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Abstract: This paper studies the nonlinear fractional undamped Duffing equation. The Duffing
equation is one of the fundamental equations in engineering. The geographical areas of this model
represent chaos, relativistic energy-momentum, electrodynamics, and electromagnetic interactions.
These properties have many benefits in different science fields. The equation depicts the energy of
a point mass, which is well thought out as a periodically-forced oscillator. We employed twelve
different techniques to the nonlinear fractional Duffing equation to find explicit solutions and
approximate solutions. The stability of the solutions was also examined to show the ability of
our obtained solutions in the application. The main goals here were to apply a novel computational
method (modified auxiliary equation method) and compare the novel method with other methods
via the solutions that were obtained by each of these methods.

Keywords: chaotic attractor of the Duffing oscillator; fission and fusion phenomena; solitons;
nonlinear time fractional Duffing equation; multiple traveling wave methods

1. Introduction

In this paper, we study the nonlinear fractional Duffing equation [1–5]. This equation describes
the chaotic behavior of the motion of the hampered oscillator with a complexity potentially greater
than for simple harmonious motion. We handle this with the force that results from the interaction
between electrical charges. This force is called electromagnetism or Lorentz force, which includes
magnetism and electricity as various phenomena of the equivalent source. The Duffing equation
is named after Georg Duffing (1861–1944). He ascertained the relationship between the motion of
a damped oscillator: Displacement, velocity, and acceleration. He derived his mathematical statement
in the following form:

u′′ + a u + b u3 + e u′ − f cos(ξ t) = 0, (1)

where [u, a, b, e, f , ξ, u3] represent a displacement in time, linear stiffness, the amount of nonlinearity
in the regenerating force, a quantity of damping, the amplitude of the repeated driving force,
the angular frequency of the occasional driving force, and the Duffing term, respectively.
Under specific conditions on the previous parameters, we can turn it into the undamped and
unforced Duffing equation. Many approaches have been used to solve this equation, namely
the Fourier series or techniques, such as the Frobenius, Euler, Runge–Kutta, homotopy analysis,
Poincaré–Lindstedt, or Lindstedt–Poincaré methods. This model can be reduced to other models, like
the Landau–Ginzburg–Higgs, Klein–Gordon, and sine-Gordon equations.

According to the various application fields of nonlinear partial differential equations, many
methods have been discovered and derived to study the exact and approximate solutions; for more
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details about some of these methods, see References [6–24]. In this research, we applied twelve
methods to our nonlinear fractional unforced Duffing equation to study the properties of solutions
and also the convergence among our solutions. We studied the stability of solutions to show the ability
with respect to the model’s applications.

The strategy in this paper is summarized as follows: In Section 2, we describe how we applied
twelve different techniques to the nonlinear fractional unforced Duffing equation. In Section 3, we
examine the stability of the solutions of our model and draw some of the figures to indicate their
properties. In Section 4, we discuss our obtained solutions to present the convergence among them. In
Section 5, we provide the conclusion of our paper.

2. Application

In this part of our research, we applued eleven different methods to the nonlinear time fractional
Duffing equation, which has the following formula:

D2 α
t t u + a u + b u3 = 0. (2)

Converting the fractional nonlinear partial differential equation to the integer order nonlinear
partial differential equation using the following conformable fractional derivative [u(x, t) = u(Θ), Θ =

x + c tα

α ] (for more details about this kind of derivatives see References [25–29]), we get:

c2 u′′ + a u + b u3 = 0. (3)

Calculating the homogeneous balance value of Equation (3), we get N = 1.

2.1. Exp (−φ(Θ))-Expansion Method

Applying this method enables us to put the general solution of Equation (3) in the next formula:

u(Θ) = a1 e−φ(Θ) + a0. (4)

Handling Equation (3) using Equation (4) and its derivatives, we convert Equation (3) to
a polynomial function of e(−φ(Θ)). Gathering all coefficients of terms that have a same degree and
equating them to zero, and solving the obtained system of equation, we get:

a0 →
√
−a− 2c2µ√

b
, a1 →

√
2c
√
−a− 2c2µ√

b
√

a + 2c2µ
, λ→

√
2
√

a + 2c2µ

c
, where (a + 2c2µ > 0 and b < 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

When [λ2 − 4 µ > 0 and µ 6= 0]:

u(x, t) =

√
−a− 2c2µ(1− 2cµ√

a
2+c2µ(

√
λ2−4µ tanh( 1

2

√
λ2−4µ( ctα

α +ϑ0+x))+λ−2µ)
)

√
b

, (5)

u(x, t) =

√
−a− 2c2µ(1− 2cµ√

a
2+c2µ(

√
λ2−4µ coth( 1

2

√
λ2−4µ( ctα

α +ϑ0+x))+λ−2µ)
)

√
b

. (6)
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When [λ2 − 4 µ = 0, µ 6= 0 and λ 6= 0]:

u(x, t) =

√
−a− 2c2µ(

cλ( 1
cλtα

α +λ( ctα
α +ϑ0)+λx+2

− 1
2 )√

a
2+c2µ

+ 1)
√

b
. (7)

