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Abstract: We consider a Keller–Segel type chemotaxis model with logarithmic sensitivity and
logistic growth. The logarithmic singularity in the system is removed via the inverse Hopf–Cole
transformation. We then linearize the system around a constant equilibrium state, and obtain a
detailed, pointwise description of the Green’s function. The result provides a complete solution
picture for the linear problem. It also helps to shed light on small solutions of the nonlinear system.
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1. Introduction

We consider a Keller–Segel type chemotaxis model with logarithmic sensitivity and logistic growth:{
ct = εcxx − µuc− σc,

ut + χ[u(ln c)x]x = Duxx + au(1− u
K ),

x ∈ R, t > 0. (1)

Here, the unknown functions c = c(x, t) and u = u(x, t) are the concentration of a chemical
signal and the density of a cellular population, respectively. The system parameters are interpreted
as follows.

• ε ≥ 0 is the diffusion coefficient of chemical signal.
• µ 6= 0 is the coefficient of density-dependent production/degradation rate of chemical signal.
• σ ≥ 0 is the natural degradation rate of chemical signal.
• χ 6= 0 is the coefficient of chemotactic sensitivity.
• D ≥ 0 is the diffusion coefficient of cellular population.
• a ≥ 0 is the natural growth rate of cellular population.
• K > 0 is the typical carrying capacity of cellular population.

The system describes the dynamics when certain biological organism releases or consumes a
chemical signal in the local environment while both entities are naturally diffusing and reacting.
It includes logarithmic chemotactic response of cells to the signal, and some or all of the following
mechanisms: random walk/diffusion, consumption/deposition of the chemical by cells, natural
degradation of the chemical, and the logistic growth of cells.

Biologically, the sign of χ indicates whether the chemotactic movement is attractive (χ > 0)
or repulsive (χ < 0). When χ > 0 and µ > 0, Equation (1) describes the movement of cells that
are attracted to and consume the chemical, say, for nutrition. When χ < 0 and µ < 0, as adopted
in [1] for the non-growth model, it describes the movement of cells that deposit a chemical signal
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to modify the local environment for succeeding passages. Such a scenario has found applications
in cancer research [2]. Since there is no difference in the analysis of these two scenarios, we assume
χµ > 0 throughout this paper. Mathematically, the non-diffusive part of the transformed system to be
discussed below is hyperbolic in biologically relevant regimes when χµ > 0, while it may change type
when χµ < 0 [3].

The logarithmic singularity in Equation (1) accounts for Fechner’s law, which states that subjective
sensation is proportional to the logarithm of the stimulus intensity [4]. It can be removed via the
inverse Hopf–Cole transformation [5]:

v = (ln c)x =
cx

c
. (2)

Under the variables v and u, Equation (1) is converted into{
vt + (µu− εv2)x = εvxx,

ut + χ(uv)x = Duxx + au(1− u
K ).

(3)

Equation (3) can be further simplified by rescaling and/or non-dimensionalization:

t̃ = χµKt, x̃ =
√

χµKx, ṽ = sign(χ)
√

χ

µK
v, ũ =

u
K

. (4)

After dropping the tilde accent, we arrive at{
vt + (u− εv2/χ)x = εvxx,

ut + (uv)x = Duxx + ru(1− u),
(5)

where
r =

a
χµK

≥ 0. (6)

We consider the Cauchy problem of Equation (1):

(c, u)(x, 0) = (c0, u0)(x), (7)

or equivalently, the Cauchy problem of Equation (5):

(v, u)(x, 0) = (v0, u0)(x), (8)

where the Cauchy datum (v0, u0) is assumed to be a small perturbation of a constant equilibrium
state (v̄, ū). To be an equilibrium state, we need ū = 0 or ū = 1. It is clear that the former is unstable.
Therefore, we set ū = 1. To discuss v̄, we apply Equation (2) to have

v0 =
c′0
c0

, c0(x) = c0(0)e
∫ x

0 v0(y) dy with c0(0) > 0, (9)

where for simplicity we have omitted the scaling constant sign(χ)
√

χ/µK from Equation (4).
If v0 − v̄ ∈ L1(R) while v̄ ≷ 0, we have

∫ ∞

0
v0(y) dy = ±∞,

∫ 0

−∞
v0(y) dy = ±∞.

