

Er = (v∗r , w∗r , x∗r , y∗r , g∗r , h∗r ) =
(

0,
(RR − 1) c2

q1
, 0,

(RR − 1) rr

q1
, 0,

(RR − 1) c2

q2

)
,

where RR = k1ξ1
p2ψv

, q1 = (c2 (p2 + ξ1) + rrξ1) k1 p2ψv, q2 = ξ1 (c2 (k1 + ψv) + ψvrr) p2ψv.

3.6.4. Local Stability of Er

Lemma 6. Er is locally asymptotically stable.

Proof. The local stability of the Er is investigated by evaluating the Jacobian of Model (15) with β = 0,
α = 1, and the coordinates taking in the following order v, x, g, w, y, h to obtain:

J(Er) =

[
M1r 0
M3r M4r

]
,
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where M1r =


−p1 0 0

rs −c1 0

0 0 −ψv

 , M4r =


−ξ1h∗r − p2 −ξ1h∗r ξ1 (1− w∗r − y∗r )

rr −c2 0

k1 (1− h∗r ) 0 −k1w∗r − ψv

 . The

eigenvalues of J(Er) are the eigenvalues of the matrices M1r and M4r. The eigenvalues of M1r are
−p1,−c1,−ψv, which are negatives. The characteristic polynomial of M4r is given by:

T = η3 + D2η2 + D1η + D0, (26)

where D2 = h∗r ξ1 + w∗r k1 + c2 + p2 + ψv, D1 = (k1ξ1w∗r + ξ1 (c2 + ψv + rr)) h∗r + k1 (c2 + p2)w∗r +

c2 (p2 + ψv) , D0 = ξ1 (c2 + rr) (w∗r k1 + ψv) h∗r + w∗r c2k1 p2. Clearly, Di > 0, i = 0, 1, 2.
We simplify D1D2 − D0 to get Pr = C1(h∗r )

2 + C2h∗r + C3(w∗r )
2 + C4w∗r + C5, where

C1 = k1ξ1
2w∗r + ξ1

2 (c2 + ψv + rr) , C5 = c2 (p2 + ψv) (c2 + p2 + ψv) , C2 = Bk1
2ξ1w∗r

2 +

2 k1ξ1 (c2 + p2 + ψv)w∗r + ξ1
(
c2 (c2 + 2 p2 + 2 ψv + rr) + p2ψv + p2rr + ψv

2) , C3 = k1
2 (c2 + p2) ,

C4 = k1 (c2 (c2 + 2 p2 + 2 ψv) + p2 (p2 + ψv)) . It follows from the Routh–Hurwitz criterion that all the
roots of the characteristic polynomial of M4r have negative real parts. Hence, all the roots of J(Er) have
negative real parts, which establishes the stability of Er.

3.7. Coexistence Equilibrium Point

Let Ers = (v∗∗, w∗∗, x∗∗, y∗∗, g∗∗, h∗∗) be the coexistence equilibrium point of the two strains, then Ers

is the solution of the non-linear system of equations:

0 = rsv∗∗ − x∗∗c1,

0 = rrw∗∗ − y∗∗c2,

0 = β ξ1 (1− w∗∗ − v∗∗ − x∗∗ − y∗∗) (g∗∗ + h∗∗)− v∗∗p1, (27)

0 = ξ1 (1− w∗∗ − v∗∗ − x∗∗ − y∗∗) ((1− β)(g∗∗ + h∗∗))− w∗∗p2 + v∗∗p3,

0 = k1 (1− g∗∗ − h∗∗) (1− α) (v∗∗ + w∗∗)− g∗∗ψv,

0 = k1 (1− g∗∗ − h∗∗) α (v∗∗ + w∗∗)− h∗∗ψv.

