
Mathematical 

and Computational 

Applications

Article

Minimizing an Insurer’s Ultimate Ruin Probability
by Reinsurance and Investments

Christian Kasumo

Department of Science and Mathematics, School of Science, Engineering and Technology,
Mulungushi University, P.O. Box 80415 Kabwe, Zambia; ckasumo@mu.ac.zm; Tel.: +260-977-794-963

Received: 9 January 2019; Accepted: 28 January 2019; Published: 2 February 2019
����������
�������

Abstract: In this paper, we work with a diffusion-perturbed risk model comprising a surplus
generating process and an investment return process. The investment return process is of standard
a Black–Scholes type, that is, it comprises a single risk-free asset that earns interest at a constant
rate and a single risky asset whose price process is modelled by a geometric Brownian motion.
Additionally, the company is allowed to purchase noncheap proportional reinsurance priced via
the expected value principle. Using the Hamilton–Jacobi–Bellman (HJB) approach, we derive
a second-order Volterra integrodifferential equation which we transform into a linear Volterra integral
equation of the second kind. We proceed to solve this integral equation numerically using the
block-by-block method for the optimal reinsurance retention level that minimizes the ultimate
ruin probability. The numerical results based on light- and heavy-tailed individual claim amount
distributions show that proportional reinsurance and investments play a vital role in enhancing the
survival of insurance companies. But the ruin probability exhibits sensitivity to the volatility of the
stock price.

Keywords: ruin probability; jump-diffusion; HJB equation; Volterra equation; block-by-block method;
proportional reinsurance; investments

1. Introduction

The problem of minimizing the ruin probability, when the insurance company is allowed to invest
part of its surplus in the money and stock markets and to reduce its risk by entering into proportional
reinsurance treaties, has been extensively studied in different forms since the ground-breaking work of
Bachelier [1]. Liang and Guo [2] found that the minimal ruin probability maximizes the adjustment
coefficient γ under proportional reinsurance and that it satisfies the Lundberg inequality ψ(u) ≤ e−γu.
Wang [3] considered the case of multiple risky assets in an optimal investment problem for an insurer
whose surplus evolves according to a jump-diffusion process, while Liang and Guo [4] considered the
optimal reinsurance problem by combining quota-share and excess-of-loss reinsurance. The authors
derived explicit expressions for the value function and the optimal strategies.

Kasozi et al. [5] studied the problem of controlling ultimate ruin probability by quota-share
reinsurance arrangements for an insurer that is allowed to invest part of the surplus in a risk-free and
risky asset. They found that, for selected parameter values, the optimal quota-share retention lies in the
interval (0.2, 0.4), i.e., the company should cede between 60% and 80% of its risks to a reinsurer. This
study also found that the ruin probabilities increase when stock prices become more volatile. However,
while [5] assumed cheap reinsurance, in this paper we use noncheap reinsurance. Zhou et al. [6]
investigated the optimal proportional reinsurance and investment problem for a jump-diffusion
surplus process in a constant elasticity of variance (CEV) stock market.

Liu and Yang [7] revisited the model in Hipp and Plum [8] by incorporating a risk-free interest
rate. Since they could not obtain closed-form solutions in this case, they provided numerical results
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for optimal strategies for maximizing the survival probability under different claim-size distribution
assumptions. Schmidli [9] proved the existence and uniqueness of a solution of the ruin probability
minimization problem in a model compounded by investment and dynamic proportional reinsurance
for the case λ > 0 and σ = 0, i.e., when there is no diffusion and when F has a bounded density. But
while [9] uses proportional reinsurance in minimizing ruin probabilities in the Cramér–Lundberg
model, this paper considers proportional reinsurance and investments of Black–Scholes type in the
diffusion-perturbed model.

With the objective of determining the optimal investment and reinsurance strategies, Liang and
Young [10] studied the problem of minimizing the probability of ruin in the presence of per-loss
reinsurance for an insurance company whose risk process follows a compound Poisson process or its
diffusion approximation. Assuming that the financial market in which the company invests follows
the Black–Scholes model, and under minimal assumptions regarding admissible reinsurance forms,
ref. [10] showed that the optimal per-loss reinsurance policy is excess-of-loss reinsurance. They found
that for cheap reinsurance under both models, full reinsurance is never optimal, a result consistent
with Mossin [11]. While under the compound Poisson model it is optimal not to buy reinsurance when
the surplus is sufficiently low, for the diffusion approximation model the insurer always buys some
amount of reinsurance but the optimal retention is inversely proportional to the surplus. This is also
true of the optimal investment level as it decreases with an increase in the surplus. However, ref. [10]
concerned itself with excess-of-loss reinsurance while this paper explores optimality of noncheap
proportional reinsurance and employs different numerical methods from those of [10].

Zhu et al. [12] studied the optimal proportional reinsurance and investment problem in a general
jump-diffusion financial market. With the objective of maximizing the expected exponential utility
of terminal wealth, they added a general jump to the price of the risky asset, so that the financial
market follows a general jump-diffusion model. They also incorporated a reasonable constraint on the
proportional reinsurance strategy, thus making the model more reasonable and realistic, and derived
closed-form expressions for the value function and optimal strategy. Glineur and Walhin [13] revisited
de Finetti’s retention problem for proportional reinsurance by applying the convex optimization
method. The authors extended the result to variable quota-share and surplus reinsurance with table of
lines and showed, by means of a numerical example, that neither variable quota share reinsurance nor
surplus reinsurance with table of lines may be considered as optimal reinsurance structures. They were
able to determine the optimal quota-share and surplus reinsurance strategies. However, the numerical
example also led them to the conclusion that there exists no general rule asserting superiority of either
quota-share-type or surplus-type reinsurance above the other.