Therefore, from Equation (9) we have c0(x) → ∞ either as x → ∞ or as x → −∞, depending
on v̄ > 0 or v̄ < 0. For physically interesting problems, we consider limx→±∞ c0(x) = c± with
0 < c± < ∞.
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Therefore, we take v̄ = 0. In summary,

lim
x→±∞

(v0, u0) = (v̄, ū) = (0, 1). (10)

Cauchy problem of Equations (5) and (8) has unique global-in-time small data solution, i.e., when
(v0, u0) is a small perturbation of (0, 1), see [6,7]. To study small data solutions, especially their long
time behavior, one needs to study the corresponding linear system, linearized around the constant
equilibrium state. For this, we introduce new variables for the perturbation:

w1 = v, w2 = u− 1. (11)

Linearizing Equation (5) around (0, 1), we have{
w1t + w2x = εw1xx,

w2t + w1x = Dw2xx − rw2,
(12)

where ε, D, r ≥ 0 are constant parameters.
The goal of this paper is to obtain an accurate and detailed pointwise description, both in x and in

t, of the Green’s function of Equation (12). The Green’s function provides a complete solution picture
to Equation (12) and is significant in the linear theory. As discussed above, it also sheds light on the
behavior of small data solutions for Equations (5) and (8), which will be studied in a future work.

2. Main Results and Discussion

To obtain the Green’s function, we write Equation (12) in vector form:

wt + Awx = Bwxx + Lw, (13)

where

w =

(
w1

w2

)
, A =

(
0 1
1 0

)
, B =

(
ε 0
0 D

)
, L =

(
0 0
0 −r

)
. (14)

Here, ε, D, r ≥ 0 are constants. We assume that at least one of them is positive. Otherwise,
Equation (13) has no dissipation, and its Green’s function consists of δ-functions along the characteristic
lines, a different scenario to what we discuss below.

The Green’s Function of Equation (13) is the solution matrix G(x, t) of

Gt + AGx = BGxx + LG

G(x, 0) = δ(x)I2×2,
(15)

where δ(x) is the Dirac δ-function, and I2×2 is the 2× 2 identity matrix. Our main results on G are the
following theorems, concerning three different cases: r = 0; r > 0 while ε = D = 0; and r > 0 while at
least one of ε and D is positive. The cases correspond to different types of systems: hyperbolic–parabolic
conservation laws, hyperbolic balance laws, and hyperbolic–parabolic balance laws.

2.1. Hyperbolic–Parabolic Conservation Laws

Theorem 1. Let r = 0, ε, D ≥ 0, and at least one of ε and D be positive. Let l ≥ 0 be an integer. Then, for
x ∈ R, t > 0, the Green’s function G(x, t) of Equation (13) has the following estimates:
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1. When ε, D > 0,

∂l

∂xl G(x, t) =
∂l

∂xl

[
1√

2π(ε + D)t
e−

(x+t)2

2(ε+D)t

(
1
2 − 1

2
− 1

2
1
2

)
+

1√
2π(ε + D)t

e−
(x−t)2

2(ε+D)t

(
1
2

1
2

1
2

1
2

)]

+ O(1)(t + 1)−
1
2 t−

l+1
2 e−

(x+t)2
Ct + O(1)(t + 1)−

1
2 t−

l+1
2 e−

(x−t)2
Ct ,

(16)

where C > 0 is a constant.
2. When ε = 0 and D > 0,

∂l

∂xl G(x, t) =
∂l

∂xl

[
1√

2πDt
e−

(x+t)2
2Dt

(
1
2 − 1

2
− 1

2
1
2

)
+

1√
2πDt

e−
(x−t)2

2Dt

(
1
2

1
2

1
2

1
2

)]

