
Mathematical

and Computational

Applications

Article

Novel Spreadsheet Direct Method for Optimal
Control Problems

Chahid Kamel Ghaddar

ExcelWorks LLC, Sharon, MA 02067, USA; cghaddar@excel-works.com; Tel.: +1-781-626-0375

Received: 26 December 2017; Accepted: 23 January 2018; Published: 25 January 2018

Abstract: We devise a simple yet highly effective technique for solving general optimal control
problems in Excel spreadsheets. The technique exploits Excel’s native nonlinear programming
(NLP) Solver Command, in conjunction with two calculus worksheet functions, namely, an initial
value problem solver and a discrete data integrator, in a direct solution paradigm adapted to the
spreadsheet. The technique is tested on several highly nonlinear constrained multivariable control
problems with remarkable results in terms of reliability, consistency with pseudo-spectral reported
answers, and computing times in the order of seconds. The technique requires no more than defining
a few analogous formulas to the problem mathematical equations using basic spreadsheet operations,
and no programming skills are needed. It introduces an alternative, simpler tool for solving optimal
control problems in social and natural science disciplines.

Keywords: optimal control; dynamical optimization; parameter estimation; differential equations;
spreadsheet; Excel Solver

1. Introduction

Optimal control problems are commonly encountered in engineering and life sciences, as well as
social studies such as economics and finance [1–3]. An optimal control problem is typically concerned
with finding optimal control functions (or policies) that achieve optimal trajectories for a set of
controlled differential state variables. The optimal trajectories are decided by a constrained dynamical
optimization problem, such that a cost functional is minimized or maximized subject to certain
constraints on state variables and the control functions. Mathematically, an optimal control problem
may be stated as follows:

Find the control functions u(t) = (u1(t), u2(t), . . . , um(t)) and the corresponding state variables
x(t) = (x1(t), x2(t), . . . , xn(t)), t ∈ [0, T] which minimize (or maximize) the functional

J = H(x(T), T) +
T∫

0

G(x(t), u(t), t) dt, (1)

subject to

M
dx
dt

= F(x(t), u(t), t), (2)

with initial conditions
x(0) = x0, (3)

and optional final conditions and bounds

Q(x(T), T) = 0, (4)

S(x(t), u(t)) ≤ 0. (5)

Math. Comput. Appl. 2018, 23, 6; doi:10.3390/mca23010006 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
http://dx.doi.org/10.3390/mca23010006
http://www.mdpi.com/journal/mca

Math. Comput. Appl. 2018, 23, 6 2 of 23

In the formulation (1)–(5), the generally nonlinear H and G are scalar functions, whereas F, Q,
and S are vector-valued functions. Typically, either H or Q are specified but not both in the same
problem. Common forms of Q and S are x(T) = xT and umin ≤ u(t) ≤ umax, respectively. We have
chosen not to include

.
x(t) and

..
x(t) in the formulation because a higher-order explicit differential

equation system can be restated as a first-order system via variable substitution. The matrix M in (2)
offers an optional coupling of the states’ temporal derivatives by a mass matrix which may be singular.
If M is singular, the equation system (2) is differential algebraic, or DAE. For uncoupled derivatives,
M is the identity matrix which can be omitted. Furthermore, T, which denotes the final time, may be
fixed or free.

Numerical solution strategies of (1)–(5) fall into one of two approaches: an indirect method,
where Pontryagin’s minimum principle is employed to transform the problem into an augmented
Hamiltonian system requiring the solution of a boundary value problem [4]; and a direct method,
where the original system’s variables are approximated by parameterized appropriate functions
which, in turn, reduce the problem into a finite-dimensional nonlinear programming problem [5].
Direct methods can be further classified as full or partial parametrization methods. In the latter,
only the controls are parametrized, wherein the inner initial value problem (IVP) (2)–(3) is treated as
a separate dependent problem that must be solved repeatedly by the outer nonlinear programming
(NLP) algorithm [6].

Except for the most trivial cases, optimal control problems can be difficult to solve, particularly
for those who are not inclined towards programming and numerical methods. Despite advances in
software programs, it remains a nontrivial task to utilize a standard package such as MATLAB to solve
optimal control problems. The student must have sufficient programming skill, as well as a good
understanding of the general structure of the solution algorithm and the various solvers required to
implement it [7].

In this article, we present a systematic technique for solving optimal control problems in a
spreadsheet, modeled on partial parametrization direct methods. The technique is made possible,
on the one hand, by algorithmic advances [8,9] which enabled the introduction of mathematically pure
calculus worksheet functions to the spreadsheet [10,11]. A pure calculus function is evaluated as a
standard built-in math function; however, it accepts, via input parameters, formulas representing a
problem model and outputs a formatted solution result. Specifically, we make use of two calculus
functions described in Appendix A: an IVP solver, based on an implicit RADUA5 algorithm with
adaptive step control [12], which we employ for solving the inner IVP (2)–(3); and a discrete data
integrator, based on cubic spline approximations [13], which we employ to approximate the cost index
(1). On the other hand, Excel spreadsheets include a powerful NLP Solver Command based on the
Generalized Reduced Gradient Method (GRG) [14] which is compatible with the calculus functions.
We devise a direct control–parametrization method based on employing the calculus functions with
the NLP Solver in a dynamical optimization paradigm for the solution of (1)–(5).

Attempts to solve optimal control problems in spreadsheets are not new; however, to the best of
our knowledge, no prior work has presented a practical direct spreadsheet method aimed at solving
the general nonlinear multidimensional optimal control problem (1)–(5). The chief reason is that prior
approaches utilized the spreadsheet explicitly as the computational grid for the discretization and
solution of the underlining IVP. This limits the practical scope to rather simple problems that can be
easily discretized with an explicit differencing scheme suitable for the spreadsheet. For example,
Weber [15] demonstrated a direct approach to solving control problems in resource economics
involving simple one-dimensional IVPs, and direct summation of discrete values for the cost index.
Nævdal [16] demonstrated a basic implementation of the indirect method, with the aid of Visual Basic
for Applications (VBA) programming, to solve one-dimensional optimal control problems. The method
utilized Excel’s Solver in conjunction with an explicit difference scheme and a shooting algorithm to
solve the resulting boundary value problem. While Nævdal’s work provides educational insights into
the mechanics of the indirect solution method, its detail-intensive implementation makes it impractical

Math. Comput. Appl. 2018, 23, 6 3 of 23

to use or extend to higher dimensions or nonlinear stiff systems requiring adaptive implicit schemes.
Our devised direct spreadsheet method, on the other hand, differs fundamentally from prior work,
in that the algorithmic implementation for solving the IVP, and integrating the cost index, has been
decoupled from the spreadsheet grid and encapsulated in pure spreadsheet solver functions suitable
for seamless integration with the NLP Solver. The design of the solver functions, described in Section 2,
permits utilization of fully implicit and adaptive algorithms which make the method applicable to
a general class of nonlinear multivariable optimal control problems. Furthermore, by encapsulating
the tedious implementation details in standard pure math functions with a clear divide between
input and output, the method is applicable with little more than basic spreadsheet knowledge, and
without any programming skills. As demonstrated in Section 3, results obtained on several highly
nonlinear problems are remarkable, in terms of both the reliability and the computing time in the order
of seconds. The devised method extends the utility of the spreadsheet beyond what has been practical
or even feasible before.