An insurance company is said to have experienced ruin when its surplus becomes negative, thus
making it impossible for the company to meet its financial obligations (e.g., claims). The time of ruin is
the first time that the cedent’s surplus process enters (−∞, 0) and the associated probability is referred
to as the ultimate ruin probability. Ruin is a technical term which does not necessarily mean that the
company is bankrupt, but rather that bankruptcy is at hand and that the company should therefore
be prompted to take action to improve its solvency status. Thus, insurance companies customarily
take precautions to avoid ruin. These precautions are referred to as control variables and include
investments, capital injections or refinancing, portfolio selection, volume control through the setting of
premiums and reinsurance arrangements, to mention but a few. This study focuses on reinsurance as
a risk control mechanism for a company that also invests part of its surplus in risk-free and risky assets.

According to Jang and Kim [14], insurance companies generally face two sources of risk, viz.,
an insolvency risk that arises from unexpectedly large insurance claims, and a market risk that arises
from risky investments in financial markets. Reinsurance can help mitigate the insolvency risk, while
investing in some risk-free assets such as short-term bonds and money market funds could reduce
the market risk. Reinsurance is the transfer of risk from a direct insurer (the cedent) to a second
insurance carrier (the reinsurer). It serves the purpose of offering protection to cedents against very
large individual claims or fluctuations in their aggregate portfolio of risks, as well as diversifying
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the financial losses caused by it. Reinsurance therefore allows the cedent to pass on some of its
risk to the reinsurer but at the expense of a portion of the aggregate premiums receivable from the
policyholders [15].

Mikosch [16] has pointed out that reinsurance treaties are of two types; random walk type
reinsurance which includes proportional, excess-of-loss and stop-loss reinsurance, and extreme value
type reinsurance which includes the largest claims and ECOMOR reinsurance (excédent du coût
moyen relatif or ‘excess of the average cost’). Proportional, or pro rata, reinsurance is a common
form of reinsurance for claims of ‘moderate’ size, and requires the reinsurer to cover a fraction of
each claim equal to the fraction of total premiums ceded to the reinsurer. Proportional reinsurance
treaties are traditionally subdivided into two forms; quota-share and surplus reinsurance. Quota-share
reinsurance is a common type of proportional reinsurance in which the cedent and the reinsurer
agree to share claims and premiums in the same proportion which remains constant throughout the
portfolio [17]. With surplus reinsurance the reinsurer agrees to accept an individual risk with sum
insured in excess of the direct retention limit set by the cedent [18].

It has been noted in [19] that proportional reinsurance is the easiest way of covering an insurance
portfolio. This paper focuses on quota-share (QS) proportional reinsurance due to its simplicity, but
other forms of reinsurance could also be used. In addition, the reinsurer pays a ‘ceding commission’
to the cedent to compensate for the costs of underwriting the ceded business. This commission is
ignored in this study. Thus, if a cedent enters into a quota-share reinsurance treaty with a reinsurer,
then they will share claims and premiums according to a retention level k ∈ [0, 1]. For every claim X
that occurs at the time where the surplus prior to the claim payment is u, the cedent pays kX while the
reinsurer pays (1− k)X. Similarly, for every premium amount c received by the insurer, cR = (1− k)c
is paid to the reinsurer and ck = c− cR is retained by the cedent. Since the factor (1− k) represents
the proportion of claims or premiums ceded to the reinsurer, it is called the cession level. It should be
noted that for cheap reinsurance ck = kc.

It has been argued in the literature that the Cramér–Lundberg model is somewhat inadequate for
modelling real-world insurance processes (see, e.g., [20,21]). The limitations of this model quickly led
to its generalizations (e.g., in [22–24]), even at the cost of tractability. The more complex the model
gets, the more difficult its analysis and the drawing of conclusions becomes. In this paper, we make
generalizations to the well known Cramér–Lundberg model by adding a diffusion term and also
allowing the company to invest in the financial markets with returns of a Black–Scholes type. Thus,
this paper focuses on ultimate ruin and considers proportional reinsurance coupled with investments
as mechanisms for reducing the insurer’s ultimate ruin probability. Reinsurance can protect insurers
against potentially large losses, while investment of insurance premiums enables insurers to achieve
certain management objectives, some of the most common of which are the minimization of the ruin
probability, maximization of expected utility and mean-variance criteria. Li et al. [25] have pointed
out that insurance companies commonly employ integrated reinsurance and investment strategies
to increase their underwriting capacity, stabilize underwriting results, protect themselves against
catastrophic losses, and achieve financial growth.

The models studied in this paper result in Volterra integral equations of the second kind (VIE-2s).
As Press et al. [26] have pointed out, there is general consensus that the block-by-block method, first
proposed by Young [27], is the best of the higher order methods for solving VIE-2s. The block-by-block
methods are essentially extrapolation procedures which produce a block of values at a time. They are
advantageous over linear multistep and step-by-step methods in that they can be of higher order and
still be self-starting. Apart from not requiring special starting procedures or values, block-by-block
methods have a simple structure, allow for easy switching of step-size and have the ability to compute
several values of the unknown function at the same time [28,29]. In addition, the block-by-block
method is chosen in this paper over such methods as saddlepoint approximation, importance sampling
simulation, upper and lower bounds, Fast-Fourier Transform (FFT) and diagonally implicit multistep
block [30–32] because it is a fourth-order method while most of the other methods are of order less than
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four. In fact, some of the methods mentioned above are used for directly computing ruin probabilities
and not for solving integrodifferential or integral equations.

Other methods have been used to solve integrodifferential equations arising in engineering
such as the local Galerkin integral equation and thin plate spline collocation methods for solving
second-order Volterra integrodifferential equations (VIDEs) with time-periodic coefficients [33,34].
Both of these methods are meshless and therefore do not require any background interpolation. As for
the collocation method proposed by Cardone et al. [35], although it has the advantages of variable
step-size implementation, high order of convergence, strong stability and a high degree of flexibility,
it suffers from the order-reduction phenomenon when applied to stiff problems since it does not have
a uniform order of convergence.