+ O(1)(t + 1)−
1
2 t−

l+1
2 e−

(x+t)2
Ct + O(1)(t + 1)−

1
2 t−

l+1
2 e−

(x−t)2
Ct

+ e−t/D
l

∑
j=0

δ(l−j)(x)Qj,

(17)

where C > 0 is a constant, and Qj, 0 ≤ j ≤ l, is a 2× 2, symmetric, polynomial matrix in t with a degree
not more than j. In particular,

Q0 =

(
1 0
0 0

)
.

3. When ε > 0 and D = 0,

∂l

∂xl G(x, t) =
∂l

∂xl

[
1√

2πεt
e−

(x+t)2
2εt

(
1
2 − 1

2
− 1

2
1
2

)
+

1√
2πεt

e−
(x−t)2

2εt

(
1
2

1
2

1
2

1
2

)]

+ O(1)(t + 1)−
1
2 t−

l+1
2 e−

(x+t)2
Ct + O(1)(t + 1)−

1
2 t−

l+1
2 e−

(x−t)2
Ct

+ e−t/ε
l

∑
j=0

δ(l−j)(x)Qj,

(18)

where C > 0 is a constant, and Qj, 0 ≤ j ≤ l, is a 2× 2, symmetric, polynomial matrix in t with a degree
not more than j. In particular,

Q0 =

(
0 0
0 1

)
.

Under the assumption r = 0, Equation (13) becomes

wt + Awx = Bwxx. (19)

Green’s function estimates on a general system in the form of Equation (19) are detailed in [8]
(see Theorems 6.2 and 6.15 therein). It is straightforward to verify that the assumptions of those
theorems are satisfied when A and B are given in Equation (14). Therefore, by direct calculation and
straightforward application of those theorems, we obtain Theorem 1. We note that Equations (16)–(18)
are precise and explicit in the leading terms (and in the singular terms if l = 0). We also note that G is
symmetric since A and B are, so are Qj in Equations (17) and (18).
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2.2. Hyperbolic Balance Laws

Theorem 2. Let r > 0, ε = D = 0, and l ≥ 0 be an integer. Then, for x ∈ R, t > 0, the Green’s function
G(x, t) of Equation (13) has the following estimate:

∂l

∂xl G(x, t) =
∂l

∂xl

[
1√

4πt/r
e−

rx2
4t

(
1 0
0 0

)]
+ O(1)(t + 1)−

1
2 t−

l+1
2 e−

x2
Ct

(
0 1
1 0

)

+ (t + 1)−1t−
l+1

2 e−
x2
Ct

(
O(1) 0

0 O(1)

)
+ e−

r
2 t

l

∑
j=0

δ(l−j)(x + t)Q1j

+ e−
r
2 t

l

∑
j=0

δ(l−j)(x− t)Q2j,

(20)

where C > 0 is a constant, and Q1j and Q2j, 0 ≤ j ≤ l, are 2× 2, symmetric, polynomial matrices in t whose
degrees are not more than j. In particular,

Q10 =

(
1
2 − 1

2
− 1

2
1
2

)
, Q20 =

(
1
2

1
2

1
2

1
2

)
.

Under the assumptions of Theorem 2, Equation (13) becomes

wt + Awx = Lw. (21)

Green’s function estimates on a general system in the form of Equation (21) are detailed in [9]
(see Theorem 3.6 therein). It is straightforward to verify that the assumptions of that theorem are
satisfied when A and L are given in Equation (14). Therefore, direct application of that theorem would
gives us an estimate similar to Equation (20). Here, our result (Equation (20)) has slightly more details
in the higher order terms, the second and third terms on the righthand side of Equation (20). This is
due to the special structure of A and L in Equation (14), and is justified in Section 3.