The remainder of this paper is organized as follows: In the next section, we describe the basic steps
required to model and solve an optimal control problem using the adapted direct method technique.
In Section 3, we demonstrate the technique for solving four different control problems reproduced
from Elnagar and Kazemi [17] who used a pseudo-spectral direct method. The problems include:

1. A bang–bang control problem.
2. A highly nonlinear and coupled system.
3. A minimum swing container transfer problem involving multiple controls and constraints.
4. A minimum time orbit transfer control problem with free end time.

Section 4 provides some practical tips for applying the technique, followed by conclusions in
Section 5. Appendix A includes a description for the IVP solver, IVSOLVE, and the discrete data
integrator functions, QUADXY, both of which are essential for the technique. We also remark that our
main focus in this first article is to introduce and illustrate the spreadsheet direct solution method rather
than formulate or study any specific optimal control problem. As such, we start from a mathematical
statement of a given problem and present a feasible solution obtained by the method with relevant
comparisons to the reported result in [17].

2. Spreadsheet-Adapted Direct Solution Method

The main enabling elements of the devised method are, in addition to the NLP Solver, the IVP
solver function, IVSOLVE, and the discrete data integrator, QUADXY. The IVSOLVE spreadsheet
function, described in Appendix A.1, is designed according to the flowchart of Figure 1, wherein a
suitable highly accurate algorithm, such as RADUA5 [12], is fully shielded with a strict divide between
the IVP model input and the output solution results. The model input is represented by formulas that
are direct analogues to the IVP mathematical equations, and the output solution results are displayed in
a formatted tabular array of elective resolution which is easily adjusted to yield an accurate integration
of a dependent cost index. By design, IVSOLVE is a pure function which does not modify its input
but merely computes and displays the solution in its allocated spreadsheet array. QUADXY, on the
other hand, follows a standard spreadsheet User Defined Function (UDF) implementation to integrate
a vector of ordered points, (t, y(t))i, i = 1, n. QUADXY performs the integration with the aid of
cubic splines fit to the data. Under the assumption that the discrete data describe a smooth curve,
the computed integral is generally quite accurate and can be further improved by supplying optional
slopes at the end points of the curve when they are known or can be estimated. Likewise, QUADXY is
also a pure function which does not modify its inputs.

Below, we describe the general steps for employing IVSOLVE and QUADXY with the NLP Solver
for solving the optimal control problem (1)–(5). Some of these steps may or may not be required for a
given problem. To simplify the discussion, we shall assume a single control function, u(t). Extension to

Math. Comput. Appl. 2018, 23, 6 4 of 23

multiple controls is straightforward and is demonstrated by the examples. In practice, there are three
systematic tasks:

Task 1

The first step is to obtain, with the IVP solver function, IVSOLVE, an initial solution for the
underlining IVP (2)–(3) using an appropriately parametrized formula for the control function and initial
guesses for the unknown parameters. A continuous control function can be parametrized, for example,
by a third-order polynomial with unknown coefficients, such as ‘=c_0+c_1*t+c_2*tˆ2+c_3*tˆ3’. On the
other hand, a discontinuous control function can be modeled using the standard IF statement in Excel.
For example, a two-stage, constant controller can be defined as follows: ‘=IF(t<=ts,value1,value2)’.
Here ts, value1, and value2 are unknown parameters that would be assigned initial guesses.

Task 2

In the second task we define an analogous objective formula for the cost functional (1).
Our strategy is to integrate, using QUADXY, a sampled vector of the integrand expression in (1)
using the solution values obtained in Task 1. To accomplish this, in a new column, we generate values
for the parametrized control formula evaluated at the solution’s output times and, in a second column,
we generate values for the integrand expression, using the solution’s state variables and generated
control values as needed. Both the control and integrand columns are easily generated using the
AutoFill feature of Excel. To define an analogous objective formula for the cost index (1), we employ
the discrete data integrator function, QUADXY, to integrate the generated integrand data column
versus the solution’s output times column. The ordered steps needed to define the objective formula
are summarized in Figure 2.

Task 3

The last task is to configure and run Excel’s NLP Solver. The NLP Solver can be configured
to minimize or maximize an objective formula by changing design variables, subject to defined
constraints. The design variables are the unknown parameters which are assigned initial guesses
in Task 1. The constraints (4) and (5) are added directly in the Solver’s dialog. Simple equality end
conditions on state variables are added by referencing the corresponding cells in the solution output as
illustrated in Figure 2. Bound constraints on state variables or controls are easily imposed with the aid
of Excel’s MAXA() and MINA() math functions which compute the maximum and minimum values of
a vector. Concrete examples are presented in the next section.
Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 5 of 23

Figure 1. Flowchart for the design of a mathematically pure spreadsheet solver function which accepts
formulas as input arguments. Enabling technology is described in [8,9].

Figure 2. Illustration of the ordered steps for defining an analogous objective formula to the cost index
functional (1). The illustration assumes a problem with two state variables and one control.

3. Illustrative Examples

In this section, we apply the spreadsheet method to solve four optimal control problems
reproduced from Elnagar and Kazemi [17], who used a pseudo-spectral high order Chebyshev
approximation scheme in conjunction with the general-purpose sequential programming software
package NLPQL. Relevant comparisons with reported results in [17] are included. The examples are
representative of various types of optimal control problems and intended to serve as a template as
well as validation for the effectiveness of the devised spreadsheet method. We recommend that the
reader review Appendix A prior to reading the examples. Also, some basic familiarity with the
spreadsheet operation is assumed, including naming variables, defining formulas, and running the
NLP Solver command.

3.1. A Bang–Bang Control Problem

The first example describes a bang–bang (two-stage) control problem. The mathematical
problem is stated as follows:

Minimize

ܬ = 12න[(ݐ)ݔଶହ
଴ + [ଶ(ݐ)ݕ (6) ݐ݀

subject to

Figure 1. Flowchart for the design of a mathematically pure spreadsheet solver function which accepts
formulas as input arguments. Enabling technology is described in [8,9].

Math. Comput. Appl. 2018, 23, 6 5 of 23

How It Works

Key to the successful operation of the adapted direct solution method are two attributes: the purity
of the IVP solver function, and the Automatic Calculation Mode of the spreadsheet. As described
earlier, the IVSOLVE function does not modify its inputs, and the authority to modify the inputs to
IVSOLVE via changes to the decision parameter vector is confined to the outer NLP Solver command.
On the other hand, the spreadsheet maintains a dependency hierarchy, and updates all information
whenever a change occurs. Any modification to the design parameters by the outer NLP Solver
triggers reevaluation of the inner IVSOLVE solution, the dependent control and integrand columns,
the objective, and any constraint formulas in the proper order. The NLP Solver always receives
up-to-date values for the objective and constraints whenever it alters the design variables’ values.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 5 of 23

Figure 1. Flowchart for the design of a mathematically pure spreadsheet solver function which accepts
formulas as input arguments. Enabling technology is described in [8,9].

Figure 2. Illustration of the ordered steps for defining an analogous objective formula to the cost index
functional (1). The illustration assumes a problem with two state variables and one control.