In the literature, two-, three- and four-block block-by-block methods have been used to solve
Volterra integral equations (e.g., [36] for non-linear VIE-2s, [37] for a system of linear VIE-2s). More
recently, Kasozi and Paulsen [38] used the two-block block-by-block method to study the flow of
dividends under a constant interest force. They derived a linear VIE-2 and applied a fourth-order
block by-block method of Paulsen et al. [39] in conjunction with Simpson’s rule to solve the Volterra
integral equation for the optimal dividend barrier. In another study, Kasozi and Paulsen [40] applied
a fourth-order block-by-block method to the numerical solution of the Volterra integral equation (VIE)
for ultimate ruin in the Cramér–Lundberg model compounded by a constant force of interest. More
pertinent literature on the block-by-block method is available, for example, in [41,42].

The remainder of the paper is organized as follows. In Section 2, we present the models to be
studied and the underlying assumptions. In Section 3, we give the Hamilton–Jacobi–Bellman (HJB)
equation and verification theorems for the ruin probabilities under proportional reinsurance, as well as
the corresponding Volterra integrodifferential and integral equations. Section 4 contains a presentation
of numerical results and examples based on light- and heavy-tailed individual claim-size distributions.
Finally, in Section 5 we give some concluding remarks and possible extensions to this work.

2. The Models

To give a rigorous mathematical formulation of the problem, we assumed that all stochastic
quantities are defined on a complete filtered probability space (Ω,F , {Ft}t∈R+ ,P) satisfying the
usual conditions, i.e., the filtration {Ft}t∈R+ , which represents the information available at time t
and forms the basis for all decision-making, is right-continuous and P-complete. Right-continuity
is necessary for ensuring that the ruin time defined later in this section is a stopping time. The risk
process considered in this paper is made up of two important processes; the insurance process and the
investment-generating process. In the absence of reinsurance, the insurance process {Pt}t∈R+ is given
by the diffusion-perturbed model

Pt = ct + σ1W1,t − St, t ≥ 0, (1)

where the process St, defined as

St =

{
∑Nt

i=1 Xi if Nt > 0
0 if Nt = 0

,

is a compound Poisson process representing the aggregate claims made by policyholders. Here, the
premiums are assumed to be calculated according to the expected value premium principle and to
be collected continuously over time at a constant rate c = (1 + η)λµ > 0, where η > 0 is the relative
safety loading of the insurer. W1 is a one-dimensional standard Brownian motion independent of the
compound Poisson process St, {Nt} is a homogeneous Poisson process with constant intensity λ and
the claim sizes {Xi}i∈N are a sequence of strictly positive i.i.d. random variables. We assumed
that the processes {Xi}i∈N, {Nt}t∈R+ and {W1,t}t∈R+ were mutually independent. We denoted
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by F the distribution function of Xi, by µ = E[Xi] its first moment and by MX(t) = E
[
etXi
]

its
moment-generating function. We assumed that F(0) = 0 and that at least one of σ1 or λ was non-zero.

The diffusion term σ1W1 in the basic model (1) has been interpreted in a two-fold manner in the
literature. On the one hand, σ1W1 could be understood as standing for the uncertainty or random
fluctuations associated with the insurance process at time t (the U-S case). This means that the
aggregate claims up to time t are given by the compound Poisson process St. This is the interpretation
assumed in this paper. On the other hand, σ1W1 could represent the additional small claims which
account for uncertainty associated with the insurance market or the economic environment (the A-C
case), so that the aggregate claims process is St − σ1W1,t (see, e.g., [6]). It should be noted that, given
an initial surplus u, when there is no volatility in the surplus and claim amounts (i.e., when σ1 = 0),
Equation (1) becomes the well-known classical risk process (or the Cramér–Lundberg model).

Given that the insurer controls its insurance risk by taking QS proportional reinsurance at
a retention level k ∈ [0, 1], the insurance process in the presence of QS reinsurance is now

Pk
t = ckt + kσ1W1,t − kSt (2)

with dynamics
dPk

t = ckdt + kσ1dW1,t − kdSt. (3)

If k = 0 then there is full reinsurance, i.e., the entire portfolio of risks is ceded to the reinsurer,
whereas if k = 1 then there is no reinsurance. The case k = 1 is precisely the model considered
in [39,43]. In this study, we assumed noncheap reinsurance, meaning that the reinsurer used a higher
safety loading than the insurer. Otherwise, the insurance company can take full reinsurance and
receive a positive return without any risk, which is undesirable from the reinsurer’s standpoint, as was
demonstrated in [44]. Thus, if cR = (1− k)(1 + θ)λµ is the reinsurance premium to be paid for the QS
reinsurance, then the insurance premium rate is ck = c− cR = [k(1+ θ)− (θ− η)]λµ, where θ ∈ (η, ∞)

is the reinsurer’s safety loading. In order for the net profit condition (NPC) to be fulfilled, that is,

[k(1 + θ)− (θ − η)]λµ− kλµ > 0,

we need

k > k = 1− η

θ
, (4)

otherwise ruin is certain for any initial capital u > 0. Note that in noncheap reinsurance the fraction
of the premiums diverted to the reinsurer is larger than that of each claim covered by the reinsurer.
The classical risk process with noncheap reinsurance was also studied by, among others, Ma et al. [45]
who obtained the minimal probability of ruin as well as the optimal proportional reinsurance strategy
using the dynamic programming approach, while cheap reinsurance (i.e., θ = η) was considered in
Schmidli [46] who allowed for investment in a risky asset and obtained, by means of an HJB equation,
the optimal reinsurance and investment strategies for minimizing the ultimate ruin probability.