2.3. Hyperbolic–Parabolic Balance Laws

Theorem 3. Let r > 0, ε, D ≥ 0, and at least one of ε and D be positive. Let l > 0 be an integer. Then, for
x ∈ R, t > 0, the Green’s function G(x, t) of Equation (13) has the following estimates:

1. When ε, D > 0,

∂l

∂xl G(x, t) =
∂l

∂xl

[
1√

4π(ε + 1/r)t
e−

x2
4(ε+1/r)t

(
1 0
0 0

)]
+ O(1)(t + 1)−

1
2 t−

l+1
2 e−

x2
Ct

(
0 1
1 0

)

+ (t + 1)−1t−
l+1

2 e−
x2
Ct

(
O(1) 0

0 O(1)

)
,

(22)

where C > 0 is a constant.
2. When ε = 0 and D > 0,

∂l

∂xl G(x, t) =
∂l

∂xl

[
1√

4πt/r
e−

rx2
4t

(
1 0
0 0

)]
+ O(1)(t + 1)−

1
2 t−

l+1
2 e−

x2
Ct

(
0 1
1 0

)

+ (t + 1)−1t−
l+1

2 e−
x2
Ct

(
O(1) 0

0 O(1)

)
+ e−

t
D

l

∑
j=0

δ(l−j)(x)Qj,

(23)
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where C > 0 is a constant, and Qj, 0 ≤ j ≤ l, is a 2× 2, symmetric, polynomial matrix in t with a degree
not more than j/2. In particular,

Q0 =

(
1 0
0 0

)
.

3. When ε > 0 and D = 0,

∂l

∂xl G(x, t) =
∂l

∂xl

[
1√

4π(ε + 1/r)t
e−

x2
4(ε+1/r)t

(
1 0
0 0

)]
+ O(1)(t + 1)−

1
2 t−

l+1
2 e−

x2
Ct

(
0 1
1 0

)

+ (t + 1)−1t−
l+1

2 e−
x2
Ct

(
O(1) 0

0 O(1)

)
+ e−(r+

1
ε )t

l

∑
j=0

δ(l−j)(x)Qj,

(24)

where C > 0 is a constant, and Qj, 0 ≤ j ≤ l, is a 2× 2, symmetric, polynomial matrix in t with a degree
not more than j/2. In particular,

Q0 =

(
0 0
0 1

)
.

Comparing Theorems 1–3 we observe that the solution behavior for r > 0 is very different to that
for r = 0. When r = 0, from Theorem 1, we see that the leading term in time decay is two heat kernels
along the characteristics of A, while, for r > 0, from Theorems 2 and 3, it is a heat kernel along t-axis.
Therefore, the logistic growth of cells completely changes the solution picture.

From all three theorems, we also observe that the regularity of solution depends solely on the
number of nonzero diffusion coefficients ε and D. If both are positive, there is no δ-functions in the
Green’s function (see Theorems 1 and 3, Case 1). If one of them is zero, then there is a δ-function
(and its derivatives as appropriate) (see Theorems 1 and 3, Cases 2 and 3). If both are zero, then there
are two δ-functions (see Theorem 2).

The last comment is on the role of D. If there is no logistic growth of cells, the two diffusion
coefficients ε and D play the same role (see Theorem 1). However, if there is logistic growth, r > 0,
then only r and ε > 0 but not D appear in the leading heat kernel (see Theorem 3). That is, logistic
growth of cells overwhelms their diffusion.

In next section, we prove Theorem 3 and justify Theorem 2 to finish this paper.

3. Green’s Function Estimates

Notation 1. Throughout this paper, C denotes a universal positive constant, whose value may vary line by line
according to the context.