3. Illustrative Examples

In this section, we apply the spreadsheet method to solve four optimal control problems
reproduced from Elnagar and Kazemi [17], who used a pseudo-spectral high order Chebyshev
approximation scheme in conjunction with the general-purpose sequential programming software
package NLPQL. Relevant comparisons with reported results in [17] are included. The examples are
representative of various types of optimal control problems and intended to serve as a template as
well as validation for the effectiveness of the devised spreadsheet method. We recommend that the
reader review Appendix A prior to reading the examples. Also, some basic familiarity with the
spreadsheet operation is assumed, including naming variables, defining formulas, and running the
NLP Solver command.

3.1. A Bang–Bang Control Problem

The first example describes a bang–bang (two-stage) control problem. The mathematical
problem is stated as follows:

Minimize

ܬ = 12න[(ݐ)ݔଶହ
଴ + [ଶ(ݐ)ݕ (6) ݐ݀

subject to

Figure 2. Illustration of the ordered steps for defining an analogous objective formula to the cost index
functional (1). The illustration assumes a problem with two state variables and one control.

3. Illustrative Examples

In this section, we apply the spreadsheet method to solve four optimal control problems
reproduced from Elnagar and Kazemi [17], who used a pseudo-spectral high order Chebyshev
approximation scheme in conjunction with the general-purpose sequential programming software
package NLPQL. Relevant comparisons with reported results in [17] are included. The examples
are representative of various types of optimal control problems and intended to serve as a template
as well as validation for the effectiveness of the devised spreadsheet method. We recommend that
the reader review Appendix A prior to reading the examples. Also, some basic familiarity with the
spreadsheet operation is assumed, including naming variables, defining formulas, and running the
NLP Solver command.

3.1. A Bang–Bang Control Problem

The first example describes a bang–bang (two-stage) control problem. The mathematical problem
is stated as follows:

Minimize

J =
1
2

5∫
0

[x(t)2 + y(t)2] dt (6)

subject to
.
x(t) = y(t), t ∈ [0, 5], (7)

Math. Comput. Appl. 2018, 23, 6 6 of 23

.
y(t) = y(t)− x(t) + u(t), (8)

x(0) = 0.231, y(0) = 1.126, (9)

− 0.8 ≤ u(t) ≤ 0.8. (10)

3.1.1. Spreadsheet Model

Working with named variables with adjacent labels shown in Column A of Figure 3,
we parametrized the two-stage control function, u(t), using a standard IF() statement, as shown
in B9. The unknown parameters switchT, stage1, and stage2 were assigned the initial guess values
0.1, 0, and 1. The right-hand sides of the IVP differential Equations (7) and (8) were represented by
the equivalent formulas B11 and B12, and the initial conditions (9) were assigned to the variables x
and y in B3 and B4. The colored ranges in Figure 3 represent the model input required to obtain the
initial solution for the IVP (7)–(9) using the IVSOLVE function. The initial solution was obtained by
evaluating the formula

=IVSOLVE(B11:B12,B2:B4,{0,5}) (11)

in an allocated array D2:F103. The result is shown partially in Figure 4, and the initial trajectories of
x(t), y(t), and u(t) are plotted in Figure 7a.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 6 of 23

(ݐ)ሶݔ = ,(ݐ)ݕ ݐ ∈ [0, (ݐ)ሶݕ (7) ,[5 = (ݐ)ݕ − (ݐ)ݔ + (0)ݔ (8) ,(ݐ)ݑ = 0.231, (0)ݕ = 1.126, (9) −0.8 ≤ (ݐ)ݑ ≤ 0.8. (10)

3.1.1. Spreadsheet Model

Working with named variables with adjacent labels shown in Column A of Figure 3, we
parametrized the two-stage control function, u(t), using a standard IF() statement, as shown in B9.
The unknown parameters switchT, stage1, and stage2 were assigned the initial guess values 0.1, 0,
and 1. The right-hand sides of the IVP differential Equations (7) and (8) were represented by the
equivalent formulas B11 and B12, and the initial conditions (9) were assigned to the variables x and
y in B3 and B4. The colored ranges in Figure 3 represent the model input required to obtain the initial
solution for the IVP (7)–(9) using the IVSOLVE function. The initial solution was obtained by
evaluating the formula

=IVSOLVE(B11:B12,B2:B4,{0,5}) (11)

in an allocated array D2:F103. The result is shown partially in Figure 4, and the initial trajectories of
x(t), y(t), and u(t) are plotted in Figure 7a.

 A B
1 ODE variables
2 t 0
3 x 0.231
4 y 1.126
5 Parametrized control formula
6 switchT 0.1
7 stage1 0
8 stage2 1
9 u =IF(t<=switchT,stage1,stage2)

10 ODE rhs formulas
11 xdot =y
12 ydot =u−x+y

Figure 3. Spreadsheet model for IVP (7)–(9) with parametrized control function. The colored ranges
are input parameters for the IVSOLVE Formula (11).

 D E F H J L M
1 IVP Solution
2 t x y u Integrand Cost functional
3 0 0.231 1.126 0 1.321237 Objective 246.0854
4 0.05 0.288414 1.170438 0 1.453107
5 0.1 0.348032 1.21424 0 1.595504 Constraint formulas
6 0.15 0.411089 1.308339 1 1.880744 Max(u) 1
7 0.2 0.478891 1.403911 1 2.200301 Min(u) 0

102 4.95 −12.9106 −21.0491 1 609.7477
103 5 −13.9717 −21.3881 1 652.6612

Figure 4. Partial listing of computed results by Formula (11). Also shown are generated control and
integrand columns, and initial objective formula value. The associated formulas are listed in Table 1.

Figure 3. Spreadsheet model for IVP (7)–(9) with parametrized control function. The colored ranges
are input parameters for the IVSOLVE Formula (11).

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 6 of 23

(ݐ)ሶݔ = ,(ݐ)ݕ ݐ ∈ [0, (ݐ)ሶݕ (7) ,[5 = (ݐ)ݕ − (ݐ)ݔ + (0)ݔ (8) ,(ݐ)ݑ = 0.231, (0)ݕ = 1.126, (9) −0.8 ≤ (ݐ)ݑ ≤ 0.8. (10)

3.1.1. Spreadsheet Model

Working with named variables with adjacent labels shown in Column A of Figure 3, we
parametrized the two-stage control function, u(t), using a standard IF() statement, as shown in B9.
The unknown parameters switchT, stage1, and stage2 were assigned the initial guess values 0.1, 0,
and 1. The right-hand sides of the IVP differential Equations (7) and (8) were represented by the
equivalent formulas B11 and B12, and the initial conditions (9) were assigned to the variables x and
y in B3 and B4. The colored ranges in Figure 3 represent the model input required to obtain the initial
solution for the IVP (7)–(9) using the IVSOLVE function. The initial solution was obtained by
evaluating the formula

=IVSOLVE(B11:B12,B2:B4,{0,5}) (11)

in an allocated array D2:F103. The result is shown partially in Figure 4, and the initial trajectories of
x(t), y(t), and u(t) are plotted in Figure 7a.

 A B
1 ODE variables
2 t 0
3 x 0.231
4 y 1.126
5 Parametrized control formula
6 switchT 0.1
7 stage1 0
8 stage2 1
9 u =IF(t<=switchT,stage1,stage2)

10 ODE rhs formulas
11 xdot =y
12 ydot =u−x+y

Figure 3. Spreadsheet model for IVP (7)–(9) with parametrized control function. The colored ranges
are input parameters for the IVSOLVE Formula (11).