We solved Equation (27) to get the components of Ers as:

h∗∗ =
α c2c1 p1 p2ψv

(
Re f f − 1

)
Ψ

,

g∗∗ =
c2c1 p1 p2ψv

(
Re f f − 1

)
(1− α)

Ψ
,

y∗∗ =
(c1 p1 (1− β) + β p3) c1 p1 p2ψv

(
Re f f − 1

)
Φ

, (28)

x∗∗ =
β c1 p1 p2

2ψv

(
Re f f − 1

)
c2

Φ
,

w∗∗ =
c2 (−c1 p1 (β− 1) + β p3) c1 p1 p2ψv

(
Re f f − 1

)
Φ

,

v∗∗ =
c1

2β p1 p2
2ψv

(
Re f f − 1

)
c2

Φ
, (29)
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where:

Ψ = ξ1 ((((p3 + p2 (c1 + 1)) c2 + p3)ψm + k1 (c1 p2 + p3) c2) β + c1 p1 (1− β)

× (c2 (k1 + ψv) + ψv)) ,

Φ = (((c1 + 1) c2 p2 + p3c2 + p3) ξ1β + c1c2 p1 p2 + ξ1 (1− β) (c2 + 1) p1c1)

× (c1 p1 (1− β) + β (c1 p2 + p3)) k1,

from which we state the following result:

Theorem 3. Model (15) has a unique co-existence equilibrium point Ers whenever Re f f > 1.

Even though we show that there is the possibility of backward bifurcation in Model (3),
this phenomenon is absent in the reduced model (15). The global stability of the reduced model will now
be investigated.

3.8. Global Stability of the Coexistence Equilibrium Point

To investigate the global stability of the equilibrium point where both the sensitive and the resistant
strains coexist, we consider a special case where there is no inflow of individuals from the infected class
with the sensitive strain to the infected class with the resistant strain. In this case, there is no evolution of
drug resistance due to treatment failure. Hence, ε = 1 and p3 = 0. It can also be seen that if Ts = 0, then p3

is also zero. Hence, we state the following:

Theorem 4. Assuming that treatment failure does not lead to drug resistance or treatment is completely absent,
then the coexistence equilibrium point is globally asymptotically stable where it exists.

Proof. To prove Theorem 4, we consider the following Lyapunov function:

Fe = G∗∗u∗∗
v∗∗p1

(
v− v∗∗ − v∗∗ ln

( v
v∗∗
))

+ G∗∗ u∗∗
p2w∗∗

(
w− w∗∗ − w∗∗ ln

( w
w∗∗
))

+ W∗∗z∗∗h∗∗
g∗∗

(
g− g∗∗ − g∗∗ ln

(
g

g∗∗

))
+ W∗∗ z∗∗

(
h− h∗∗ − h∗∗ ln

(
h

h∗∗

))
,

(30)

where W∗∗ = w∗∗ + v∗∗, G∗∗ = g∗∗ + h∗∗, z∗∗ = 1− g∗∗ − h∗∗, u∗∗ = 1− x∗∗ − y∗∗ −w∗∗ − v∗∗. Note that
under the hypothesis of Theorem 3, p3 = 0. After substituting the derivatives, we obtain:

dFe
dt = G∗∗u∗∗

v∗∗p1

(
1− v∗∗

v

)
(Gβ uξ1 − vp1) +

G∗∗ u∗∗
p2w∗∗

(
1− w∗∗

w

)
(ξ1uGβ1 − wp2)

+ W∗∗z∗∗h∗∗
g∗∗

(
1− g∗∗

g

)
(k1zWα1 − gψv) + W∗∗ z∗∗

(
1− h∗∗

h

)
(k1zα W − hψv) ,

(31)

where W = v + w, G = g + h, z = 1− g− h, u = 1− x− y− v−w, β1 = 1− β, α1 = 1− α. At equilibrium,
we substitute β = v∗∗ p1

G∗∗ u∗∗ ξ1
, β1 = w∗∗ p2

G∗∗ u∗∗ ξ1
, α = h∗∗ ψv

W∗∗ z∗∗ k1
, α1 = g∗∗ ψv

W∗∗ z∗∗ k1
in Equation (31), and after some

manipulations, we obtain:

dFe
dt =

(
− g

g∗∗ + 2− h
h∗∗

)
h∗∗W∗∗ z∗∗ ψv +

(
− h∗∗

h + 2− g∗∗
g

)
h∗∗ zWψv,

+ uG
(

2− w∗∗
w −

v∗∗
v

)
+
(
2− v

v∗∗ −
w

w∗∗
)

G∗∗ u∗∗.
(32)
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Further simplifications yield,

dFe
dt = −

(
W∗∗ z∗∗ g

g∗∗ + W∗∗ z∗∗ h
h∗∗ + zW h∗∗

h + zW g∗∗
g − 2 (zW + W∗∗ z∗∗)