To study a linear system, we perform Fourier transform with respect to x:

ŵ(ξ, t) =
∫
R

w(x, t)e−ixξ dx,

w(x, t) =
1

2π

∫
R

ŵ(ξ, t)eixξ dξ.
(25)

Taking Fourier transform of Equation (15), we have

Ĝt = EĜ, Ĝ(ξ, 0) = I2×2, (26)

where
E = E(iξ) = L− iξ A− ξ2B. (27)

Solving Equation (26) gives us
Ĝ(ξ, t) = etE(iξ). (28)
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Applying the inverse transform, we arrive at

∂l

∂xl G(x, t) =
1

2π

∫
R
(iξ)lĜ(ξ, t)eixξ dξ (29)

for an integer l ≥ 0. Our goal in this section is to estimate the righthand side of Equation (29) to obtain
the results in Theorems 2 and 3 under the assumption r > 0.

3.1. Spectral Analysis

We carry out spectral analysis of E(iξ) defined in Equation (27). By straightforward calculation,
the eigenvalues of E(iξ) are

λ1,2(iξ) = −
1
2
[r + (ε + D)ξ2]±

√
1
4
[r + (ε + D)ξ2]2 − ξ2[(εr + 1) + Dεξ2], (30)

and the corresponding eigenprojections are

P1,2(iξ) =
1

−ξ2 + (λ1,2 + εξ2)2

(
−ξ2 −iξ(λ1,2 + εξ2)

−iξ(λ1,2 + εξ2) (λ1,2 + εξ2)2

)
. (31)

Therefore, with Equation (28), we have

Ĝ(ξ, t) = etE(iξ) = eλ1(iξ)tP1(iξ) + eλ2(iξ)tP2(iξ), (32)

with λ1,2 and P1,2 given in Equations (30) and (31).
The leading term in etE(iξ) comes from small ξ. Thus, we consider Taylor expansions for |ξ| � 1:

λ1(iξ) = −(ε +
1
r
)ξ2 + O(ξ4), λ2(iξ) = −r + O(ξ2),

P1(iξ) =

(
1 + O(ξ2) − iξ

r + O(ξ3)

− iξ
r + O(ξ3) O(ξ2)

)
, P2(iξ) =

(
O(ξ2) O(ξ)

O(ξ) 1 + O(ξ2)

)
.

(33)

Similarly, the regularity of G and its derivatives comes from the expansions as |ξ| → ∞. To simplify
our formulation, λ1 takes the positive square root in Equation (30) if ε > D, and the negative one if
ε < D, while λ2 is the other one. For ε 6= D, we have

λ1(iξ) = −Dξ2 + λ10(iξ), λ2(iξ) = −εξ2 + λ20(iξ),

P1(iξ) =

(
p1

p2
ε−D (iξ)−1

p2
ε−D (iξ)−1 1− p1

)
, P2(iξ) =

(
1− p1 − p2

ε−D (iξ)−1

− p2
ε−D (iξ)−1 p1

)
,

(34)

where

λ10(iξ) = −(r +
1

ε− D
) +

∞

∑
j=1

c1jξ
−2j, λ20(iξ) =

1
ε− D

+
∞

∑
j=1

c2jξ
−2j,

p1 = p1(iξ) =
∞

∑
j=1

c̃1jξ
−2j, p2 = p2(iξ) = 1 +

∞

∑
j=1

c̃2jξ
−2j

(35)

are analytic at ∞, with real coefficients c1j, c2j, c̃1j and c̃2j in Equation (35).
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If ε = D, on the other hand, we have

λ1,2(iξ) = −Dξ2 ± iξ − 1
2

r± λ−1(iξ),

P1,2(iξ) =

(
1
2 ± p3 ∓ 1

2 ± p4

∓ 1
2 ± p4

1
2 ∓ p3

)
,

(36)

where

λ−1(iξ) =
r2

8
(iξ)−1 + (iξ)−1

∞

∑
j=1

c3jξ
−2j,

p3(iξ) =
r
4
(iξ)−1 +

∞

∑
j=2

c̃3j(iξ)−j, p4(iξ) =
∞

∑
j=2

c̃4j(iξ)−j
(37)

are analytic at ∞, and c3j, c̃3j and c̃4j are real coefficients.