When [λ2 − 4 µ < 0 and µ 6= 0]:

u(x, t) =

√
−a− 2c2µ(1− 2cµ√

a
2+c2µ(λ−

√
4µ−λ2 tan( 1

2

√
4µ−λ2( ctα

α +ϑ0+x)))
)

√
b

, (8)

u(x, t) =

√
−a− 2c2µ(1− 2cµ√

a
2+c2µ(λ−

√
4µ−λ2 cot( 1

2

√
4µ−λ2( ctα

α +ϑ0+x)))
)

√
b

. (9)

2.2. Improved F-Expansion Method

Applying this method enables us to put the general solution of Equation (3) in the next formula:

u(Θ) =
a−1

µ + φ(Θ)
+ a1(µ + φ(Θ)) + a0. (10)

Handling Equation (3) using Equation (10) and its derivatives, we convert Equation (3) to
a polynomial function of φ(Θ). Gathering all coefficients of terms that have a same degree and
equating them to zero, and solving the obtained system of equation, we get:

Family I:

a−1 →
√

a(µ2 + r)√
b
√

r
, a0 → −

√
aµ√

b
√

r
, a1 → 0, c→ − i

√
a√

2
√

r
, where (a < 0, b < 0 and r > 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) =

√
a(−µ + µ2+r

µ+
√

r tan(
√

rx− i
√

atα√
2α

)
)

√
b
√

r
, (11)

u(x, t) =

√
a(−µ + µ2+r

µ−
√

r cot(
√

rx− i
√

atα√
2α

)
)

√
b
√

r
. (12)

Family II:

a−1 → 0, a0 →
√

aµ√
b
√

r
, a1 → −

√
a√

b
√

r
, c→ − i

√
a√

2
√

r
, where (a < 0 and b < 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) = −

√
a tan(

√
rx− i

√
atα
√

2α
)

√
b

, (13)
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u(x, t) =

√
a cot(

√
rx− i

√
atα
√

2α
)

√
b

. (14)

2.3. Extended (G′
G )-Expansion Method

Applying this method enables us to put the general solution of Equation (3) in the next formula:

u(Θ) =
a1G′(Θ)

G(Θ)
+ a0 + b1

√
σ(

G′(Θ)2

µG(Θ)2 + 1). (15)

Handling Equation (3) using Equation (15) and its derivatives, we convert Equation (3) to

apolynomial function of (G′(Θ)
G(Θ)

)i[

√
σG′(Θ)2

µG(Θ)2 + σ]j. Gathering all coefficients of terms that have a same

degree and equating them to zero, and solving the obtained system of equation, we get:
Family I:

a0 → 0, a1 → −
ic√
2
√

b
, b1 → −

√
a√

b
√

σ
, µ→ −2a

c2 , where (b < 0 and a < 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

When [µ > 0]:

u(x, t) =
1

2
√

b

−2
√

a
σ

√√√√ (c2
1 + c2

2)σ

(c1 sin(
√

2
√
−atα+αµx
α
√

µ ) + c2 cos(
√

2
√
−atα+αµx
α
√

µ ))2
+

i
√

2c
√

µ(c2 − c1 cot(
√

2
√
−atα+αµx
α
√

µ ))

c2 cot(
√

2
√
−atα+αµx
α
√

µ ) + c1

 . (16)

When [µ < 0]:

u(x, t) = 1
2
√

b
[−2

√
a
σ

√
(c2

1−c2
2)σ

(c1 cos(
√

2
√
−atα+αµx
α
√

µ )+c2 sinh(
√−µ(

√
2
√
−atα

αµ +x)))2

−
i
√

2c(c2
√−µ cos(

√
2
√
−atα+αµx
α
√

µ )−c1
√

µ sin(
√

2
√
−atα+αµx
α
√

µ ))

c1 cos(
√

2
√
−atα+αµx
α
√

µ )+c2 sinh(
√−µ(

√
2
√
−atα

αµ +x))
]. (17)

Family II:

a0 → 0, a1 → 0, b1 → −
i
√

2
√

a√
b
√

σ
, µ→ a

c2 , where (b < 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

When [µ > 0]:

u(x, t) = −

i
√

2
√

a
√

(c2
1+c2

2)σ

(c1 sin(
√

µ(

√ a
µ tα

α +x))+c2 cos(
√

µ(

√ a
µ tα

α +x)))2

√
b
√

σ
. (18)

When [µ < 0]:

u(x, t) = −

i
√

2
√

a
√

(c2
1−c2

2)σ

(c1 cos(
√

µ(

√ a
µ tα

α +x))+c2 sinh(
√−µ(

√ a
µ tα

α +x)))2

√
b
√

σ
. (19)



Math. Comput. Appl. 2019, 24, 10 5 of 23

2.4. Extended Tanh-Function Method

Applying this method enables us to put the general solution of Equation (3) in the next formula:

u(Θ) =
a−1

φ(Θ)
+ a1φ(Θ) + a0. (20)

Handling Equation (3) using Equation (20) and its derivatives, we convert Equation (3) to
a polynomial function of φ(Θ). Gathering all coefficients of terms that have a same degree and
equating them to zero, and solving the obtained system of equation, we get:

Family I:

a0 → 0, a1 → −
i
√

a√
2
√

b
√

d
, a−1 → −

i
√

a
√

d√
2
√

b
, c→ −

√
a

2
√

d
, where (b < 0, a > 0 and d > 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) = ∓
i
√