)
h∗∗ψv,

−
(

uG w∗∗
w + uG v∗∗

v + G∗∗ u∗∗ v
v∗∗ + G∗∗ u∗∗ w

w∗∗ − 2 (uG + G∗∗ u∗∗)
)

.
(33)

We claim that
(

W∗∗ z∗∗ g
g∗∗ + W∗∗ z∗∗ h

h∗∗ + zW h∗∗
h + zW g∗∗

g − 2 (zW + W∗∗ z∗∗)
)
≥ 0. Note that the

expression can be written as x1x3 + x1x4 +
x2
x3

+ x2
x4
− 2 (x1 + x2) , where x1 = W∗∗ z∗∗, x2 = Wz, x3 =

g
g∗∗ , x4 = h

h∗∗ . Consider y = A − B where A, B ≥ 0 and real. The minimum value of y is −B and is
attained when A = 0. Let A = x1x3 + x1x4 +

x2
x3

+ x2
x4

B = 2 (x1 + x2) . Since x3, x4 are non-zero (at the
coexistence equilibrium point, the disease classes are non-zero). Therefore, A = 0 =⇒ x1 = x2 = 0. This
=⇒ −B = 0. Thus, the minimum value of x1x3 + x1x4 +

x2
x3

+ x2
x4
− 2 (x1 + x2) is zero. A similar argument

can be applied to the expression
(

uG w∗∗
w + uG v∗∗

v + G∗∗ u∗∗ v
v∗∗ + G∗∗ u∗∗ w

w∗∗ − 2 (uG + G∗∗ u∗∗)
)

. Hence:

(
W∗∗ z∗∗ g

g∗∗ + W∗∗ z∗∗ h
h∗∗ + zW h∗∗

h + zW g∗∗
g − 2 (zW + W∗∗ z∗∗)

)
≥ 0,(

uG w∗∗
w + uG v∗∗

v + G∗∗ u∗∗ v
v∗∗ + G∗∗ u∗∗ w

w∗∗ − 2 (uG + G∗∗ u∗∗)
)

≥ 0.
(34)

Thus, dFe
dt ≤ 0. It is easy to see that dFe

dt = 0 if and only if (v, w, x, y, g, h) = (v∗∗, w∗∗, x∗∗, y∗∗, g∗∗, h∗∗) . Thus,
the set Φ = {X ∈ Rn| dFe

dt (X) = 0} is the singleton (v∗∗, w∗∗, x∗∗, y∗∗, g∗∗, h∗∗) . Hence, Fe is a Lyapunov
function. This concludes the proof.

4. Numerical Simulations of the Model

4.1. Baseline Parameter Values

Apart from theoretical results obtained from the model analysis, simulating the model equations is
also important. However, finding suitable data for model simulation and sensitivity analysis is still a big
challenge without an appropriate answer. Following [9,18,19,26,27,35,38,50], we used parameter values
from published work in the literature to simulate and to perform sensitivity analysis of our model where
such information is found. In some cases, we assumed the values of some of the parameters as shown in
Table 3. The use of parameter values from many sources became necessary because we had not found a
single study that incorporated all our model parameters. For example, for rr and rs, we used their values
reported in [18] as baseline values. However, we had not found previous studies that conducted global
sensitivity analysis using these parameters. We estimated the parameter ranges by setting the lower values
to be 65% and upper values to be 135% of the corresponding baseline values. We used this procedure in
many instances, to estimate many parameter ranges, as shown in Table 3. In some cases, we used both
estimation and reported values to provide parameter ranges. For instance, the smallest value for ψv used
in the sensitivity analysis was estimated as 65% of the baseline. We obtained the upper value from the
report in [19]. The range for this parameter was also reported in [61] with the upper value being smaller
than the lowest value we were using. The reason for this choice is attributed to the fact we needed a
relatively higher recruitment rate to ensure that ψv − µv − µv3bγ > 0, which is a necessary condition for
sustaining the mosquito population. The mosquitoes’ mortality rate µv3bγ, due to the use of ITNs was
absent in the work of Chitnis et al. reported in [61]. Hence, a relatively smaller mosquito recruitment rate
can sustain the mosquito population. Tumwiine et al. [19] varied treatment efficacy in the range [0.01 0.61].
Hence, we arbitrarily picked 0.4, which is in that interval, to represent the baseline value for ε.
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Figure 2 presents the results for simulating the malaria model (15) using the initial condition
(v, w, x, y, g, h) = (0.15, 0.05, 0.01, 0.001, 0.2, 0.6), for 2000 days (a) with the baseline parameter values
shown in Table 3 and (b) with the same baseline values except that the treatment rate Ts was increased
to 0.75. Also shown on Figure 2 is the proportion of infected humans with resistant (dotted curve) and
sensitive malaria strains (solid curve). The results are consistent with the reports in [18,19].
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Figure 2. Numerical simulation of Model (15) showing the proportion of infected humans with both
sensitive and resistant strains using the initial condition (v, w, x, y, g, h) = (0.15, 0.05, 0.01, 0.001, 0.2, 0.6).
(a) With the baseline values in Table 3; (b) With the baseline values except Ts changed to 0.75.