 D E F H J L M
1 IVP Solution
2 t x y u Integrand Cost functional
3 0 0.231 1.126 0 1.321237 Objective 246.0854
4 0.05 0.288414 1.170438 0 1.453107
5 0.1 0.348032 1.21424 0 1.595504 Constraint formulas
6 0.15 0.411089 1.308339 1 1.880744 Max(u) 1
7 0.2 0.478891 1.403911 1 2.200301 Min(u) 0

102 4.95 −12.9106 −21.0491 1 609.7477
103 5 −13.9717 −21.3881 1 652.6612

Figure 4. Partial listing of computed results by Formula (11). Also shown are generated control and
integrand columns, and initial objective formula value. The associated formulas are listed in Table 1. Figure 4. Partial listing of computed results by Formula (11). Also shown are generated control and
integrand columns, and initial objective formula value. The associated formulas are listed in Table 1.

Math. Comput. Appl. 2018, 23, 6 7 of 23

In order to define the objective formula for the cost functional (6) as described in Task 2 of
Section 2, we first generated, based on the obtained initial solution array, two new columns labeled
u and Integrand (see Figure 4) for the control function and the integrand expression. The control
column, u, was generated with the AutoFill feature of Excel, using the formula H3 shown in Table 1.
The integrand column was generated in a similar way using the formula J3 in Table 1. Here, we simply
evaluated the expression x(t)2 + y(t)2 using the corresponding output solution values for t, x, and y
from the IVSOLVE solution.

Table 1. Formula definitions used for solving optimal control problem (6)–(10).

Purpose Cell Formula

Initial value problem solution D2:F103 =IVSOLVE(B11:B12,B2:B4,{0,5})
AutoFill formula for control values H3 =IF(D3<=switchT,stage1,stage2)

AutoFill formula for integrand values J3 =E3ˆ2+F3ˆ2
Objective formula M3 =0.5*QUADXY(D3:D103,J3:J103)

Maximum value of control column M6 =MAXA(H3:H103)
Minimum value of control column M7 =MINA(H3:H103)

Next, we employed the discrete data integrator function QUADXY to integrate the generated
integrand column versus the solution output times column, as shown by formula M3 of Table 1.
The initial value of the objective formula was 246.0854, as shown in Figure 4. To impose the bound
constraint (10) on u(t), we defined two aid formulas in M6 and M7 (see Table 1) which computed the
maximum and minimum of the generated control column values. We made use of these aid formulas
during the configuration of the NLP Solver.

3.1.2. Results and Discussion

We invoked Excel’s Solver from the Data Tab which brings up a dialog as shown in Figure 5.
We configured the Solver to minimize the objective formula M3 by varying the control parameters
B6:B8 (corresponding to switchT, stage1 and stage2) subject to the constraints

M6 ≤ 0.8 corresponds to max(u) ≤ 0.8, ()

M7 ≥ −0.8 corresponds to min(u) ≥ −0.8, ()

which are needed impose (10). We unchecked the box which reads ‘Make Unconstrained Variables
Non-Negative’ to allow the variables to take on negative values as well. In the options for the GRG
Nonlinear solver, we switched the derivative scheme from the default Forward to Central, and then ran
the Solver, which reports a feasible solution in less than 3 s. By accepting the Solver’s solution, all the
values and plots in the spreadsheet were automatically updated to reflect the optimal result. The NLP
Solver also generates an optional Answer Report, as shown in Figure 6. The optimal trajectories
are plotted in Figure 7b. As shown in the Answer Report, the optimal switching time was found at
approximately 1.26 which is within 1% of the 1.25 value reported by Elnagar and Kazemi [17] using a
pseudo-spectral Chebyshev approximation of order 15. (In [17], the time domain was transformed
to [−1, 1], and the switching time was found at negative 0.5 which maps to 1.25 in the original [0, 5]
time domain.)

Math. Comput. Appl. 2018, 23, 6 8 of 23

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 8 of 23

Figure 5. Excel’s Solver dialog configured for optimal control problem (6)–(10).

Figure 6. Answer Report generated by Excel’s Solver for optimal control problem (6)–(10).

Figure 5. Excel’s Solver dialog configured for optimal control problem (6)–(10).

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 8 of 23

Figure 5. Excel’s Solver dialog configured for optimal control problem (6)–(10).

Figure 6. Answer Report generated by Excel’s Solver for optimal control problem (6)–(10).
Figure 6. Answer Report generated by Excel’s Solver for optimal control problem (6)–(10).

Math. Comput. Appl. 2018, 23, 6 9 of 23

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 9 of 23

(a) (b)

Figure 7. (a) Initial trajectories for optimal control problem (6)–(10) based on the default values shown
in Figure 3; (b) Optimal trajectories found by Excel’s nonlinear programming (NLP) Solver.

3.2. Unconstrained Nonlinear Optimal Control Problem

The second example represents an unconstrained optimal control problem in the fixed interval ݐ ∈ [−1, 1], but with highly nonlinear equations. The mathematical problem is stated as follows:
Minimize

ܬ = 0.782 න[ݔଵ(ݐ)ଶ + ଶ(ݐ)ଶݔ + ଶ]ଵ(ݐ)ݑ0.1
ିଵ (12) ݐ݀

subject to ݔሶଵ(ݐ) = 0.782 ቆ−2[ݔଵ(ݐ) + 0.25] + (ݐ)ଶݔ] + ݌ݔ݁[0.5 ቈ (ݐ)ଵݔ(ݐ)ଵݔ25 + 2቉ − (ݐ)ଵݔ] + ቇ, (13)(ݐ)ݑ[0.25

(ݐ)ሶଶݔ = 0.782 ቆ0.5 − (ݐ)ଶݔ − (ݐ)ଶݔ] + ݌ݔ݁[0.25 ቈ (ݐ)ଵݔ(ݐ)ଵݔ25 + 2቉ − (ݐ)ଵݔ] + 0.25]ቇ, (14) (1−)ݔ = 0.05, ଶ(−1)ݔ = 0.0. (15)

3.2.1. Spreadsheet Model

The spreadsheet model for the IVP (13)–(15) with a parametrized control function using a third-
order polynomial is shown in Figure 8. The initial solution to the IVP was obtained by evaluating the
formula

=IVSOLVE(B12:B13,B2:B4,{−1,1}) (16)

in an allocated array E2:G103, which is shown partially in Figure 9 and plotted in Figure 10a. Clearly,
our initial guess for the control coefficients B6:B9 was not good, since the solution exhibits instabilities
at larger time values. The control and integrand vectors, needed to construct the objective formula
for the cost index (12), were generated based on the obtained initial solution using formulas I3 and
K3, listed in Table 2. The objective formula was defined using the data integrator QUADXY as shown
in N3 of Table 2, with an initial value of 1.92 × 1018, as shown in Figure 9.

Table 2. Formula definitions used for solving optimal control problem (12)–(15).

Purpose Cell Formula
Initial value problem solution E2:G103 =IVSOLVE(B12:B13,B2:B4,{−1,1})

AutoFill formula for control values I3 =c_0+c_1*E3+c_2*E3^2+c_3*E3^3
AutoFill formula for integrand values K3 =F3^2+G3^2+0.1*I3^2

Objective N3 =0.78*QUADXY(E3:E103,K3:K103)/2

Figure 7. (a) Initial trajectories for optimal control problem (6)–(10) based on the default values shown
in Figure 3; (b) Optimal trajectories found by Excel’s nonlinear programming (NLP) Solver.