2
√

a csc(2
√

d(x−
√

atα

2α
√

d
))

√
b

. (21)

Family II:

a0 → 0, a1 →
√

a√
b
√

d
, a−1 → 0, c→ i

√
a√

2
√

d
, where (d < 0, a < 0 and b < 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) =

√
a tan(

√
d(x + i

√
atα

√
2α
√

d
))

√
b

, (22)

u(x, t) = −

√
a cot(

√
d(x + i

√
atα

√
2α
√

d
))

√
b

. (23)

2.5. Simplest Equation Method

Applying this method enables to put the general solution of Equation (3) in the next formula:

u(Θ) = a1 f (Θ) + a0. (24)

Handling Equation (3) using Equation (24) and its derivatives, we convert Equation (3) to
a polynomial function of f (Θ). Gathering all coefficients of terms that have a same degree and
equating them to zero, and solving the obtained system of equation, we get:

Case I:

a1 → −
i
√

2c√
b

, a→ −b a2
0, c1 → −

i
√

2a0
√

b
c

, where (b < 0 and c 6= 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:
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When [c2 → −1]:

u(x, t) = a0 −
icc1(tanh( 1

2 c1(
ctα

α + x + ϑ)) + 1)
√

2
√

b
. (25)

u(x, t) = a0 +
icc1(tanh( 1

2 c1(
ctα

α + x + ϑ))− 1)
√

2
√

b
. (26)

Case II:
a1 → −2a0, c→ i

√
2a0
√

b, a→ −b a2
0 where (b < 0 and a0 6= 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

When [c1 → 1, c2 → −1]:

u(x, t) = −a0 tanh(
1
2
(x +

√
2ia0
√

btα

α
)). (27)

2.6. Extended Simplest Equation Method

Applying this method enables us to put the general solution of Equation (3) in the next formula:

u(Θ) =
a−1

f (Θ)
+ a1 f (Θ) + a0. (28)

Handling Equation (3)using Equation (28) and its derivatives, we convert Equation (3) to
a polynomial function of f (Θ). Gathering all coefficients of terms that have a same degree and
equating them to zero, and solving the obtained system of equation, we get:

Family I:

a−1 → 0, a0 → −
i
√

aλ√
bλ2 − 4αbµ

, a1 → −
2i
√

aµ√
b(λ2 − 4αµ)

, c→ −
√

2
√

a√
λ2 − 4αµ

,

where (a < 0, b < 0 and λ2 − 4αµ < 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

When [λ = 0], while [α1 µ > 0]:

u(x, t) = −
i
√

a
√

α1µ tan(
√

α1µ(
√

aµtα
√

2(−αµ)3/2 + x + ϑ))√
α(−b)µ

, (29)

u(x, t) = −
i
√

a
√

α1µ cot(
√

α1µ(
√

aµtα
√

2(−αµ)3/2 + x + ϑ))√
α(−b)µ

, (30)

while [α1 µ < 0]:

u(x, t) = −
i
√

a
√

α1(−µ) tanh(
√

α1(−µ)(
√

aµtα
√

2(−αµ)3/2 + x)∓ log(ϑ)
2 )√

α(−b)µ
, (31)
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u(x, t) = −
i
√

a
√

α1(−µ) coth(
√

α1(−µ)(
√

aµtα
√

2(−αµ)3/2 + x)∓ log(ϑ)
2 )√

α(−b)µ
. (32)

When [α1 = 0], while [λ > 0]:

u(x, t) =

i
√

aλ( 2

µe
λ(−

√
2
√

atα

α
√

λ2−4αµ
+x+ϑ)

−1

+ 1)

√
b(λ2 − 4αµ)

, (33)

u(x, t) = − i
√

a(λe

√
2
√

aλtα

α
√

λ2−4αµ + µ(λ− 2µ)eλ(x+ϑ))√
b(λ2 − 4αµ)(e

√
2
√

aλtα

α
√

λ2−4αµ + µeλ(x+ϑ))

. (34)

When [4 α1 µ > λ2], while [µ > 0]:

u(x, t) = −
i
√

a
√

4α1µ− λ2 tan( 1
2

√
4α1µ− λ2(−

√
2
√

atα

α
√

λ2−4αµ
+ x + ϑ))√

b(λ2 − 4αµ)
, (35)

u(x, t) = −
i
√

a
√

4α1µ− λ2 cot( 1
2

√
4α1µ− λ2(−

√
2
√

atα

α
√

λ2−4αµ
+ x + ϑ))√

b(λ2 − 4αµ)
. (36)

When [4 α1 µ < λ2], while [µ > 0]:

u(x, t) = −
i
√

a(
√

4α1µ− λ2 tan( 1
2

√
4α1µ− λ2(−

√
2
√

atα

α
√

λ2−4αµ
+ x + ϑ)) + 2λ)√

b(λ2 − 4αµ)
, (37)

u(x, t) = −
i
√

a(
√

4α1µ− λ2 cot( 1
2

√
4α1µ− λ2(−

√
2
√

atα

α
√

λ2−4αµ
+ x + ϑ)) + 2λ)√

b(λ2 − 4αµ)
. (38)