Suppose the insurer invests part of its surplus, into say, a risk-free asset (a bond) and a risky asset
(stocks) as in [7]. Let the return on investments process be:

Rt = rt + σ2W2,t, t ≥ 0, R0 = 0, (5)

where r is the risk-free interest rate, so that Rt = rt implies that one unit invested now will be worth
ert at time t; W2 is another one-dimensional Brownian motion independent of the surplus-generating
process P and σ2 is the volatility of the stock price, so that the diffusion term σ2W2 accounts for random
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fluctuations in the investment returns. Equation (5) is actually the famous Black–Scholes option pricing
formula according to which the price of a stock is assumed to follow the stochastic differential equation

Yt = Y0 +
∫ t

0
YsdRs, (6)

where Y0 is the stock price at t = 0. The process Y is a geometric Brownian motion. The solution to (6)
is the value of the stock at time t and is given by Yt = Y0 exp{(r− 1

2 σ2
2 )t + σ2W2,t}.

The risk process is therefore made up of a combination of the surplus-generating process
compounded by proportional reinsurance (2) and the investment-generating process (5). Thus,
the insurance portfolio is represented by the risk process Uk = {Uk

t }t∈R+ which has dynamics

dUk
t = dPk

t + Uk
t−dRt. (7)

A reinsurance strategy k is said to be admissible if it is Ft-progressively measurable and takes
values from the set [0, 1]. Thus, given an admissible reinsurance strategy k ∈ [0, 1], and assuming that
the mutually independent processes P and R belong to the rather general class of semimartingales,
then under some weak additional assumptions the risk process Uk is mathematically the solution of
the linear stochastic differential equation (SDE)

Uk
t = u + Pk

t +
∫ t

0
Uk

s−dRs, (8)

where Uk
0 = u > 0 is the initial surplus of the insurance company, Pk

t is the basic insurance
(or surplus-generating) process in Equation (2), Rt the investment-generating process in Equation (5)
and Uk

t− denotes the insurer’s surplus (incorporating both proportional reinsurance and investments)
just prior to time t. Paulsen [47], gave the solution of (8) as

Uk
t = Rt

(
u +

∫ t

0
R−1

s dPk
s

)
, (9)

where

Rt = exp
{(

r− 1
2 σ2

2

)
t + σ2W2,t

}
, t ≥ 0

is the geometric Brownian motion so extensively used in mathematical finance and is the solution of

the SDE dRt
Itô
= rRtdt + σ2RtdW2,t, with R0 = 1.

Since both P and R have stationary independent increments, Ut is a homogeneous strong Markov
process. We defined the value function of this optimization problem as

ψk(u) = P(Uk
t ≤ 0 for some t ≥ 0|Uk

0 = u) = P(τk < ∞|Uk
0 = u),

where ψk(u) is the ultimate ruin probability under the reinsurance policy k when the initial surplus
is u and τk = inf{t > 0|Uk

t < 0} is the time of ruin, with τk = ∞ if Uk
t remains positive. Then the

objective is to find the optimal value function, i.e., the minimal ruin probability

ψ(u) = inf
k∈[0,1]

ψk(u) (10)

and the optimal policy k∗ such that ψk∗(u) = ψ(u), considered optimal if k∗ minimizes the ruin
probability. Since the ultimate survival probability φk(u) = P(τk = ∞|Uk

0 = u) = 1− ψk(u), we may
alternatively find the value of k∗ which maximizes φ(u), so that the optimal value function becomes

φ(u) = sup
k∈[0,1]

φk(u). (11)
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3. HJB, Integrodifferential and Integral Equations

In this section, we derived the HJB equation for the problem and the corresponding
integrodifferential and integral equations. By Itô’s formula, the infinitesimal generator of the process
Uk

t in Equation (8) is given by the integrodifferential operator

Ag(u) =
1
2

(
σ2

2 u2 + k2σ2
1

)
g′′(u) + (ru + ck)g′(u) + λ

∫ ∞

0
(g(u− kx)− g(u)) dF(x). (12)

Since the investment-generating process Rt is governed by (5), it follows that under weak
assumptions the ruin probability ψ(u) is twice continuously differentiable on (0, ∞) and is a solution
to the equation (see [48])

Aψ(u) = −λF(u), (13)

where F(u) = 1− F(u), with boundary conditions limu→∞ ψ(u) = 0 and ψ(u) = 1 if σ1 > 0 (see
Theorem 1 below). Sometimes it is more convenient, as we did in this paper, to work with the survival
probability φ(u) = 1− ψ(u), in which case (13) becomes

Aφ(u) = 0.

The integrodifferential operator (12) does not easily give rise to closed-form solutions, hence the
need for the use of numerical methods. The following theorem is proved in [48].

Theorem 1. Let τk = inf{t > 0|Uk
t < 0} be the ruin time, with τk = ∞ if Uk

t ≥ 0 ∀ t. Assume that the
equation Aφ(u) = 0 has a bounded, twice continuously differentiable solution (once continuously differentiable
if σ1 = σ2 = 0) that satisfies the boundary conditions

φ(u) = 0 on u < 0,

φ(0) = 0 if σ2
1 > 0, (14)

lim
u→∞

φ(u) = 1.

Then φ(u) = 1− ψ(u) is the survival probability.

We now present the HJB equation for this optimization problem.

Theorem 2. Assume that the survival probability φ(u) defined by (11) is twice continuously differentiable on
(0, ∞). Then, for u > 0, φ(u) satisfies the HJB equation

sup
k∈[0,1]

{Aφ(u)} = 0, (15)

where A is the infinitesimal generator (12) of the process Uk
t .

Proof. See [49].

The function φ(u) will satisfy the HJB Equation (15) only if it is strictly increasing, strictly concave,
twice continuously differentiable and satisfies φ(u) → 1 for u → ∞ [8]. In the following, therefore,
φ(u) will be assumed to be strictly increasing. This is consistent with the smoothness assumption and
the intuition that the more wealth there is (through investment), the higher the probability of survival
of the insurance company. It will also be assumed that φ(u) is concave. To ensure smoothness and
concavity, the claim density function must be locally-bounded [7].
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The following verification theorem, whose proof is similar to that of Theorem 2 in Kasumo et al. [44],
is essential for solving the associated control problem as it leads to the integrodifferential equation for
the problem.