From Figure 2, the population of the infected humans increases, reaches a maximum, and then falls.
Based on the current setting, the population of the infected humans with the sensitive strain will approach
zero as time progresses, and the population of humans with the resistant strain will persist. Comparing
Figure 2a and 2b, the results indicate that increasing treatment without changing its efficacy tends to
increase the peak value of the proportion of individuals with the resistant strain from 0.8446 to 0.8876
and decreases the peak value of the proportion of individuals with the sensitive strain from 0.4718 to
0.3846. From this finding, we can see that the relative increase in the proportion of infected humans with
the resistant strain is about 5% with the corresponding decrease in the proportion of humans with the
sensitive strain being about 18.5%.

5. Intervention Strategies and Global Sensitivity Analysis

The use of ITNs reduces the exposure of humans to mosquitoes, hence leading to reduction in
the transmission of the parasites from infectious humans to susceptible mosquitoes and vice versa.
Treatment reduces the number of infected individuals by reducing the parasite load of the treated humans,
and hence, the transmission probability is also reduced. These strategies have the effect of reducing
malaria transmission in a population. Tumwiine et al. [19] reported that in the presence of a drug-resistant
population, treatment has a negative impact on the reduction of malaria transmission. In this section,
we evaluate the impact of ITNs and treatment on the reproduction number by determining necessary
and sufficient conditions for the effective reproduction number in our model to be smaller than the basic
reproduction number.
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5.1. Analytic Intervention Strategies

We define the reproduction numbers, in the absence of treatment and ITN (R00
e f f ), (see Equation (21)),

in the absence of treatment and the presence of ITN (R01
e f f ), and in the presence of treatment and the

absence of ITN (R10
e f f ), respectively, as:

R01
e f f =

ξ1k1 (1− β)

(rr + δh + ψh)ψv
+

ξ1k1β

(rs + δh + ψh)ψv
, (35)

R10
e f f =

ξ2k1 (1− β)

(rr + δh + ψh)ψv
+

ξ2k1β (rr + δh + ψh + Ts (1− ε))

(rr + δh + ψh) (rs + δh + Ts + ψh)ψv
.

Using Equations (19) and (35), we get:

R10
e f f − R00

e f f = − ξ2k1β Ts (ε δh + ε ψh + ε rs + rr − rs)

(rr + δh + ψh) (rs + δh + Ts + ψh)ψv (rs + δh + ψh)
,

Re f f − R01
e f f = − ξ1k1β Ts (ε δh + ε ψh + ε rs + rr − rs)

(rr + δh + ψh) (rs + δh + Ts + ψh)ψv (rs + δh + ψh)
, (36)

R01
e f f − R00

e f f = − k1 (β rr − β rs + δh + ψh + rs) (ξ2 − ξ1)

(rr + δh + ψh)ψv (rs + δh + ψh)
,

Re f f − R10
e f f = − k1 (ξ2 − ξ1) (−Ts (β ε− 1) + β rr − rs (−1 + β) + δh + ψh)

(rr + δh + ψh) (rs + δh + Ts + ψh)ψv
.

Note that the last two equations of (36) are strictly negative. The remaining equations are negative
whenever rs−rr

rs+δh+ψh
< ε. Hence, the following results are obtained:

Theorem 5. If ε > rs−rr
rs+δh+ψh

, then Re f f < R01
e f f < R00

e f f and R10
e f f < R00

e f f .