3.2. Unconstrained Nonlinear Optimal Control Problem

The second example represents an unconstrained optimal control problem in the fixed interval
t ∈ [−1, 1], but with highly nonlinear equations. The mathematical problem is stated as follows:

Minimize

J =
0.78

2

1∫
−1

[
x1(t)

2 + x2(t)
2 + 0.1u(t)2

]
dt (12)

subject to

.
x1(t) =

0.78
2

(
−2[x1(t) + 0.25] + [x2(t) + 0.5]exp

[
25x1(t)

x1(t) + 2

]
− [x1(t) + 0.25]u(t)

)
, (13)

.
x2(t) =

0.78
2

(
0.5− x2(t)− [x2(t) + 0.25]exp

[
25x1(t)

x1(t) + 2

]
− [x1(t) + 0.25]

)
, (14)

x(−1) = 0.05, x2(−1) = 0.0. (15)

3.2.1. Spreadsheet Model

The spreadsheet model for the IVP (13)–(15) with a parametrized control function using a
third-order polynomial is shown in Figure 8. The initial solution to the IVP was obtained by evaluating
the formula

=IVSOLVE(B12:B13,B2:B4,{−1,1}) (16)

in an allocated array E2:G103, which is shown partially in Figure 9 and plotted in Figure 10a. Clearly,
our initial guess for the control coefficients B6:B9 was not good, since the solution exhibits instabilities
at larger time values. The control and integrand vectors, needed to construct the objective formula for
the cost index (12), were generated based on the obtained initial solution using formulas I3 and K3,
listed in Table 2. The objective formula was defined using the data integrator QUADXY as shown in
N3 of Table 2, with an initial value of 1.92 × 1018, as shown in Figure 9.

Table 2. Formula definitions used for solving optimal control problem (12)–(15).

Purpose Cell Formula

Initial value problem solution E2:G103 =IVSOLVE(B12:B13,B2:B4,{−1,1})
AutoFill formula for control values I3 =c_0+c_1*E3+c_2*E3ˆ2+c_3*E3ˆ3

AutoFill formula for integrand values K3 =F3ˆ2+G3ˆ2+0.1*I3ˆ2
Objective N3 =0.78*QUADXY(E3:E103,K3:K103)/2

Math. Comput. Appl. 2018, 23, 6 10 of 23

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 10 of 23

 A B

1 ODE variables
2 t -1

3 x_1 0.05

4 x_2 0
5 Parametrized control formula
6 c_0 1

7 c_1 0
8 c_2 0

9 c_3 0

10 u =c_0+c_1*t+c_2*t^2+c_3*t^3
11 ODE rhs equations
12 x1dot =0.78*(−2*(x_1+0.25)+(x_2+0.5)*EXP(25*x_1/(x_1+2))−(x_1+0.25)*u)/2

13 x2dot =0.78*(0.5−x_2−(x_2+0.25)*EXP(25*x_1/(x_1+2)))/2

Figure 8. Spreadsheet model for the IVP (13)–(15) with parametrized control function. The colored
ranges are input parameters for IVSOLVE Formula (16).

 E F G H I J K L M N

1 IVP Solution
2 t x_1 x_2 u Integrand Cost functional
3 −1.00 0.05 0 1 0.1025 Objective 1.92396E+18

4 −0.98 0.050163 0.000305 1 0.102516
5 −0.96 0.050341 0.000596 1 0.102535

100 0.94 3.59E+09 −0.25 1 1.29E+19
101 0.96 3.64E+09 −0.25 1 1.33E+19

102 0.98 3.7E+09 −0.25 1 1.37E+19

103 1.00 3.75E+09 −0.25 1 1.41E+19

Figure 9. Partial listing of computed results by Formula (16). Also shown are generated control and
integrand columns, and the initial objective formula value. The associated formulas are listed in Table
2.

3.2.2. Results and Discussion

We ran Excel’s Solver to minimize the objective formula N3 by varying the control parameters
in B6:B9 with no added constraints. Despite the bad initial values for the control parameters, the
Solver reported a feasible solution in about 2 seconds with the Answer Report shown in Figure 11.
The optimal trajectories for the system variables are plotted in Figure 10b.

The reported objective in [17] is 0.026621417, which is better than the achieved objective value
of 0.08919 found by Excel. To improve the result, we tried a different initial guess for the parameters
(c_0, c_1, c_2, c_3) by changing their values in Figure 8 to (1, 0, 1, 0). A second run of the Solver
reported the feasible solution shown in Figure 12. The new objective value was reduced by more than
50% to 0.040245. The new solution is plotted in Figure 13 and shows noticeably different trajectories
for x_1 and x_2 than those obtained initially in Figure 10. This is expected, given the highly nonlinear
and unconstrained problem.

Figure 8. Spreadsheet model for the IVP (13)–(15) with parametrized control function. The colored
ranges are input parameters for IVSOLVE Formula (16).

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 10 of 23

 A B

1 ODE variables
2 t -1

3 x_1 0.05

4 x_2 0
5 Parametrized control formula
6 c_0 1

7 c_1 0
8 c_2 0

9 c_3 0

10 u =c_0+c_1*t+c_2*t^2+c_3*t^3
11 ODE rhs equations
12 x1dot =0.78*(−2*(x_1+0.25)+(x_2+0.5)*EXP(25*x_1/(x_1+2))−(x_1+0.25)*u)/2

13 x2dot =0.78*(0.5−x_2−(x_2+0.25)*EXP(25*x_1/(x_1+2)))/2

Figure 8. Spreadsheet model for the IVP (13)–(15) with parametrized control function. The colored
ranges are input parameters for IVSOLVE Formula (16).

 E F G H I J K L M N

1 IVP Solution
2 t x_1 x_2 u Integrand Cost functional
3 −1.00 0.05 0 1 0.1025 Objective 1.92396E+18

4 −0.98 0.050163 0.000305 1 0.102516
5 −0.96 0.050341 0.000596 1 0.102535

100 0.94 3.59E+09 −0.25 1 1.29E+19
101 0.96 3.64E+09 −0.25 1 1.33E+19

102 0.98 3.7E+09 −0.25 1 1.37E+19

103 1.00 3.75E+09 −0.25 1 1.41E+19

Figure 9. Partial listing of computed results by Formula (16). Also shown are generated control and
integrand columns, and the initial objective formula value. The associated formulas are listed in Table
2.

3.2.2. Results and Discussion

We ran Excel’s Solver to minimize the objective formula N3 by varying the control parameters
in B6:B9 with no added constraints. Despite the bad initial values for the control parameters, the
Solver reported a feasible solution in about 2 seconds with the Answer Report shown in Figure 11.
The optimal trajectories for the system variables are plotted in Figure 10b.

The reported objective in [17] is 0.026621417, which is better than the achieved objective value
of 0.08919 found by Excel. To improve the result, we tried a different initial guess for the parameters
(c_0, c_1, c_2, c_3) by changing their values in Figure 8 to (1, 0, 1, 0). A second run of the Solver
reported the feasible solution shown in Figure 12. The new objective value was reduced by more than
50% to 0.040245. The new solution is plotted in Figure 13 and shows noticeably different trajectories
for x_1 and x_2 than those obtained initially in Figure 10. This is expected, given the highly nonlinear
and unconstrained problem.