Theorem 3. Suppose Φ ∈ C2 is an increasing strictly concave function satisfying the HJB Equation (15)
subject to the boundary conditions

Φ(u) = 0 on u < 0

Φ(0) = 0 if σ2 > 0

lim
u→∞

Φ(u) = 1

for 0 < u ≤ ∞. Then the maximal survival probability φ(u) given by (11) coincides with Φ. Furthermore,
if k∗ satisfies

1
2

(
σ2

2 u2 + k∗2σ2
1

)
Φ
′′
(u) + (ru + ck∗)Φ

′
(u) + λ

[∫ u

0
Φ (u− k∗x) dF(x)−Φ(u)

]
= 0 (16)

when 0 ≤ u < ∞, where ck∗ = [k∗(1 + θ) − (θ − η)]λµ, then the policy k∗ is an optimal policy, that is,
Φ(u) = φ(u) = φk∗(u).

The integrodifferential equation for the survival probability φ(u), which follows immediately
from Theorem 3, is of the form Aφ(u) = 0 (since, by Equation (14), φ(u) = 0 for u < 0), where A is the
infinitesimal generator (12) of the underlying risk process, that is,

1
2

(
σ2

2 u2 + k2σ2
1

)
φ
′′
(u) + (ru + ck)φ

′
(u) + λ

∫ u

0
φ(u− kx)dF(x)− λφ(u) = 0, (17)

for 0 < u ≤ ∞. Equation (17) is a second-order Volterra integrodifferential equation (VIDE) which is
easily transformed, using successive integration by parts, into a linear Volterra integral equation of the
second kind to be solved in this study. This leads to the following theorem which is our main result.

Theorem 4. The integrodifferential Equation (17) can be represented as a VIE-2

φ(u) +
∫ u

0
K(u, x)φ(x)dx = α(u), (18)

with u ∈ [0, ∞), where K : [0, ∞)× [0, ∞) → R and α : [0, ∞) → R are two known continuous functions,
φ : [0, ∞)→ R is the unknown function to be determined, and

1. For the case without diffusion (i.e., when σ2
1 = σ2

2 = 0), the kernel and forcing function are given,
respectively, by

K(u, x) = − r + λF(u− kx)
ru + ck ,

α(u) =
ck

ru + ck φ(0),
(19)

with F(x) = 1− F(x).
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2. For the case with diffusion (i.e., when σ2
1 + σ2

2 > 0), the kernel and forcing function are, respectively,

K(u, x) = 2
(2r− 3σ2

2 + λ)kx + ck + λG(u− kx)− (r− σ2
2 + λ)u

σ2
2 u2 + k2σ2

1
,

α(u) =


2ck

σ2
2 u

φ(0) if σ2
1 = 0,

σ2
1 u

σ2
2 u2+k2σ2

1
φ′(0) if σ2

1 > 0,

(20)

with G(x) =
∫ x

0 F(v)dv

Setting k = 1 in both of the above cases gives the VIE-2 for the case without reinsurance, while setting
σ2

2 = r = 0 leads to the VIE-2 for the case without investments.

Proof. We began by proving the diffusion case (Case 2) before dealing with the case without diffusion
(Case 1). Integrating Equation (17) by parts with respect to u on [0, z] gives

0 =
1
2

∫ z

0

(
σ2

2 u2 + k2σ2
1

)
φ′′(u)du +

∫ z

0
(ru + ck)φ′(u)du− λ

∫ z

0
φ(u)du

+λ
∫ z

0

∫ u

0
φ(u− kx)dF(x)du

=
1
2

(
σ2

2 z2 + k2σ2
1

)
φ′(z)− 1

2
σ2

1 φ′(0) +
∫ z

0
[(r− σ2

R)u + ck]φ′(u)du− λ
∫ z

0
φ(u)du

+λ
∫ z

0

∫ u

0
φ(ν) f (u− ν)dνdu (ν := u− kx). (21)

Evaluating the third term in (21) by integrating by parts yields

0 =
1
2

(
σ2

2 z2 + k2σ2
1

)
φ′(z)− 1

2
σ2

1 φ′(0) + [(r− σ2
2 )z + ck]φ(z)− ckφ(0)

−(r− σ2
2 + λ)

∫ z

0
φ(ν)dν + λ

∫ z

0
F(z− ν)φ(ν)dν.

Integrating (22) by parts over [0, u] with respect to z gives

0 =
∫ u

0

1
2

(
σ2

2 z2 + k2σ2
1

)
φ′(z)dz +

∫ u

0
[(r− σ2

2 )z + ck]φ(z)dz−
(

1
2

σ2
1 φ′(0) + ckφ(0)

)
u

−(r− σ2
2 + λ)

∫ u

0

∫ z

0
φ(ν)dνdz + λ

∫ u

0

∫ z

0
F(z− ν)φ(ν)dνdz

=
1
2

(
σ2

2 z2 + k2σ2
1

)
φ′(z)

∣∣∣∣u
0
− σ2

2

∫ u

0
zφ(z)du +

∫ u

0
[(r− σ2

2 )z + ck]φ(z)dz

−
(

1
2

σ2
1 φ′(0) + ckφ(0)

)
u− (r− σ2

2 + λ)
∫ u

0

∫ u

ν
dzφ(ν)dν + λ

∫ u

0

∫ u

ν
F(z− ν)dzφ(ν)dν. (22)

The above is obtained by simplifying the double integrals in the last two terms by using integration
by parts again and switching the order of integration using Fubini’s Theorem [50]. Recall that F(0) = 0
and F(x−) = F(x) for x ∈ R, F being absolutely continuous with respect to Lebesgue measure. Thus,
simplifying further and replacing z with x yields

0 =
1
2

(
σ2

2 u2 + k2σ2
1

)
φ(u)− 1

2
σ2

1 (φ(0) + uφ′(0))− ckuφ(0)

+
∫ u

0

[(
2r− 3σ2

2 + λ
)

x + ck + λG(u− x)−
(

r− σ2
2 + λ

)
u
]