Family II:

a−1 →
2i
√

aα√
b(λ2 − 4αµ)

, a0 →
i
√

aλ√
bλ2 − 4αbµ

, a1 → 0, c→ −
√

2
√

a√
λ2 − 4αµ

,

where (a < 0 & b < 0 &λ2 − 4αµ).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

When [λ = 0], while [α1 µ > 0]:

u(x, t) =
i
√

aαµ cot(
√

α1µ(
√

aµtα
√

2(−αµ)3/2 + x + ϑ))

√
α1µ

√
α(−b)µ

, (39)

u(x, t) =
i
√

aαµ tan(
√

α1µ(
√

aµtα
√

2(−αµ)3/2 + x + ϑ))

√
α1µ

√
α(−b)µ

, (40)
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while [α1 µ < 0]:

u(x, t) =
i
√

aαµ coth(
√

α1(−µ)(
√

aµtα
√

2(−αµ)3/2 + x)∓ ln(ϑ)
2 )√

α1(−µ)
√

α(−b)µ
, (41)

u(x, t) =
i
√

aαµ tanh(
√

α1(−µ)(
√

aµtα
√

2(−αµ)3/2 + x)∓ ln(ϑ)
2 )√

α1(−µ)
√

α(−b)µ
. (42)

When [α1 = 0], while [λ > 0]:

u(x, t) =
i
√

a(2α exp(−λ(−
√

2
√

atα

α
√

λ2−4αµ
+ x + ϑ))− 2αµ + λ2)

λ
√

b(λ2 − 4αµ)
, (43)

u(x, t) = −
i
√

a(α(
2 exp(−λ(−

√
2
√

atα

α
√

λ2−4αµ
+x+ϑ))

µ + 2)− λ)√
b(λ2 − 4αµ)

. (44)

When [4 α1 µ > λ2], while [µ > 0]:

u(x, t) =

i
√

a(λ− 4αµ

λ−
√

4α1µ−λ2 tan( 1
2

√
4α1µ−λ2(−

√
2
√

atα

α
√

λ2−4αµ
+x+ϑ))

)

√
b(λ2 − 4αµ)

, (45)

u(x, t) =

i
√

a(λ− 4αµ

λ−
√

4α1µ−λ2 cot( 1
2

√
4α1µ−λ2(−

√
2
√

atα

α
√

λ2−4αµ
+x+ϑ))

)

√
b(λ2 − 4αµ)

. (46)

When [4 α1 µ < λ2], while [µ > 0]:

u(x, t) =

i
√

a( 4αµ√
4α1µ−λ2 tan( 1

2

√
4α1µ−λ2(−

√
2
√

atα

α
√

λ2−4αµ
+x+ϑ))+λ

+ λ)

√
b(λ2 − 4αµ)

, (47)

u(x, t) =

i
√

a( 4αµ√
4α1µ−λ2 cot( 1

2

√
4α1µ−λ2(−

√
2
√

atα

α
√

λ2−4αµ
+x+ϑ))+λ

+ λ)

√
b(λ2 − 4αµ)

. (48)

2.7. Extended Fan-Expansion Method

Applying this method enables us to put the general solution of Equation (3) in the next formula:

u(Θ) = a1φ(Θ) + a0. (49)

Handling Equation (3) using Equation (49) and its derivatives, we convert Equation (3) to
a polynomial function of φ(Θ). Gathering all coefficients of terms that have a same degree and
equating them to zero, and solving the obtained system of equation, we get:



Math. Comput. Appl. 2019, 24, 10 9 of 23

a0 →
√

ap√
4bqr− bp2

, a1 →
2
√

aq√
−b(p2 − 4qr)

, c→ −
√

2
√

a√
p2 − 4qr

, where (p2− 4 q r > 0, b < 0 and a > 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

When [p q 6= 0 and B2 − A2 > 0]:

u(x, t) =

√
ab
(

p2 − 4qr
)3/2 tanh

(
1
2 x
√

p2 − 4qr−
√

atα
√

2α

)
(−b (p2 − 4qr))3/2 , (50)

u(x, t) =

√
ab
(

p2 − 4qr
)3/2 coth

(
1
2 x
√

p2 − 4qr−
√

atα
√

2α

)
(−b (p2 − 4qr))3/2 , (51)

u(x, t) =

√
ab
(

p2 − 4qr
)3/2

(
tanh

(
x
√

p2 − 4qr−
√

2
√

atα

α

)
± isech

(
x
√

p2 − 4qr−
√

2
√

atα

α

))
(−b (p2 − 4qr))3/2 , (52)

u(x, t) =

√
ab
(

p2 − 4qr
)3/2

(
coth

(
x
√

p2 − 4qr−
√

2
√

atα

α

)
± csch

(
x
√

p2 − 4qr−
√

2
√

atα

α

))
(−b (p2 − 4qr))3/2 , (53)

u(x, t) =

√
a
√

p2 − 4qr tanh
(√

2
√

atα−αx
√

p2−4qr
4α

)(
coth2

(√
2
√

atα−αx
√

p2−4qr
4α

)
+ 1
)

2
√
−b (p2 − 4qr)