Figure 9. Partial listing of computed results by Formula (16). Also shown are generated control and
integrand columns, and the initial objective formula value. The associated formulas are listed in Table 2.
Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 11 of 23

(a) (b)

Figure 10. (a) Initial trajectories for optimal control problem (12)–(15) based on the default values
shown in Figure 8; (b) Optimal trajectories found by Excel’s NLP Solver.

Figure 11. Answer Report generated by Excel’s Solver for optimal control problem (12)–(15) based on
the initial guess values in Figure 8.

Figure 12. Answer Report for optimal control problem (12)–(15) using a different initial guess and
yielding improved minimum.

Figure 10. (a) Initial trajectories for optimal control problem (12)–(15) based on the default values
shown in Figure 8; (b) Optimal trajectories found by Excel’s NLP Solver.

3.2.2. Results and Discussion

We ran Excel’s Solver to minimize the objective formula N3 by varying the control parameters in
B6:B9 with no added constraints. Despite the bad initial values for the control parameters, the Solver

Math. Comput. Appl. 2018, 23, 6 11 of 23

reported a feasible solution in about 2 seconds with the Answer Report shown in Figure 11. The optimal
trajectories for the system variables are plotted in Figure 10b.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 11 of 23

(a) (b)

Figure 10. (a) Initial trajectories for optimal control problem (12)–(15) based on the default values
shown in Figure 8; (b) Optimal trajectories found by Excel’s NLP Solver.

Figure 11. Answer Report generated by Excel’s Solver for optimal control problem (12)–(15) based on
the initial guess values in Figure 8.

Figure 12. Answer Report for optimal control problem (12)–(15) using a different initial guess and
yielding improved minimum.

Figure 11. Answer Report generated by Excel’s Solver for optimal control problem (12)–(15) based on
the initial guess values in Figure 8.

The reported objective in [17] is 0.026621417, which is better than the achieved objective value of
0.08919 found by Excel. To improve the result, we tried a different initial guess for the parameters (c_0,
c_1, c_2, c_3) by changing their values in Figure 8 to (1, 0, 1, 0). A second run of the Solver reported
the feasible solution shown in Figure 12. The new objective value was reduced by more than 50% to
0.040245. The new solution is plotted in Figure 13 and shows noticeably different trajectories for x_1
and x_2 than those obtained initially in Figure 10. This is expected, given the highly nonlinear and
unconstrained problem.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 11 of 23

(a) (b)

Figure 10. (a) Initial trajectories for optimal control problem (12)–(15) based on the default values
shown in Figure 8; (b) Optimal trajectories found by Excel’s NLP Solver.

Figure 11. Answer Report generated by Excel’s Solver for optimal control problem (12)–(15) based on
the initial guess values in Figure 8.

Figure 12. Answer Report for optimal control problem (12)–(15) using a different initial guess and
yielding improved minimum.

Figure 12. Answer Report for optimal control problem (12)–(15) using a different initial guess and
yielding improved minimum.

Math. Comput. Appl. 2018, 23, 6 12 of 23

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 12 of 23

Figure 13. Optimal trajectories for optimal control problem (12)–(15) found by Excel’s Solver starting
from a different initial guess, leading to a lower objective value.

3.3. Minimal Swing Container Transfer Problem

The third example represents the problem of transferring containers, driven by a hoist motor
and a trolley drive motor, from a ship to a cargo truck. The goal is to minimize the swing during and
at the end of the transfer. The mathematical optimal control problem is described by (17)–(29). The
problem is nonlinear with six state variables and two controllers subject to multiple final and bound
constraints.

Minimize

ܬ = 4.5න[ݔଷ(ݐ)ଶଵ
଴ + [ଶ(ݐ)଺ݔ (17) ݐ݀

subject to ݔሶଵ(ݐ) = (ݐ)ሶଶݔ (18) ,(ݐ)ସݔ9 = (ݐ)ሶଷݔ (19) ,(ݐ)ହݔ9 = (ݐ)ሶସݔ (20) ,(ݐ)଺ݔ9 = (ݐ)ଵݑ]9 + (ݐ)ሶହݔ (21) ,[(ݐ)ଷݔ = (ݐ)ሶ଺ݔ (22) ,(ݐ)ଶݑ9 = (ݐ)ଵݑ)9 + (ݐ)ଷݔ27.0756 + (ݐ)ଶݔ((ݐ)଺ݔ(ݐ)ହݔ2 , ݐ ∈ [0,1]. (23)

Initial conditions: ݔଵ(0) = 0, ଶ(0)ݔ = 22, ଷ(0)ݔ = 0, ସ(0)ݔ = 0, ହ(0)ݔ = −1, ଺(0)ݔ = 0. (24)

Final conditions: ݔଵ(1) = 10, ଶ(1)ݔ = 14, ଷ(1)ݔ = 0, ସ(1)ݔ = 2.5, ହ(1)ݔ = 0, ଺(1)ݔ = 0. (25)

Bounds: |ݑଵ(ݐ)| ≤ 2.83374, (26) −0.80865 ≤ (ݐ)ଶݑ ≤ |(ݐ)ସݔ| (27) ,0.71265 ≤ 2.5, (28)

Figure 13. Optimal trajectories for optimal control problem (12)–(15) found by Excel’s Solver starting
from a different initial guess, leading to a lower objective value.

3.3. Minimal Swing Container Transfer Problem

The third example represents the problem of transferring containers, driven by a hoist motor and
a trolley drive motor, from a ship to a cargo truck. The goal is to minimize the swing during and at the
end of the transfer. The mathematical optimal control problem is described by (17)–(29). The problem
is nonlinear with six state variables and two controllers subject to multiple final and bound constraints.

Minimize

J = 4.5
1∫

0

[x3(t)
2 + x6(t)

2] dt (17)

subject to
.
x1(t) = 9x4(t), (18)
.
x2(t) = 9x5(t), (19)
.
x3(t) = 9x6(t), (20)

.
x4(t) = 9[u1(t) + x3(t)], (21)

.
x5(t) = 9u2(t), (22)

.
x6(t) =

9(u1(t) + 27.0756x3(t) + 2x5(t)x6(t))
x2(t)

, t ∈ [0, 1]. (23)

Initial conditions:

x1(0) = 0, x2(0) = 22, x3(0) = 0, x4(0) = 0, x5(0) = −1, x6(0) = 0. (24)

Final conditions:

x1(1) = 10, x2(1) = 14, x3(1) = 0, x4(1) = 2.5, x5(1) = 0, x6(1) = 0. (25)

Bounds:
|u1(t)| ≤ 2.83374, (26)

− 0.80865 ≤ u2(t) ≤ 0.71265, (27)

Math. Comput. Appl. 2018, 23, 6 13 of 23

|x4(t)| ≤ 2.5, (28)

|x5(t)| ≤ 1.0. (29)

3.3.1. Spreadsheet Model

Following the same procedure as that in the previous examples, we prepared the spreadsheet
model for the IVP (18)–(24) using third-order parametrized polynomial control functions u1(t) and
u2(t), as shown in Figure 14. Initial values and guesses were assigned to the state variables and
unknown parametrization coefficients as shown in the figure. Figure 15 shows a partial listing of the
initial solution obtained by evaluating the formula

=IVSOLVE(B17:B22,B2:B8,{0,1}) (30)

in array F2:L103, and the generated control columns, u_1, u_2, and the integrand expression column
using the corresponding formulas listed in Table 3. The initial system trajectories are plotted in
Figure 16.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 13 of 23

|(ݐ)ହݔ| ≤ 1.0. (29)

3.3.1. Spreadsheet Model

Following the same procedure as that in the previous examples, we prepared the spreadsheet
model for the IVP (18)–(24) using third-order parametrized polynomial control functions ݑଵ(ݐ) and ݑଶ(ݐ), as shown in Figure 14. Initial values and guesses were assigned to the state variables and
unknown parametrization coefficients as shown in the figure. Figure 15 shows a partial listing of the
initial solution obtained by evaluating the formula

=IVSOLVE(B17:B22,B2:B8,{0,1}) (30)

in array F2:L103, and the generated control columns, u_1, u_2, and the integrand expression column
using the corresponding formulas listed in Table 3. The initial system trajectories are plotted in Figure
16.