φ(x)dx. (23)
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where G(x) =
∫ x

0 F(v)dv. Equation (23) can be written as

φ(u) + 2
∫ u

0

(
2r− 3σ2

2 + λ
)

x + ck + λG(u− x)−
(
r− σ2

2 + λ
)

u
σ2

2 u2 + k2σ2
1

φ(x)dx

=
σ2

1 (φ(0) + uφ′(0)) + 2ckuφ(0)
σ2

2 u2 + k2σ2
1

(24)

which is a VIE-2. Replacing x with kx gives the kernel and forcing function for the diffusion case
(Equations (18) and (20)). The case without diffusion is really the Cramér–Lundberg model with
a reinsurance retention and a constant force of interest, that is, the integrodifferential equation (IDE) is

(ru + ck)φ′(u) + λ
∫ u

0
[φ(u− kx)− φ(u)]dF(x) = 0. (25)

It is known that φ(u) = 0 for u < 0, and that limu→∞ φ(u) = 1. Integrating (25) by parts on [0, z]
with respect to u and replacing x with kx transforms the IDE into a VIE of the second kind with kernel
and forcing function for the case without diffusion as given by Equations (18) and (19) above.

4. Numerical Results

We now present some numerical results and study the impact of the volatility of stock prices on
the ruin probability. To find the survival probabilities φ(u), we took advantage of the fourth-order
block-by-block method in conjunction with Simpson’s Rule of integration to solve the VIE (18). This
method, which produces solutions in blocks of two values, is fully developed in [39] and appears in
several papers, e.g., [5,38,49]. Linz [36] has shown that the block-by-block method always converges
and has an order of convergence of four (see also [51]). This method reduces the VIE-2 into a system of
algebraic equations which are solved by matrix methods to obtain the blocks (for details, see [49]).

Typical choices for light- and heavy-tailed claim-size distributions are the exponential and Pareto
distributions, respectively. The merits of using these two distributions for modelling insurance
claims are briefly well articulated in [52]. Exp(β) refers to the exponential density f (x) = βe−βx.
The exponential distribution has distribution function F(x) = 1− e−βx from which the tail distribution
is F(x) = 1 − F(x) = e−βx. Its mean excess function is eF(x) = 1

β , so that G(x) = x − 1
β F(x).

The Pareto distribution is commonly used for modelling large claims. The probability density function
of the Pareto distribution is f (x) = ακα

(κ+x)α+1 where α > 0, κ = α− 1 > 0 and the distribution function

F(x) = 1−
(

κ
κ+x
)α. Hence the tail distribution is F(x) =

(
κ

κ+x
)α. Also, G(x) = x− 1 +

(
κ

κ+x
)κ . Note

also that the Pareto distribution has a mean excess function eF(x) = κ+x
α−1 (or 1 + x

κ ), meaning that G(x)
can alternatively be written as x−

(
1 + x

κ

)
F(x).

A step-size of h = 0.01 was used throughout. All numerical simulations in this section were
performed using a Samsung Series 3 PC with an Intel Celeron CPU 847 at 1.10 GHz and 6.0 GB internal
memory. The block-by-block method was implemented using the FORTRAN programming language
and taking advantage of its double precision feature to obtain satisfactory accuracy. Slower programs
such as R, MATLAB, Maple or Mathematica could, of course, have been used but at the expense of
considerably longer computing time. Although Theorem 4 deals with the survival probability φ(u)
as the value function, the programs have been adjusted to output infinite ruin probabilities (since
ψ(u) = 1− φ(u)). Since the block-by-block method does not require special starting procedures or
values, it can be initiated using any value of φ(0). The values stabilize at g(∞) which is used for scaling
the probabilities. For φ(u− 999h) to be virtually equal to 1, the corresponding upper bound u should
be sufficiently large. Without reinsurance, the results for ruin probabilities have been published widely
(see, e.g., [39] and the references therein). The graphs were constructed using MATLAB R2016a. Five
cases will now be presented by way of illustration. Without loss of generality, we used the parameter
values shown in Table 1 in the numerical examples that follow.
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Table 1. Model parameter values.

Parameter Value Source/Reference

θ 0.8 Cheng and Zhao [53]
η 0.5 Cheng and Zhao [53]
σ1 0.001 Kasozi et al. [5]
σ2 0.001 Kasozi et al. [5]
r 0.05 Kasozi et al. [5]
λ 2 Kasumo et al. [44]
µ 1.5 Estimated

From the net profit condition (4), we must use QS retention values k in the set (k, 1], where
k = 1− η

θ = 1− 0.5
0.8 = 0.375. In addition, we took β = 0.5 as the parameter of the exponential

distribution, and α = 3, κ = 2 as the parameters of the Pareto distribution.

4.1. Proportional Reinsurance in the Cramér–Lundberg Model

When σ2
1 = σ2

2 = r = 0 and 0 ≤ k ≤ 1, then the SDE (8) takes the form of the classical risk process
compounded by proportional reinsurance

Uk
t = u + ckt−

Nt

∑
i=1

kXi.

By Itô’s formula, the infinitesimal generator for the process Uk is given by

Ag(u) = ckg′(u) + λ
∫ u

0
[g(u− kx)− g(u)]dF(x)

from which the VIDE corresponding to the survival probability φ(u) follows as

ckφ′(u) + λ
∫ u

0
[φ(u− kx)− φ(u)]dF(x) = 0. (26)

This VIDE reduces to an ordinary VIE of the second kind with kernel K(u, x) = − λF(u−kx)
ck , where

F(x) = 1− F(x), and forcing function α(u) = φ(0). This is simply Equations (18) and (19) with r = 0.

Example 1. Exponential distribution with λ = 2, β = 0.5, µ = 1.5, θ = 0.8, η = 0.5.