, (54)

u(x, t) =

√
a
(√

(A2 + B2) (p2 − 4qr)− A
√

p2 − 4qr cosh
(

x
√

p2 − 4qr−
√

2
√

atα

α

))
√
−b (p2 − 4qr)

(
A sinh

(
x
√

p2 − 4qr−
√

2
√

atα

α

)
+ B

) , (55)

u(x, t) = −

√
a
(

A
√

p2 − 4qr sinh
(

x
√

p2 − 4qr−
√

2
√

atα

α

)
+
√
(B2 − A2) (p2 − 4qr)

)
√
−b (p2 − 4qr)

(
A cosh

(
x
√

p2 − 4qr−
√

2
√

atα

α

)
+ B

) , (56)

u(x, t) =

√
a

p− 4qr
√

p2−4qr tanh

(√
2
√

atα−αx
√

p2−4qr
2α

)
+p


√
−b (p2 − 4qr)

, (57)

u(x, t) =

√
a

p− 4qr
√

p2−4qr coth

(√
2
√

atα−αx
√

p2−4qr
2α

)
+p


√
−b (p2 − 4qr)

, (58)
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u(x, t) =

√
a

(
p−

4qr cosh
(

x
√

p2−4qr−
√

2
√

atα
α

)
−
√

p2−4qr sinh
(

x
√

p2−4qr−
√

2
√

atα
α

)
+
(

p cosh
(

x
√

p2−4qr−
√

2
√

atα
α

)
±i
√

p2−4qr
)
)

√
−b (p2 − 4qr)

, (59)

u(x, t) =

√
a

(
p− 4qr

p−csch
(

x
√

p2−4qr−
√

2
√

atα
α

)(√
p2−4qr cosh

(
x
√

p2−4qr−
√

2
√

atα
α

)
±
√

p2−4qr
)
)

√
−b (p2 − 4qr)

, (60)

u(x, t) =
√

a
(
(p2−4qr) sinh

(
1
2 x
√

p2−4qr−
√

atα√
2α

)
−p
√

p2−4qr cosh
(

2x
√

p2−4qr− 2
√

2
√

atα
α

))
√
−b(p2−4qr)

(
p sinh

(
1
2 x
√

p2−4qr−
√

atα√
2α

)
−
√

p2−4qr cosh
(

2x
√

p2−4qr− 2
√

2
√

atα
α

)) . (61)

2.8. Generalized Kudryashov Method

Applying this method enables us to put the general solution of Equation (3) in the next formula:

u(Θ) =
a2Q(Θ)2 + a1Q(Θ) + a0

b1Q(Θ) + b0
. (62)

Handling Equation (3) using Equation (62) and its derivatives, we convert Equation (3) to
a polynomial function of Q(Θ). Gathering all coefficients of terms that have a same degree and
equating them to zero, and solving the obtained system of equation, we get:

Family I:

a0 →
i
√

ab0√
b

, a1 → 0, a2 → −
4i
√

ab0√
b

, b1 → 2b0, c→
√

2
√

a, where (b < 0, a > 0 and b0 6= 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) =
i
√

a(1− 2

Ae
√

2
√

atα
α +x+1

)

√
b

. (63)

Family II:

a0 →
i( 2
√

ab2
0√

b
−
√

ab0b1√
b

)

2b0 − b1
, a1 → −

i
√

a(2b0 − b1)√
b

, a2 →
2(iab2

1 − 2iab0b1)

2
√

a
√

bb0 −
√

a
√

bb1
, c→ −

√
2
√

a,

where (b < 0, a > 0, b0 6= 0 and b1 6= 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) = −
i
√

a(1− 2Aex

e
√

2
√

atα
α +Aex

)

√
b

. (64)

Family III:

a0 → 0, a1 →
2
√

2
√

ab0√
b

, a2 → −
2
√

2
√

ab0√
b

, b1 → −2b0, c→ −i
√

a, where (b < 0, a < 0 and b0 6= 0).
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According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) =
2
√

2
√

aAex+ i
√

atα
α

√
b(A2e2x − e

2i
√

atα
α )

. (65)

Family IV:

a0 → 0, a1 → −
i
√

ab1√
b

, a2 →
2i
√

ab1√
b

, b0 → 0, c→ −
√

2
√

a, where (b < 0, a < 0 and b1 6= 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) =
i
√

a(1− 2Aex

e
√

2
√

atα
α +Aex

)

√
b

. (66)

Family V:

a0 → −
i
√

ab0√
b

, a1 → 0, a2 →
4i
√

ab0√
b

, b1 → 2b0, c→
√

2
√

a, where (b < 0, a < 0 and b1 6= 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) = −
i
√

a(1− 2

Ae
√

2
√

atα
α +x+1

)

√
b

. (67)

2.9. Generalized Riccati Expansion Method

Applying this method enables us to put the general solution of Equation (3) in the next formula:

u(Θ) = a1Q(Θ) + a0 +
b1

Q(Θ)
. (68)

Handling Equation (3) using Equation (68) and its derivatives, we convert Equation (3) to
a polynomial function of Q(Θ). Gathering all coefficients of terms that have a same degree and
equating them to zero, and solving the obtained system of equation, we get:

a0 → −
√

ap√
4bqr− bp2

, a1 → −
2
√

aq√
−b(p2 − 4qr)