The implication of Theorem 5 is that using any one of the two intervention strategies will have a
positive impact on the reduction of the spread of malaria and that using both intervention parameters has
the most positive impact. Furthermore, the basic reproduction number is guaranteed to be bigger than the
reproduction numbers in the presence of one or two intervention parameters whenever the ratio of the
rates at which humans with sensitive malaria strain acquire immunity to that at which humans with the
resistant strain acquire immunity is less than unity. We state this as a Corollary to Theorem 5.

Corollary 1. If rs
rr
≤ 1, then Re f f < R01

e f f < R00
e f f and R10

e f f < R00
e f f are satisfied.

The new insight that can be derived here is that in the presence of antimalarial drug resistance,
treatment can have a positive impact on malaria spread. This is contrary to the report in [19].

5.2. Numerical Intervention Strategies and Global Sensitivity Analysis

5.2.1. Sensitivity Analysis Using Partial Rank Correlation Coefficients

In epidemic modeling, many parameters are shrouded in uncertainty, which might be due to erroneous
parameter estimation and uncertainty in the exact parameter values. For these reasons, it is important
to conduct sampling and sensitivity analysis to determine parameters that have a substantial influence
on model output. The Sampling and Sensitivity Analysis Tools (SaSAT) is a software tool developed for
such purposes (see [62]). In our model, the effective reproduction number was regulated by 20 various
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malaria-related epidemiological parameters whose values varied from other studies. We assigned baseline
values and ranges for each of the model parameters as discussed in Section 4.1.

Table 3. Parameters, their baseline values, ranges, and distribution type for sensitivity analysis.

Parameter Baseline Value/Source Range/Source Distribution for Sensitivity Analysis

ψh 9.3614 × 10−5, [38] [6.0849, 12.17] × 10−5, estimated Uniform
ψv 0.4478, [38] [0.2911, 0.7], estimated, [19] Uniform
Ts 0.35, [19] [0.2275, 0.455], estimated Uniform
b1 0.75, [19] [0.1, 0.8], assumed Uniform
b2 0.5342, [38] [0.072, 0.64], [56] Uniform
ρ 7, assumed [2, 8], [38] Uniform
b 0.53, [56] [0.1325, 0.6625], estimated Triangular, peak 0.5

βmax 0.6334, [38] [0.1, 1], [56] Uniform
βmin 0.0696, [38] [0, 0.1], [56] Uniform

ε 0.4, assumed [0.01, 0.61], [19] Uniform
γ 0.5, assumed [0.2, 1], [58] Uniform
αs 0.0017, [19] [0.001105, 0.00221], estimated Uniform
αr 0.0017, [19] [0.001105, 0.00221], estimated Triangular, peak 0.0017
α 0.3, assumed [0.195, 0.39], estimated Uniform
rr 0.0078, [18] [0.00507, 0.01014], estimated Triangular, peak 0.0078
rs 0.0078, [18] [0.00507, 0.01014], estimated Uniform
β 0.7, [19] [0.455, 0.91], estimated Uniform
δh 1× 10−3, [58] [0.00065, 0.0013], estimated Uniform

µh2 1 × 10−7, [24] [6.5, 13] × 10−8, estimated Uniform
µh 4.212 × 10−5, [24] [2.74, 5.48] × 10−5, estimated Uniform
µv 0.1429, [24] [0.092885, 0.18577], estimated Uniform
µv2 2.28 × 10−4, [24] [1.48, 2.96] × 10−4, estimated Uniform
µv3 0.0995, [38] [0.064675, 0.12935], estimated Uniform

We then assigned probability distributions to each of the parameters as uniform or triangular, in line
with the suggestion of [62]. We used Latin hypercube sampling (LHS) to draw 1000 samples for each of the
parameters resulting in a 1000 by 20 matrix, where each row defines a unique parameter set. The parameter
sets were used to calculate the reproduction numbers, and then, the partial rank correlation coefficient
(PRCC) was used to characterize the statistical contribution of each parameter to the reproduction numbers.
The tornado plot of the results is depicted in Figures 3–5.