3.2. Estimates on Inverse Transform

To estimate Equation (29), we focus on the case r > 0, ε = 0 and D > 0. All other cases are similar,
and are discussed at the end of the section. Our goal is to obtain Equation (23). For this, we apply
Equations (34) and (35) to have

(iξ)leλ1(iξ)tP1(iξ) = O(1)(iξ)le−Dξ2t+O(1)t,

(iξ)leλ2(iξ)tP2(iξ) = e−
t
D [

l

∑
j=0

(iξ)l−jQj + (iξ)−1Ql+1 + O(1)(iξ)−2(1 + t + · · ·+ t
l+l′

2 )

+ O(1)(iξ)−2−l′ t
l+l′+2

2 eO(1)ξ−2t]

(38)

as |ξ| → ∞. Here, l ≥ 0 is an integer, l′ = 1 if l is odd, and l′ = 0 if l is even. On the other hand, Qj is a
2× 2 polynomial matrix in t with a degree not more than j/2, 0 ≤ j ≤ l + 1. In particular,

Q0 =

(
1 0
0 0

)
.

With the same Qj in Equation (38), we define

R(l)(x, t) =
∂l

∂xl G(x, t)− ∂l

∂xl

[
1√

4πt/r
e−

rx2
4t

(
1 0
0 0

)]
− e−

t
D

l

∑
j=0

δ(l−j)(x)Qj. (39)

To obtain Equation (23), we need to prove

R(l)(x, t) = O(1)(t + 1)−
1
2 t−

l+1
2 e−

x2
Ct

(
0 1
1 0

)
+ (t + 1)−1t−

l+1
2 e−

x2
Ct

(
O(1) 0

0 O(1)

)
(40)

for a constant C > 0. Using the inverse Fourier transform in Equation (25), we have

R(l)(x, t) =
1

2π

∫
R

R̂(l)(ξ, t)eixξ dξ,

R̂(l)(ξ, t) = (iξ)l

[
Ĝ(ξ, t)− e−

1
r ξ2t

(
1 0
0 0

)
− e−

t
D

l

∑
j=0

(iξ)−jQj

]
.

(41)
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Lemma 1. Let r > 0, ε = 0 and D > 0. For x ∈ R and t > 0, we have

|R(l)
12 (x, t)| = |R(l)

21 (x, t)| ≤ C(t + 1)−
1
2 t−

l+1
2 e−

x2
Ct + Ct−

l+1
2 e−

t
C , (42)

|R(l)
11 (x, t)|+ |R(l)

22 (x, t)| ≤ C(t + 1)−1t−
l+1

2 e−
x2
Ct + Ct−

l+1
2 e−

t
C , (43)

where R(l)
jk denotes the (j, k) entry of R(l), 1 ≤ j, k ≤ 2.

Proof. Let n > 0 be small such that Equation (33) applies for |ξ| ≤ 2n, and N > 0 be large such that
Equation (38) applies for |ξ| ≥ N. Denote the (k, k′) entries of Ĝ and Qj as Ĝkk′ and Q(j)

kk′ , respectively.
We write

R(l)
11 (x, t) = I1 + I2 + I3,

I1 =
1

2π

∫
|ξ|≤n

(iξ)l [Ĝ11(ξ, t)− e−
1
r ξ2t]eixξ dξ,

I2 =
1

2π

∫
|ξ|≥N

(iξ)l

[
Ĝ11(ξ, t)− e−

t
D

l

∑
j=0

(iξ)−jQ(j)
11

]
eixξ dξ,

I3 =
1

2π

[ ∫
n≤|ξ|≤N

(iξ)lĜ11(ξ, t)eixξ dξ −
∫
|ξ|≥n

(iξ)le−
1
r ξ2teixξ dξ

−
∫
|ξ|≤N

e−
t
D

l

∑
j=0

(iξ)l−jQ(j)
11 eixξ dξ

]
,

(44)

where all integrals are over subsets of R.
For I1, we apply Equations (32) and (33) to have