Next, we defined the objective formula, S3, corresponding to the cost index (17) as shown in
Table 3, in which the data integrator QUADXY was used to integrate the generated integrand
expression values. The objective formula evaluated to an initial value of 24,229.22793. Table 3 also
lists a number of aid formulas which compute the minimum and maximum values for the state
variables x_4 and x_5 and the generated control columns. These aid formulas were used to define the
bound constraints for the NLP Solver.

 A B C D

1 ODE variables

2 t 0

3 x_1 0

4 x_2 22

5 x_3 0

6 x_4 0

7 x_5 −1

8 x_6 0

9 Parametrized controls formulas

10 c_0 1 d_0 1

11 c_1 1 d_1 1

12 c_2 −5 d_2 -5

13 c_3 −5 d_3 -5

14 u_1 =c_0+c_1*t+c_2*t^2+c_3*t^3

15 u_2 =d_0+d_1*t+d_2*t^2+d_3*t^3

16 ODE rhs equations

17 x1dot =9*x_4

18 x2dot =9*x_5

19 x3dot =9*x_6

20 x4dot =9*(u_1+x_3)

21 x5dot =9*u_2

22 x6dot =9*(u_1+27.0756*x_3+2*x_5*x_6)/x_2

Figure 14. Spreadsheet model for the IVP (18)–(24) with parametrized control functions. The colored
ranges are input parameters for IVSOLVE Formula (30).

Figure 14. Spreadsheet model for the IVP (18)–(24) with parametrized control functions. The colored
ranges are input parameters for IVSOLVE Formula (30).

Next, we defined the objective formula, S3, corresponding to the cost index (17) as shown
in Table 3, in which the data integrator QUADXY was used to integrate the generated integrand
expression values. The objective formula evaluated to an initial value of 24,229.22793. Table 3 also lists
a number of aid formulas which compute the minimum and maximum values for the state variables

Math. Comput. Appl. 2018, 23, 6 14 of 23

x_4 and x_5 and the generated control columns. These aid formulas were used to define the bound
constraints for the NLP Solver.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 14 of 23

 F G H I J K L M N O P
1 IVP Solution
2 t x_1 x_2 x_3 x_4 x_5 x_6 u_1 u_2 Integrand
3 0 0 22 0 0 −1 0 1 1 0
4 0.01 0.004063 21.91406 0.000185 0.09044 −0.90957 0.00411 1.009495 1.009495 1.69E-05
5 0.02 0.016305 21.8363 0.000742 0.181723 −0.81832 0.008285 1.01796 1.01796 6.92E-05
6 0.03 0.036797 21.76679 0.001679 0.273786 −0.72636 0.012569 1.025365 1.025365 0.000161

101 0.98 230.6731 15.34798 189.5472 205.5287 −12.3527 147.8948 −7.52796 −7.52796 57801.01
102 0.99 249.9267 14.20542 203.2503 222.511 −13.0407 156.6717 −7.762 −7.762 65856.72
103 1 270.7634 13 217.7568 240.7409 −13.75 165.7417 -8 −8 74888.35

Figure 15. Partial listing of computed result by Formula (30). Also shown are generated control and
integrand columns. The associated formulas are listed in Table 3.

Figure 16. Initial trajectories for optimal control problem (17)–(29) based on default values shown in
Figure 14.

Table 3. Formulas definitions used for solving optimal control problem (17)–(29).

Purpose Cell Formula
Initial value problem solution F2:L103 =IVSOLVE(B17:B22,B2:B8,{0,1})

AutoFill formula for u_1 control values N3 =c_0+c_1*F3+c_2*F3^2+c_3*F3^3
AutoFill formula for u_2 control values O3 =d_0+d_1*F3+d_2*F3^2+d_3*F3^3
AutoFill formula for integrand values P3 =I3^2+L3^2

Objective Formula S3 =4.5*QUADXY(F3:F103,P3:P103)
u_1 column max value S6 =MAXA(N3:N103)
u_1 column min value S7 =MINA(N3:N103)
u_2 column max value S8 =MAXA(O3:O103)
u_2 column min value S9 =MINA(O3:O103)
x_4 column max value S10 =MAXA(J3:J103)
x_4 column min value S11 =MINA(J3:J103)
x_5 column max value S12 =MAXA(K3:K103)
x_5 column min value S13 =MINA(K3:K103)

3.3.2. Results and Discussion

We configured Excel’s Solver to minimize the objective formula S3 by varying the controls’
coefficients B10:B14 and D10:D14 subject to the added constraints listed in Table 4. Here, we made

Figure 15. Partial listing of computed result by Formula (30). Also shown are generated control and
integrand columns. The associated formulas are listed in Table 3.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 14 of 23

 F G H I J K L M N O P
1 IVP Solution
2 t x_1 x_2 x_3 x_4 x_5 x_6 u_1 u_2 Integrand
3 0 0 22 0 0 −1 0 1 1 0
4 0.01 0.004063 21.91406 0.000185 0.09044 −0.90957 0.00411 1.009495 1.009495 1.69E-05
5 0.02 0.016305 21.8363 0.000742 0.181723 −0.81832 0.008285 1.01796 1.01796 6.92E-05
6 0.03 0.036797 21.76679 0.001679 0.273786 −0.72636 0.012569 1.025365 1.025365 0.000161

101 0.98 230.6731 15.34798 189.5472 205.5287 −12.3527 147.8948 −7.52796 −7.52796 57801.01
102 0.99 249.9267 14.20542 203.2503 222.511 −13.0407 156.6717 −7.762 −7.762 65856.72
103 1 270.7634 13 217.7568 240.7409 −13.75 165.7417 -8 −8 74888.35

Figure 15. Partial listing of computed result by Formula (30). Also shown are generated control and
integrand columns. The associated formulas are listed in Table 3.

Figure 16. Initial trajectories for optimal control problem (17)–(29) based on default values shown in
Figure 14.

Table 3. Formulas definitions used for solving optimal control problem (17)–(29).