The top five most sensitive parameters affecting Rr were βmin, γ, b1, b2, and β, in that order, as shown
in Figure 3. To reduce the value of Rr, we need to reduce βmin, b1, and b2 or increase the values of γ and
β. It is worth noting that the simultaneous decrease of the value of the parameters with positive PRCC
values together with increasing the values of parameters with negative PRCC values will produce a faster
reduction of the value of Rr. One way to reduce the probabilities of transmission (b1 and b2) is to reduce
human-mosquito contacts by using ITNs or LLIN. Increasing γ is synonymous with making bed-nets
more efficient. This may require regular re-treatment and/or replacing bed-nets as soon as the end of their
useful duration is reached; while increasing β implies that the proportion of susceptible humans with
the sensitive strain should be very high. In other words, there is a need to eliminate the resistant strain
completely. One way to make bed-nets more efficient might be to move away from conventional ITNs
to LLINs. For Rs, the top five parameters in terms of sensitivities are βmin, γ, b1, b2, and b, in that order,
as shown in Figure 4. Similar observations can be made as in Figure 3. However, the order of importance
of the parameters is slightly different. Here, the proportion of ITN usage appears as one of the top five
parameters with high PRCC magnitudes. The implication of this is that in order to reduce the reproduction
number Rs, we need to ensure that the proportion of humans using ITNs should be as high as possible.
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The effective reproduction number Re f f combines all the parameters that are in both Rr and Rs. Therefore,
it is important to calculate PRCC values of parameters that constitute Re f f . The results of this calculation
are shown in Figure 5.
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Figure 3. Tornado plot showing the sensitivities of the model parameters affecting the reproduction number
for resistant strain Rr.
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Figure 4. Tornado plot showing the sensitivities of the model parameters affecting the reproduction number
for sensitive strain Rs.
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The description of Figure 3 can be extended to Figure 5 with a slight modification. The top five
most sensitive parameters affecting Re f f are βmin, γ, b2, b1, and ψh. Here, ψh appears among the top five
parameters. Increasing the value of this parameter can lead to a decrease in the value of Re f f .
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Figure 5. Tornado plot showing the sensitivities of the model parameters affecting the effective
reproduction number.

Surprisingly, treatment does not appear as part of the top five parameters. This might be attributed
to the range of treatment rates used in the study and the fact that only infected humans with sensitive
strain are being treated. However, the results further highlighted the importance of ITN and its efficacy
towards malaria control. Increasing the efficacy will bring about a reduction in the values of Re f f , Rr, Rs,
and hence, the scourge of malaria. It is also clear from the result that ITN usage has a bigger impact than
treatment in terms of the reduction of malaria spread, meaning that prevention is better than the cure.

5.2.2. Numerical Intervention Strategies

By calculating Re f f using the 1000 parameter sets discussed in Section 5.2.1, we found that only 210
of these sets gave the value of Re f f < 1; the remaining were all bigger than one.

The question one may like to ask is: How do we use the intervention parameters (ε, γ, b, Ts) to reduce
the values of Re f f ? To address this question, we used the 790 parameter sets that gave the values of
Re f f > 1, while keeping the intervention parameters at some predefined values as shown in Table 4.

Table 4. Parameter values used for intervention strategies.

Parameter ε γ b Ts

A 0.75 0.75 0.75 0.75
B 0.95 0.95 0.95 0.95
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For example, (ε, γ, b, Ts) = (0.75, 0.75, 0.75, 0.75) is denoted by AAAA, while (ε, γ, b, Ts) =

(0.95, 0.95, 0.95, 0.95) is denoted by BBBB, (ε, γ, b, Ts) = (0.75, 0.95, 0.75, 0.95) is denoted by ABAB, etc.
Altogether, 16 different intervention strategies were performed by permuting the values of ε, γ, b, Ts using
values shown in Table 4. We then calculated the relative effectiveness of a strategy in decreasing reproduction
numbers e f f =

Reproduction number before intervention -Reproduction number after intervention
Reproduction number before intervention × 100. Therefore, if the

reproduction number before intervention is very close to the reproduction number after intervention, e f f
will be close to zero. The best strategy is one with the highest value of eff. The results of these calculations
for Rs and e f f are depicted as box and whiskers plots and presented in Figures 6 and 7, respectively.

55

60

65

70

75

80

85

90

95

100

AAAA AAAB AABA ABAA BAAA BBBB BBBA BBAB BABB ABBB AABB BABA BBAA ABBA BAAB ABAB

Figure 6. Box and whiskers plot showing the results of various intervention strategies on the reproduction
number for humans with the sensitive strain Rs.