, b1 → 0, c→ −
√

2
√

a√
p2 − 4qr

, where (p2− 4 q r > 0, b < 0 and a > 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

When [p 6= 0, q 6= 0, r 6= 0 and B2 − A2 > 0]:

u(x, t) =

√
a
√

∆ tanh( 1
2

√
∆(x−

√
2
√

atα

α
√

p2−4qr
))√

−b(p2 − 4qr)
, (69)

u(x, t) =

√
a
√

∆ coth( 1
2

√
∆(x−

√
2
√

atα

α
√

p2−4qr
))√

−b(p2 − 4qr)
, (70)
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u(x, t) =

√
a
√

∆(tanh(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
))± isech(

√
∆(x−

√
2
√

atα

α
√

p2−4qr
)))√

−b(p2 − 4qr)
, (71)

u(x, t) =

√
a
√

∆(coth(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
))± csch(

√
∆(x−

√
2
√

atα

α
√

p2−4qr
)))√

−b(p2 − 4qr)
, (72)

u(x, t) =

√
a
√

∆ tanh( 1
4

√
∆(x−

√
2
√

atα

α
√

p2−4qr
))(coth2( 1

4

√
∆(x−

√
2
√

atα

α
√

p2−4qr
)) + 1)

2
√
−b(p2 − 4qr)

, (73)

u(x, t) =

√
a(A
√

∆ cosh(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
))−

√
∆(A2 + B2))√

−b(p2 − 4qr)(A sinh(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
)) + B)

, (74)

u(x, t) =

√
a(A
√

∆ sinh(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
)) +

√
∆(B2 − A2))√

−b(p2 − 4qr)(A cosh(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
)) + B)

, (75)

u(x, t) =

√
a( 4qr

p−
√

∆ tanh( 1
2

√
∆(x−

√
2
√

atα

α
√

p2−4qr
))
− p)

√
−b(p2 − 4qr)

, (76)

u(x, t) =

√
a( 4qr

p−
√

∆ coth( 1
2

√
∆(x−

√
2
√

atα

α
√

p2−4qr
))
− p)

√
−b(p2 − 4qr)

, (77)

u(x, t) =

√
a(−p +

4qr cosh(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
))

−
√

∆ sinh(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
))+(p cosh(

√
∆(x−

√
2
√

atα

α
√

p2−4qr
))±i
√

∆)
)

√
−b(p2 − 4qr)

, (78)

u(x, t) =

√
a( 4qr

p−csch(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
))(
√

∆ cosh(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
))±
√

∆)
− p)

√
−b(p2 − 4qr)

, (79)

u(x, t) =

√
a(
√

∆p cosh(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
))− (p2 − 4qr) sinh(

√
∆(x−

√
2
√

atα

α
√

p2−4qr
)))√

−b(p2 − 4qr)(p sinh(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
))−
√

∆ cosh(
√

∆(x−
√

2
√

atα

α
√

p2−4qr
)))

. (80)
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2.10. Generalized Sinh-Gordon Expansion Method

Applying this method enables us to put the general solution of Equation (3) in the next formula:

u(Θ) = A1 cosh(w(Θ)) + A0 + B1 sinh(w(Θ)). (81)

Handling Equation (3) using Equation (28) and its derivatives, we convert Equation (3) to
polynomial function of f (Θ). Gathering all coefficients of terms that have a same degree and equating
them to zero, and solving the obtained system of equation, we get:

Case I:
When [w′(Θ) = sinh(w(Θ))]:

Family I:

A0 → 0, A1 →
i
√

a√
b

, B1 → 0, c→ −
√

a√
2

, where (b < 0 and a > 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) = −
i
√

a tanh(x−
√

atα
√

2α
)

√
b

, (82)

u(x, t) = −
i
√

a coth(x−
√

atα
√

2α
)

√
b

. (83)

Family II:

A0 → 0, A1 → 0, B1 → −
√

2
√

a√
b

, c→ i
√

a, where (b < 0 and a < 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) = −
√

2
√

a(±i)sech(x + i
√

atα

α )
√

b
, (84)

u(x, t) = −
√

2
√

a(±i)csch(x + i
√

atα

α )
√

b
. (85)

Case II:
When [w′(ξ) = cosh(w(ξ))]:

Family I:

A0 → 0, A1 → B1, a→ bB2
1, c→ i

√
2
√

bB1, where (b < 0 and B1 6= 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:
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u(x, t) = B1 tan(x +

√
2i
√

bB1tα

α
)± B1 sec(x +

√
2i
√

bB1tα

α
), (86)

u(x, t) = B1(− cot(x +

√
2i
√

bB1tα

α
))± B1 csc(x +

√
2i
√

bB1tα

α
). (87)

Family II:

A0 → 0, A1 → −
i
√

2c√
b

, B1 → 0, a→ c2, where (b < 0 and c 6= 0).