Since the ruin probability is a function of the initial surpus u, we observe from Figure 1a that the
ruin probability reduces as the initial surplus increases. We also noted that the higher the cession level
1− k for QS reinsurance, the lower the ruin probability. From the results presented in Figure 1, we see
that the lowest value of k that satisfies the NPC (4) and at the same time gives the minimal ultimate
ruin probability is 0.376. Thus, the optimal retention for QS reinsurance is k∗ = 0.376. This means that
the company should cede about 62.4% of its risks to a reinsurer.

Example 2. Pareto distribution with λ = 2, α = 3, κ = 2, θ = 0.8, η = 0.5.

The ultimate ruin probabilities for large claims reduce more when QS reinsurance is applied to
the portfolio of risks as shown in Figure 1b. As for the small claim case, the optimal QS retention level
in the large claim case is k∗ = 0.376. Thus, for large claims the insurer must cede about 62.4% of its
risks to a reinsurer as well.
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Figure 1. Ultimate ruin probabilities for the Cramér–Lundberg Model (CLM) compounded by
proportional reinsurance; (a) CLM with quota-share (QS) reinsurance, Exp(0.5) claims; (b) CLM
with QS reinsurance, Par(3,2) claims.

4.2. Proportional Reinsurance in the Cramér–Lundberg Model under Interest Force

Here we considered the case when σ2
1 = σ2

2 = 0, r > 0 and 0 ≤ k ≤ 1 which lead to the
Cramér–Lundberg Model (CLM) compounded by proportional reinsurance and a constant force
of interest

Uk
t = u + ckt−

Nt

∑
i=1

kXi + r
∫ t

0
Usds.

The survival probability satisfies the VIDE

(ru + ck)φ′(u) + λ
∫ u

0
[φ(u− kx)− φ(u)]dF(x) = 0, (27)

which reduces to a linear VIE of the second kind with kernel and forcing function given in (19).

Example 3. Exponential distribution with λ = 2, β = 0.5, µ = 1.5, θ = 0.8, η = 0.5, r = 0.05.

The comments made under Example 1 apply here as well and the optimal QS reinsurance policy
in this case is again k∗ = 0.376 (see Figure 2a). Though investing part of its surplus in a risk-free
asset might provide the insurance company with the flexibility to operate with a lower optimal ruin
probability, the company must still reinsure 62.4% of its business as ceding a higher percentage would
violate the NPC (Equation (4)).

Example 4. Pareto distribution with λ = 2, α = 3, κ = 2, µ = 1.5, θ = 0.8, η = 0.5, r = 0.05.

The comments made under Example 2 apply to this case also. Again, the optimal QS reinsurance
policy is k∗ = 0.376 as shown in Figure 2b. For large claims in the CLM under a constant force of
interest, the insurance company must again buy cover for 62.4% of its risks from a reinsurance company.
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Figure 2. Ultimate ruin probabilities for the CLM compounded by proportional reinsurance and
a constant force of interest; (a) CLM with interest force, Exp(0.5) claims; (b) CLM with interest force,
Par(3,2) claims.

4.3. Proportional Reinsurance in the Diffusion-Perturbed Model

When σ2
1 > 0, σ2

2 = r = 0 and 0 ≤ k ≤ 1, then we had the diffusion-perturbed model (DPM)
compounded by proportional reinsurance

Uk
t = u + ckt + kσ1W1,t −

Nt

∑
i=1

kXi.

In this case, the associated VIE has kernel and forcing function given, respectively, by K(u, x) =
2[ck−λ(u−kx)+λG(u−kx)]

k2σ2
1

and α(u) = u
k2 φ′(0). This is simply (20) with σ2

2 = r = 0.

Example 5. Exponential distribution with λ = 2, β = 0.5, µ = 1.5, θ = 0.8, η = 0.5, r = σ2 = 0,
σ1 = 0.001.

It can be seen from Figure 3a that k∗ ≈ 0.9 for u ∈ [0, 15] and k∗ = 0.95 for u ∈ (15, ∞). This
means that in the DPM, the insurer should cede 10% of its risks if u ≤ 15 and only 5% if u > 15.
In fact, going by the graph for k = 1, it is expected that when u is sufficiently large, it is optimal for the
company not to reinsure, i.e., k∗ = 1.

Example 6. Pareto distribution with λ = 2, α = 3, κ = 2, θ = 0.8, η = 0.5, r = σ2 = 0, σ1 = 0.001.

For the large claim case in the DPM, the ruin probabilities increase instead of reducing with the
application of proportional reinsurance, as can be seen from Figure 3b. We can therefore conclude that
it is optimal not to reinsure, i.e., k∗ = 1.

4.4. Proportional Reinsurance in the Perturbed Model under Interest Force

This is the case when σ2
1 > 0, σ2

2 = 0, r > 0 and 0 ≤ k ≤ 1, then we had the DPM compounded by
proportional reinsurance and a constant force of interest

Uk
t = u + ckt + kσ1W1,t −

Nt

∑
i=1

kXi + r
∫ t

0
Usds.

The corresponding VIE has kernel and forcing function given in (20) with σ2
2 = 0.
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Example 7. Exponential distribution with λ = 2, β = 0.5, µ = 1.5, θ = 0.8, η = 0.5, r = 0.05,
σ1 = 0.001, σ2 = 0.
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Figure 3. Ultimate ruin probabilities for the diffusion-perturbed model (DPM) compounded by
proportional reinsurance; (a) DPM with QS reinsurance, Exp(0.5) claims; (b) DPM with QS reinsurance,
Par(3,2) claims.

For the DPM under interest force, it is evident from Figure 4a that for exponentially distributed
claim sizes the optimal QS reinsurance retention k∗ ∈ (0.85, 0.9) since the graph for k = 0.85 is slightly
higher for the first time than that for k = 0.9. Thus, the optimal policy is to reinsure 10% of the risks,
i.e., k∗ ≈ 0.9.
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Figure 4. Ultimate ruin probabilities for the DPM compounded by proportional reinsurance and
a constant force of interest; (a) DPM with interest force, Exp(0.5) claims; (b) DPM with interest force,
Par(3,2) claims.