From Figure 6, we observe that for the strategies BBBB, BBBA, and BABB, the boxes shifted up and
were smaller compared to the others. These strategies had the effect of reducing the mean values Rs in the
range 91–98.6% of the initial values. On the other hand, AAAA and AAAB appeared to have comparatively
the least effectiveness. These have larger boxes, larger whiskers, and larger outliers. By comparing BAAA
and ABAA, then ABBA and ABAB, one may conclude that the order in which the intervention parameters
are taken is important. The reason for this conclusion is that there are three A’s and one B in different
orders in each one of these. However, BAAA is better than ABAA, which is better than AABA, which is
better than AAAB. Furthermore, BAAA is better than ABBB. In other words, it is not just high intervention
parameter values in the combinations that matter, the appearance of B in the first position also counts.
General observations of Figure 6 indicate that strategies starting with the letter B followed by strings of
B’s or A’s or their combinations are better. The public health implication of these observations is that
interventions starting with high treatment efficacy (ε = 0.95) should commence first before varying other
intervention parameters. Overall, the best strategy is marginally BBBB. This means treatment should be
95%, bed-nets should stay 95% effective, 95% of the population should be using bed-nets, and treating 95%
malaria cases. If this strategy can be adopted, malaria can be eradicated. Note that our suggestion for 95%
ITN coverage is in line with the WHO’s recommendation, whose goal is universal coverage (see [63]).
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Figure 7. Box and whiskers plot showing the results of various intervention strategies on the effective
reproduction number Re f f .

From Figure 7, it is clear that there is no unique best intervention strategy. The best intervention
strategy should involve one of the following; BBBB, BBBA, ABBB and ABBA, while AAAA, AAAB, BAAA,
and BAAB have the least effectiveness. These strategies have the effects of reducing the mean values Re f f
in the range 91–93.8% of the initial values. The reason why the interventions are more effective on Rs than
Re f f could be attributed to the fact that two of the intervention parameters ε, Ts only affect Rs, but not
Rr. Generally, it can be observed that all the intervention strategies conducted have positive impacts on
reducing the values of the reproduction numbers.