I1 =
1

2π

∫
|ξ|≤n

(iξ)l [eλ1(iξ)tP1
11(ξ, t)− e−

1
r ξ2t]eixξ dξ + O(1)e−

r
2 t, (45)

where P1
11 is the (1, 1) entry of P1. From Equations (30) and (31), we note that the integrand in

Equation (45) is holomorphic in ξ (as a complex variable) in a neighborhood of the origin. Taking
n small, we apply Cauchy integral theorem to replace the domain of integration [−n, n] by a path
Γ(α) ≡ {−n + iη | η is from 0 to α} ∪ {ζ + iα | − n ≤ ζ ≤ n} ∪ {n + iη | η is from α to 0}. Here, α can
be positive or negative, but |α| ≤ n. With Equation (33) we have

I1 =
∫

Γ(α)
(iξ)l [e−

1
r ξ2t+O(|ξ|4)t[O(|ξ|4)t + O(|ξ|2)]eixξ dξ + O(1)e−

r
2 t.

If r|x|/t ≤ n, we set α = rx/(2t). Integrating over each pieces of Γ(α), we have

|I1| ≤ C
∫ n

−n
e−

rx2
8t −

ζ2t
2r (|ζ|+ |x|

t
)l+2 dζ + Ce−

n2
2r t + Ce−

r
2 t

≤ C(t + 1)−
l+3

2 e−
x2
Ct + Ce−

t
C .

(46)

If r|x|/t > n, we set α = n
2 sign(x). The straightforward calculation yields

|I1| ≤ Ce−
t
C . (47)
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To estimate I2, we apply Equation (38) to Equation (32) to have

I2 = O(1)
∫
|ξ|≥N

|ξ|le−
D
2 ξ2t dξ +

1
2π

e−
t
D

∫
|ξ|≥N

(iξ)−1eixξ dξQ(l+1)
11

+ O(1)e−
t

2D

∫
|ξ|≥N

ξ−2 dξ

= O(1)t−
l+1

2 e−
t
C ,

(48)

noting the second integral on the right-hand side of Equation (48) is the principal value.
To estimate I3, we write Equation (44)

I3 =
1

2π

∫
n≤|ξ|≤N

(iξ)lĜ11(ξ, t)eixξ dξ + O(1)t−
l+1

2 e−
t
C . (49)

From Equation (30), we note that, for ξ ∈ R \ {0}, the real parts of λ1,2, <(λ1,2), are negative. As a
continuous function on a compact set,

<(λ1,2)(iξ) ≤ −β, ξ ∈ [−N,−n] ∪ [n, N] (50)

for a constant β > 0.
From the characteristic equation of E(iξ), it is straightforward to verify

−ξ2 + λ2
1,2 = ±λ1,2(λ1 − λ2).

Noting ε = 0, P1,2(iξ) in Equation (31) is analytic in any domain of C where λ1 and λ2 are distinct.
From Equation (30), there are ξ j ∈ C, 1 ≤ j ≤ 4, such that λ1 = λ2. If a ξ j is on (−N,−n) ∪ (n, N) for
n > 0 small and N > 0 large, we replace (ξ j − α, ξ j + α), with α > 0 small, by a semi-circle centered
at ξ j with radius α. In this way, we replace [−N,−n] ∪ [n, N] by a union of two paths, denoted as Γ.
Noting Equation (50) and the continuity of <(λ1,2), we have

<(λ1,2)(iξ) ≤ −
β

2
, |P1,2(iξ)| ≤ C, ξ ∈ Γ, (51)

by choosing α small. Since the integrand of Equation (49) is an entire function, applying Cauchy
theorem and Equation (32), and substituting Equation (51) into Equation (49), we arrive at

I3 =
1

2π

∫
Γ
(iξ)lĜ11(ξ, t)eixξ dξ + O(1)t−

l+1
2 e−

t
C = O(1)t−

l+1
2 e−

t
C . (52)

Here, we have chosen the small semi-circles in Γ on the upper-half complex plane if x ≥ 0, and
lower half-plane if x < 0, so that <(ixξ) ≤ 0.