According to the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

u(x, t) = −
i
√

2
√

a sec(
√

atα

α + x)
√

b
, (88)

u(x, t) = −
i
√

2
√

a csc(
√

atα

α + x)
√

b
. (89)

2.11. Modified Khater Method

Applying this method enables us to put the general solution of Equation (3) in the next formula:

u(Θ) = a1kK f (Θ)
+ a0 + b1k−K f (Θ)

. (90)

Handling Equation (3) using Equation (90) and its derivatives, we convert Equation (3) to
a polynomial function of K f (Θ). Gathering all coefficients of terms that have a same degree and
equating them to zero, and solving the obtained system of equation, we get:

a0 →
i
√

aβ√
bβ2 − 4α1bσ

, a1 →
2i
√

aσ√
b(β2 − 4α1σ)

, b1 → 0, c→ −
√

2
√

a√
β2 − 4α1σ

,

where (a < 0, b < 0 and β2 − 4 α1 σ < 0).

According the values of these parameters, the solitary solutions of Equation (2) are organized
as follows:

When [β2 − 4 α1 σ < 0 and σ 6= 0]:

u(x, t) =
i
√

a
√

4α1σ− β2 tan
(

1
2

√
4α1σ− β2

(
x−

√
2
√

atα

α
√

β2−4α1σ

))
√

b (β2 − 4α1σ)
, (91)

u(x, t) =
i
√

a
√

4α1σ− β2 cot
(

1
2

√
4α1σ− β2

(
x−

√
2
√

atα

α
√

β2−4α1σ

))
√

b (β2 − 4α1σ)
. (92)
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When [β2 − 4 α1 σ < 0, σ 6= 0 and σ = −α1]:

u(x, t) =
i
√

a
√
−4α2

1 − β2 tan
(

1
2

√
−4α2

1 − β2
(

x−
√

2
√

atα

α
√

β2−4α1σ

))
√

b
(
4α2

1 + β2
) , (93)

u(x, t) =
i
√

a
√
−4α2

1 − β2 cot
(

1
2

√
−4α2

1 − β2
(

x−
√

2
√

atα

α
√

β2−4α1σ

))
√

b
(
4α2

1 + β2
) . (94)

When [β2 + 4 α2
1 < 0, σ 6= 0 and σ = α1]:

u(x, t) =
i
√

a
√

4α2
1 − β2 tan

(
1
2

√
4α2

1 − β2
(

x−
√

2
√

atα

α
√

β2−4α1σ

))
√

b
(

β2 − 4α2
1
) , (95)

u(x, t) =
i
√

a
√

4α2
1 − β2 cot

(
1
2

√
4α2

1 − β2
(

x−
√

2
√

atα

α
√

β2−4α1σ

))
√

b
(

β2 − 4α2
1
) . (96)

When [α1 σ > 0, β = 0 and α1 6= 0]:

u(x, t) =
i
√

a
√

α1σ tan
(
√

α1σ

(
x−

√
2
√

atα

α
√

β2−4α1σ

))
√

α1(−b)σ
, (97)

u(x, t) = −
i
√

a
√

α1σ cot
(
√

α1σ

(
x−

√
2
√

atα

α
√

β2−4α1σ

))
√

α1(−b)σ
. (98)

When [β = 0 and σ = α1]:

u(x, t) = −
i
√

aα1 coth
(

α1

(
x−

√
2
√

atα

α
√

β2−4α1σ

))
√

α2
1b

. (99)

2.12. Adomian Decomposition Method

In this part of our research, we studied the approximate solutions for the nonlinear time
fractional Duffing equation based on our obtained exact traveling wave solutions of Equation
(3). Applying the Adomain decomposition method on Equation (91) when [a → −1, b →
−4, β = 2

√
2, α = 1

4 , σ = 9 and c = −
√

2], we obtained:

u0 = −Θ
4 , (100)

u1 = Θ5

640 + Θ3

48 , (101)

u2 = Θ10

614400 + Θ8

28672 −
Θ7

53760 −
Θ5

1920 , (102)

u3 = Θ13

42598400 −
Θ12

162201600 + Θ11

1126400 −
Θ10

5160960 + Θ9

967680 −
29Θ7

161280 , (103)
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uapproximate = Θ13

42598400 −
Θ12

162201600 + Θ11

1126400 + 37Θ10

25804800 + Θ9

967680 + Θ8

28672 −
Θ7

5040 + Θ5

960 + Θ3

48 −
Θ
4 + ... (104)

Discussion between exact and approximate obtained solutions is represented in the following
Table 1:

Table 1. Representation of the discussion amidst exact solution (Equation (91)) and approximate
solution (Equation (104)) with different value of (Θ).

Value of (Θ) Exact Solution Approximate Solution Error

Θ = 0.01 0.00250002 0.00249998 4.1667× 10−8

Θ = 0.02 0.00500017 0.00499983 3.33343× 10−7

Θ = 0.03 0.00750056 0.00749944 1.12508× 10−6

Θ = 0.04 0.0100013 0.00999867 2.66699× 10−6

Θ = 0.05 0.0125026 0.0124974 5.20931× 10−6

Remark 1. For any unconditional parameter and mathematical expression in previous results, consider them
with a positive value.