Example 8. Pareto distribution with λ = 2, α = 3, κ = 2, θ = 0.8, η = 0.5, r = 0.05, σ1 = 0.001, σ2 = 0.

For the large claim case in the DPM with interest force, Figure 4b shows that the optimal QS
retention k∗ ∈ (0.9, 0.95) since the graph for k = 0.9 is higher for the first time than that for k = 0.95.
In this case, the company should cede only about 5% of its risks to a reinsurer since k∗ ≈ 0.95.

4.5. Proportional Reinsurance with Investments of Black–Scholes Type

When we had stochastic return on investments, the model takes the form
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Uk
t = u +

∫ t

0

(
rUk

s + ck
)

ds +
∫ t

0

√
σ2

1 + σ2
2
(
Uk

s
)2dWs − St, Uk

0 = u > 0.

Theorem 2, together with the integrodifferential operator (12), gives the corresponding
integrodifferential equation for the survival probability φ(u) as

1
2
(σ2

2 u2 + k2σ2
1 )φ

′′
(u) + (ru + ck)φ

′
(u) + λ

∫ u

0
φ(u− kx)dF(x)− λφ(u) = 0 (28)

for 0 ≤ u ≤ ∞, which is a second-order Volterra integrodifferential equation (VIDE). Repeated
integration by parts transforms this into a VIE of the second kind with kernel and forcing function as
given in (20).

Example 9. Exponential distribution with λ = 2, β = 0.5, µ = 1.5, θ = 0.8, η = 0.5, r = 0.05,
σ1 = σ2 = 0.001.

This is the small claim case assuming that, in addition to purchasing noncheap proportional
reinsurance, the insurance company invests part of its surplus in risk-free and risky assets according
to the Black–Scholes options pricing formula. As shown in Figure 5a, the optimal QS retention
k∗ ∈ (0.8, 0.85). From the graph, we see that k∗ ≈ 0.85, meaning that the company should reinsure
about 15% of its risks.
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Figure 5. Ultimate ruin probabilities for the DPM compounded by proportional reinsurance and
investments of Black–Scholes type; (a) DPM with stochastic interest, Exp(0.5) claims; (b) DPM with
stochastic interest, Par(3,2) claims.

Example 10. Pareto distribution with λ = 2, α = 3, κ = 2, θ = 0.8, η = 0.5, r = 0.05, σ1 = σ2 = 0.001.

For the large claim case in the model involving investments of Black–Scholes type, k∗ ∈ (0.9, 0.95)
as shown in Figure 5b. In fact, k∗ ≈ 0.95, meaning that the company needs to transfer only 5% of its
portfolio of risks to a reinsurer.

4.6. Sensitivity of Ruin Probability to Volatility of Stock Prices

Figure 6 shows the effect of volatility of stock prices on the ultimate ruin probability. Evidently,
as stock prices become more volatile (that is, as σ2 increases), the ruin probability also increases,
and vice versa. Volatility is actually a measure of the riskiness of a stock. If the volatility of the stock
price increases but the expected rate of return of the stock stays the same, then the insurer will find the
reward for accepting the risk unattractive and would rather invest less in stocks and more in bonds.
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Conversely, a decrease in the volatility of the stock price enables the insurer to receive the same return
but with a lower risk. For this reason, the company will find that it makes economic sense to invest in
the stock. This applies to both the exponential and Pareto distributions as Figure 6 shows.
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Figure 6. Effects of volatility of stock prices on the ultimate ruin probability in the small and large
claim cases; (a) Effect of volatility coefficient on ψ(u), Exp(0.5) claims; (b) Effect of volatility coefficient
on ψ(u), Par(3,2) claims.

However, we also observe from Figure 6 that the ruin probabilities for large claims are much
lower than those for small claims.

5. Conclusions

It is evident from the research findings that in the CLM, the ruin probabilities keep reducing as k
reduces up to the smallest k that satisfies the NPC, so that the optimal QS retention level for both small
and large claim cases in the CLM with and without a constant force of interest is k∗ = 0.376. However,
for the DPM the ruin probabilities keep reducing up to a given retention level, after which they begin
to increase. This is true for both small and large claim cases. This means that the optimal retention level
for proportional reinsurance lies somewhere around the point at which the ruin probabilities begin to
rise again after consistently falling with a reduction in k. This is in line with our expectation that the
ruin probabilities should keep reducing as the quota-share retention level reduces and then start rising
again after a certain k, giving an indication of where the optimal retention k∗ lies. The results from the
previous section indicate that proportional reinsurance does have a positive impact on the survival of
insurance companies as it minimizes their ultimate ruin probabilities.

Overall, the results for the DPM show that in the small claim case the optimal policy is k∗ ≥ 0.85,
while in the large claim case it is k∗ ≥ 0.95. This means that an insurance company should reinsure up
to about 15% of its portfolio in the small claim case and only up to about 5% of its risks in the large
claim case. The reason for this difference is that since large claims are also extremal and therefore rare
the company can afford to retain more of its large-scale risks.

The results presented in this paper indicate that investment of the surplus plays an important role
in the survival of insurance companies as it significantly drives down the ultimate ruin probabilities.
Noncheap proportional reinsurance also has an impact on the minimization of the ultimate ruin
probabilities of insurance companies, thus enhancing their chances of survival in the market. Possible
extensions of this work include the use of other forms of reinsurance arrangements (e.g., surplus,
excess-of-loss or stop-loss), introduction of jumps in the investment process and use of other controls
such as capital injections and portfolio selection.
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CLM Cramér–Lundberg model
DPM Diffusion-Perturbed model
NPC Net profit condition
SDE Stochastic differential equation
HJB Hamilton–Jacobi–Bellman
IDE Integrodifferential equation
VIDE Volterra integrodifferential equation
VIE Volterra integral equation
VIE-2 Volterra integral equation of the second kind
QS Quota-share
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