Combining Equations (44), (46)–(48) and (52), we obtain the estimate for R(l)
11 in Equation (43).

The estimates for R(l)
22 and R(l)

12 are obtained in the same way. In particular, the slower decay rate in R(l)
12

comes from −iξ/r in the (1, 2) entry of P1(iξ) in Equation (33), comparing O(ξ2) in the (2, 2) entry.
Finally, Equations (14) and (27)–(29) imply that G(x, t) is symmetric. Therefore, Qj in Equation (38)

hence in Equation (23) and R(l) in Equation (39) are symmetric. This gives us R(l)
12 = R(l)

21 .

Lemma 2. Let K > 0 be large. Under the assumptions of Lemma 1, for ξ ∈ R, t > 0, and |x|/t ≥ K, we have

|R(l)(x, t)| ≤ Ct−
l+1

2 e−
x2
Ct , (53)

where R(l) is defined in Equation (39).
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Proof. From Equations (41) and (28), we have

R(l)(x, t) = I4 −
∂l

∂xl

[
1√

4πt/r
e−

rx2
4t

(
1 0
0 0

)]
= I4 + O(1)t−

l+1
2 e−

x2
Ct ,

I4 =
1

2π

∫
R
(iξ)l

[
etE(iξ) − e−

t
D

l

∑
j=0

(iξ)−jQj

]
eixξ dξ.

(54)

Since the integrand of I4 is an entire function, by a standard argument, we apply Cauchy theorem
to replace the integral path R by Γx/t = {ζ + i x

2Dt | ζ ∈ R}. Taking K large and applying Equations (32)
and (38) gives us

I4 =
1

2π

∫
Γx/t

(iξ)l

[
etE(iξ) − e−

t
D

l

∑
j=0

(iξ)−jQj

]
eixξ dξ

=
1

2π

∫
Γx/t

{
O(1)(iξ)le−Dξ2t+O(1)t + e−

t
D [(iξ)−1Ql+1 + O(1)|ξ|−2(1 + t + · · ·+ t

l+l′
2 )

+ O(1)|ξ|−2−l′ t
l+l′+2

2 eO(1)|ξ|−2t]
}

eixξ dξ

= O(1)
∫
R
(|ζ|l + | x

t
|l)e−Dζ2t− x2

8Dt dζ +
e−

t
D

2π

∫
R

eixζ

iζ − x
2Dt

dζe−
x2

2Dt Ql+1

+ O(1)e−
t

2D−
x2

2Dt

∫
R

dζ

ζ2 + K2

4D2

.

Note that
1

iζ − x
2Dt

=
1
iζ
− x

2Dt

[
1

ζ2 + ( x
2Dt )

2 +
1
iζ

x
2Dt

ζ2 + ( x
2Dt )

2

]
,

which implies ∫
R

eixζ

iζ − x
2Dt

dζ =
∫
R

eixζ

iζ
dζ + O(1)

(
| x

t
|+ | x

t
|2|x|

)
.

Therefore,

I4 = O(1)t−
l+1

2 e−
x2
Ct . (55)

Substituting Equation (55) into Equation (54) gives us Equation (53).

Combining Lemmas 1 and 2, and noting that G is symmetric, we arrive at Equation (23). The
proof of Equation (24) is parallel. The proof of Equation (22) is simpler since Equations (34) and (36)
imply that G and its derivatives contain no δ-functions if ε, D > 0. This settles Theorem 3.

Theorem 2 can be either proved as Theorem 3, or derived from the general framework in [9],
noting that G is symmetric, and that those O(ξ2) on the diagonal of P1(iξ) in Equation (33) give an
extra (t + 1)−

1
2 , comparing to O(ξ) in the general framework.
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