3. Stability Analysis

In this part of our research, we investigated one of the basic properties of any model. We examined
the stability property for the nonlinear fractional Duffing equation using a Hamiltonian system.
The momentum in the Hamiltonian system is given by the following formula:

M =
1
2

∫ k

−k
u2(Θ) dΘ. (105)

Consequently, the condition for stability of solutions is:

∂M
∂c

> 0. (106)

For example, studying the stability property for Equation (91), we get:

M =
1
8c

[(3π − 10(c + 1)) log(1 + e10i(c+1)) + ... + 10 c log(cos(5(c + 1)) sec(5(c + 2)))], (107)

so that:

∂M
∂c |c=−1 = −1

8 [50(c + 1)(tan(5(c + 1))− i)− 10 log
(

1 + e10i(c+1)
)
+ ...

+10c cos(5c + 10) sec(5c + 5)(5 cos(5c + 5) tan(5c + 10) sec(5c + 10)− 5 sin(5c + 5) sec(5c + 10))] > 0,
(108)

and this solution is stable on the interval [x ∈ [−5, 5] and t ∈ [−5, 5]]. Using the same steps, we can
check every solution that was obtained by the twelve used methods.

4. Results and Discussion

In the following steps, we discuss and investigate the obtained solutions and show their
convergence. We applied twelve methods to the fractional nonlinear Duffing equation. We obtained
many formulae of exact and approximate solutions:

1. In Reference [5], Akbar et al. applied the generalized (G′/G)-expansion method; here, we also
applied an extended model of the (G′/G)-expansion method. Applying Akbar’s technique
permits us to get five various formulae of solutions; our extended method allows us to get
three different solutions. Our obtained solutions differ completely from those in Reference [5].
That means we succeeded in obtaining a new formula of solutions for our model.
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2. Equations (11), (13), (22), (29), (35), (37), (40), and (91) are convergent to each other by equating
the parameters in each solution.

3. Equations (12), (14), (23), (30), (36), (38), (41), and (92) are convergent to each other by equating
the parameters in each solution.

4. This convergence of solutions for the fractional nonlinear Duffing equation shows the accuracy
of our obtained solutions.

5. Table 1 shows the convergence between exact and approximate solutions. The absolute value of
error illustrates this convergence.

6. Table 1 shows the accuracy of the Adomian decomposition method in the period that is near to
zero, like [−1, 1].

7. According to the solutions that were obtained by the modified Khater method (modified auxiliary
equation method) [30], this is considered one of the most general methods in this field, since it
covers many of solutions that were obtained by other methods and is also able to obtain more
novel and different solutions than other methods.

5. Conclusions

In this paper, we applied eleven recent methods to the nonlinear fractional Duffing equation.
We got many various formulas of solutions for this model. We also applied a novel modified method
(mKM) that considered the most recent method in this field. The method introduced in Reference [31]
was derived in 2017 and after some time, we found the obtained solutions using it were not exact
but computational solutions. Here, we applied a novel modified method [30]. We got solitary and
approximate solutions for this model. We represented our solutions via making a comparison between
them to show the convergence between them. Studying the stability of solutions confirms their ability
to be used in many applications. In Figures 1–13, we plotted some solutions to investigate more of
their properties.
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Figure 1. Bright solitary wave, the bistable wave amplitude, and contour plots for Equation (5). On the
respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1}, {x,−3, 3}, {t,−0.1, 0.1}.
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Figure 2. Periodic solitary wave, the bistable wave amplitude, and contour plots for
Equation (11). On the respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1},
{x,−3, 3}, {t,−0.1, 0.1}.
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Figure 3. Periodic solitary wave, the bistable wave amplitude, and contour plots for
Equation (16). On the respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1},
{x,−3, 3}, {t,−0.1, 0.1}.
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Figure 4. Periodic solitary wave, the bistable wave amplitude and contour plots for
Equation (21). On the respectively interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1},
{x,−3, 3}, {t,−0.1, 0.1}.
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Figure 5. Solitary wave, the bistable wave amplitude, and contour plots for Equation (25). On the
respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1}, {x,−3, 3}, {t,−0.1, 0.1}.
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Figure 6. Periodic solitary wave, the bistable wave amplitude, and contour plots for
Equation (29). On the respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1},
{x,−3, 3}, {t,−0.1, 0.1}.
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Figure 7. Solitary wave, the bistable wave amplitude, and contour plots for Equation (50). On the
respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1}, {x,−3, 3}, {t,−0.1, 0.1}.
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Figure 8. Solitary wave, the bistable wave amplitude and contour plots for Equation (63). On the
respectively interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1}, {x,−3, 3}, {t,−0.1, 0.1}.
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Figure 9. Solitary wave, the bistable wave amplitude, and contour plots for Equation (69). On the
respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1}, {x,−3, 3}, {t,−0.1, 0.1}.
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Figure 10. Solitary wave, the bistable wave amplitude, and contour plots for Equation (84). On the
respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1}, {x,−3, 3}, {t,−0.1, 0.1}.
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Figure 11. Solitary wave, the bistable wave amplitude and contour plots for Equation (91). On the
respectively interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1}, {x,−3, 3}, {t,−0.1, 0.1}.
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Figure 12. Solitary wave, the bistable wave amplitude, and contour plots for Equation (104). On the
respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}, {x,−10, 10}, {t,−1, 1}, {x,−3, 3}, {t,−0.1, 0.1}.
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Figure 13. Exact and approximate of Equations (104) and (91) when {x,−5, 5} and {x,−0.5, 0.5}.
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