6. Discussion

Mathematical models can provide insight into several aspects of the control and spread of malaria
in the presence of drug-resistant parasites. In this study, we modeled the transmission and spread
of malaria by considering human populations with sensitive and resistant strains of malaria parasites
within a community. Our biting rate function indicated that even if the entire population used bed-nets,
malaria transmission could only be reduced to a certain minimum value. This is a realistic result because
bed-nets are normally used at night, and early mosquitoes bites when people are resting outdoors are
reported in some studies such as [64,65]. This finding suggests that outdoor biting has a role in malaria
transmission. The question of whether or not scaling removes the possibility of backward bifurcation
cannot be answered with certainty. This is because at least two different studies that utilized similar
scaling as we have done in this work finished with different outcomes in terms of backward bifurcation.
For example, in the work of Ngwa and Shu [27], the model did not exhibit backward bifurcation; however,
backward bifurcation was reported in the work of Gimba and Bala [38]. Despite these discrepancies, it is
reasonable to state that since there is a possibility of backward bifurcation in Model (3), which no longer
exists in Model (15), one can say that scaling removes backward bifurcation in this work. Unlike the
work of Tumwiine et al. [19], our model shows that even in the presence of drug resistance, treatment
can have a positive impact on the control of malaria. The sensitivity analysis results revealed that if
massive interventions strategies through significantly improving treatment efficacy, ITN use, and its
efficacy are embarked upon, the effective reproduction number can be reduced to below unity. This implies
that malaria can be eradicated. The current study agrees with the work of many authors that reported
a decrease in malaria transmissions when ITN use is scaled up (see, for example, [7,66]). However,
the observational study in Haiti by Steinhardt et al. [65] indicated that mass distribution of ITNs did
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not lead to a reduction in clinical malaria. This might be explained by the fact that ITN possession does
not necessarily translate into use. This means that human behavior can affect interventions; see also [57].
The public health implication of the sensitivity analysis conducted is that the parameters with the most
significant influence on the reproduction numbers can be targeted in an effort to eradicate malaria from
a community. Other parameters in our model that can be targeted for interventions are the vector to
human ratio (ρ1) and mosquito death rate. A reduction in these parameters can lead to a reduction in the
reproduction numbers. The appearance of (ρ1) as one of the top six most sensitive parameters is quite
significant because it supports the work of White et al. reported in [30]. From Figure 6, we can infer that any
strategy that starts with high treatment efficacy (ε = 0.95) is relatively better than any other one that does
not. The implication of this is that, in a region where malaria is endemic, it is better to establish treatment
that is 95% effective first, then follow it up with other intervention measures. However, this should not
be seen to contradict the results of our PRCC calculations in which we stated that treatment is not in the
top five most sensitive parameters. This can be explained by the range of treatment rates used in the
sensitivity analysis (<0.455). Since reproduction numbers are measures of the propagation of malaria, the
new insight obtained from our sensitivity analysis can help policy makers in designing effective control for
malaria transmission and, hence, its eradication. One of the conclusions reported in [29] was that the use
of medication accelerates resistance in parasite populations. Our simulation results depicted in Figure 2
support this finding because as the treatment rate was increased from 0.35–0.75, the proportion of infected
humans with the resistant strain also increased. Thus, treatment has both desirable and undesirable
effects. This might mean that treatment could be described as a double-aged sword in the presence of
drug resistance. One of the findings reported in [19] indicated that in the presence of drug resistance,
treatment has a negative impact on the reduction of the spread of malaria. On the basis of this finding,
what other alternatives are available once malaria cases are established? One suggestion from [29] is
that an optimum number of patients to be treated should be found so as to prevent the outbreak of drug
resistance. Our findings outlined in Theorem 5 and Corollary 1 provide threshold conditions for efficacy
beyond which treatment has a positive impact even in the presence of drug resistance. The important
implication of this finding is that it will provide policy makers with clear treatment efficacy to target so as
to control malaria. The results from the box plots depicted in Figures 6 and 7 show that malaria can be
controlled if bed-net coverage and treatment can be scaled up to about 95%. Unfortunately, this could be
quite difficult in many African countries due to poverty, poor public health policy, and poor drug quality
(see [29]). From the results of our PRCC calculations, we found that the top five parameters that have the
most influence on the disease transmission dynamics are βmin, γ, b1, b2, and ψh. These do not fully support
the findings of Okunneye and Gumel [67], which showed that the top three parameters of their model
were the mosquito carrying capacity, transmission probability per contact for susceptible mosquitoes, and
human recovery rate. In our model, the mosquito carrying capacity was made up of many parameters
and so did not appear explicit in the PRCC calculations. It is to be understood that any one of the malaria
eradication strategies depicted in Figure 7 is effective at reducing the reproduction number drastically.
This means that setting (ε, γ, b, Ts) = (0.75, 0.75, 0.75, 0.75) is also an effective strategy. This is not far
away from the finding of Ngonghala et al. [56] that up to 60% ITN coverage might be required to control
malaria. High ITN coverage (75% or more) will require mass distribution of nets, which require insecticide
treatment every 6–12 months, inline with the recommendations of the World Health Organization [63].
An effective intervention campaign can be successful when ITN coverage through mass distribution is
scaled up as reported in [68]. However, embarking on mass distribution is not cost effective, as suggested
by [69]. The LLIN that might be more cost effective can form an alternative form of personal protection as
opposed to conventional nets.
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7. Conclusions

In this paper, we modeled the dynamics of a two-strain malaria transmission model by incorporating
individuals infected with drug-sensitive and drug-resistant parasites in the human population. Using the
next-generation operator, we obtained the associated reproduction number for each strain. We showed that
if the sum of reproduction numbers is less than unity, the disease-free equilibrium is globally asymptotically
stable. We also showed that in a situation where treatment is 100% effective or is completely absent, the
coexistence equilibrium point is globally asymptotically stable where it exists. The global uncertainty
and sensitivity analysis conducted showed that if about 95% of malaria cases can be treated with fewer
than 5% treatment failure in a population with 95% ITN usage that remains 95% effective, malaria can
be controlled. Our analytic intervention calculations on the effective reproduction numbers show that it
is more effective to use a combination of strategies in controlling malaria than using only one. We also
find that the basic reproduction number is guaranteed to be bigger than the reproduction numbers in the
presence of one or two intervention parameters whenever the ratio of the rates at which humans with
the sensitive malaria strain acquire immunity to that at which humans with the resistant strain acquire
immunity is less than unity. We find that when using a combination of intervention strategies, the order in
which the intervention parameters are taken is important.
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