Purpose Cell Formula
Initial value problem solution F2:L103 =IVSOLVE(B17:B22,B2:B8,{0,1})

AutoFill formula for u_1 control values N3 =c_0+c_1*F3+c_2*F3^2+c_3*F3^3
AutoFill formula for u_2 control values O3 =d_0+d_1*F3+d_2*F3^2+d_3*F3^3
AutoFill formula for integrand values P3 =I3^2+L3^2

Objective Formula S3 =4.5*QUADXY(F3:F103,P3:P103)
u_1 column max value S6 =MAXA(N3:N103)
u_1 column min value S7 =MINA(N3:N103)
u_2 column max value S8 =MAXA(O3:O103)
u_2 column min value S9 =MINA(O3:O103)
x_4 column max value S10 =MAXA(J3:J103)
x_4 column min value S11 =MINA(J3:J103)
x_5 column max value S12 =MAXA(K3:K103)
x_5 column min value S13 =MINA(K3:K103)

3.3.2. Results and Discussion

We configured Excel’s Solver to minimize the objective formula S3 by varying the controls’
coefficients B10:B14 and D10:D14 subject to the added constraints listed in Table 4. Here, we made

Figure 16. Initial trajectories for optimal control problem (17)–(29) based on default values shown in
Figure 14.

Table 3. Formulas definitions used for solving optimal control problem (17)–(29).

Purpose Cell Formula

Initial value problem solution F2:L103 =IVSOLVE(B17:B22,B2:B8,{0,1})
AutoFill formula for u_1 control values N3 =c_0+c_1*F3+c_2*F3ˆ2+c_3*F3ˆ3
AutoFill formula for u_2 control values O3 =d_0+d_1*F3+d_2*F3ˆ2+d_3*F3ˆ3
AutoFill formula for integrand values P3 =I3ˆ2+L3ˆ2

Objective Formula S3 =4.5*QUADXY(F3:F103,P3:P103)
u_1 column max value S6 =MAXA(N3:N103)
u_1 column min value S7 =MINA(N3:N103)
u_2 column max value S8 =MAXA(O3:O103)
u_2 column min value S9 =MINA(O3:O103)
x_4 column max value S10 =MAXA(J3:J103)
x_4 column min value S11 =MINA(J3:J103)
x_5 column max value S12 =MAXA(K3:K103)
x_5 column min value S13 =MINA(K3:K103)

3.3.2. Results and Discussion

We configured Excel’s Solver to minimize the objective formula S3 by varying the controls’
coefficients B10:B14 and D10:D14 subject to the added constraints listed in Table 4. Here, we made use

Math. Comput. Appl. 2018, 23, 6 15 of 23

of the aid formulas listed in Table 3 to define the inequality bound constraints (26)–(29). The end point
equality constraints on the state variables (25) were imposed directly onto the corresponding cells at t
= 1 (last row) of the IVSOLVE solution array (see Figure 15). The Solver spun for a few seconds, then
reported that it did not find a feasible solution when, in fact, it already had, judging by the best-found
solution results shown partially in Figure 17 and plotted in Figure 18. The solution indicates that
all constraints were satisfied within a reasonable tolerance of 1 × 10−5, except for x_6(1), which was
satisfied within a tolerance of 1 × 10−3. This is verified by the feasibility report generated by the
Solver, and shown in Figure 19. The report indicates that the Solver had difficulty satisfying end point
constraints for x_4 and x_6 at the Solver’s default tolerances, while all other constraints were satisfied.

Table 4. List of constraints added to the NLP Solver for optimal control problem (17)–(29) and their
corresponding equations. The bound constraints were defined using aid formulas listed in Table 3.

Added Constraints Purpose

G103 = 10 x1(1) = 10

H103 = 14 x2(1) = 14

I103 = 0 x3(1) = 0

J103 = 2.5 x4(1) = 2.5

K103 = 0 x5(1) = 0

L103 = 2.5 x6(1) = 0

S10 ≤ 2.5
(4.12)S11 ≥ −2.5

S12 ≤ 1
(4.13)S13 ≥ −1

S6 ≤ 2.83374
(4.10)S7 ≥ −2.83374

S8 ≤ 0.71265
(4.11)S9 ≥ −0.80865

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 15 of 23

use of the aid formulas listed in Table 3 to define the inequality bound constraints (26)–(29). The end
point equality constraints on the state variables (25) were imposed directly onto the corresponding
cells at t = 1 (last row) of the IVSOLVE solution array (see Figure 15). The Solver spun for a few
seconds, then reported that it did not find a feasible solution when, in fact, it already had, judging by
the best-found solution results shown partially in Figure 17 and plotted in Figure 18. The solution
indicates that all constraints were satisfied within a reasonable tolerance of 1 × 10−5, except for x_6(1),
which was satisfied within a tolerance of 1 × 10−3. This is verified by the feasibility report generated
by the Solver, and shown in Figure 19. The report indicates that the Solver had difficulty satisfying
end point constraints for x_4 and x_6 at the Solver’s default tolerances, while all other constraints
were satisfied.

Figure 17. Best-found solution obtained by Excel’s Solver for optimal control problem (17)–(29).

Table 4. List of constraints added to the NLP Solver for optimal control problem (17)–(29) and their
corresponding equations. The bound constraints were defined using aid formulas listed in Table 3.

Added Constraints Purpose
G103 = 10 ଵ(1)ݔ = 10
H103 = 14 ଶ(1)ݔ = 14
I103 = 0 ଷ(1)ݔ = 0

J103 = 2.5 ݔସ(1) = 2.5
K103 = 0 ହ(1)ݔ = 0

L103 = 2.5 ଺(1)ݔ = 0
S10 ≤ 2.5

(4.12)
S11 ≥ −2.5

S12 ≤ 1
(4.13)

S13 ≥ −1
S6 ≤ 2.83374

(4.10)
S7 ≥ −2.83374
S8 ≤ 0.71265

(4.11)
S9 ≥ −0.80865

The reported objective in [17] is 0.005361, but the exact tolerances used for the NLPQL solver are
unknown. We note that in this problem, Excel’s Solver best-found solution has a much lower
minimum for the objective at 0.000805, as shown in Figure 17.

Figure 17. Best-found solution obtained by Excel’s Solver for optimal control problem (17)–(29).

The reported objective in [17] is 0.005361, but the exact tolerances used for the NLPQL solver
are unknown. We note that in this problem, Excel’s Solver best-found solution has a much lower
minimum for the objective at 0.000805, as shown in Figure 17.

Math. Comput. Appl. 2018, 23, 6 16 of 23

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 16 of 23

(a) (b)

Figure 18. (a) Optimal trajectories for all variables of optimal control problem (17)–(29); (b) Selected
optimal trajectories.

Microsoft Excel 16.0 Feasibility Report

Worksheet: [Examples.xlsx]Example 3

Report Created: 9/26/2017 6:43:45 PM

Constraints Which Make the Problem Infeasible

Cell Name Cell Value Formula Status Slack

H103 x_2 14.00000001 H103=14 Binding 0
 J103 x_4 2.499994248 J103=2.5 Violated −5.75165E-06

 L103 x_6 0.00072322 L103=0 Violated −0.00072322

Figure 19. Feasibility Report generated by Excel’s Solver for optimal control problem (17)–(29).

3.4. Minimum Time Orbit Transfer Problem

The fourth example describes a minimum time orbit transfer problem. The goal is to minimize
the transfer time of a constant thrust rocket between the orbits of Earth and Mars, and to determine
the optimal thrust angle control. The original free-time mathematical problem is stated as follows:

Minimize ܬ = ி (31)ݐ

subject to ݔሶଵ(ݐ) = (ݐ)ሶଶݔ (32) ,(ݐ)ଶݔ = (ݐ)ଵݔଶ(ݐ)ଷݔ − ଶ(ݐ)ଵݔߛ + ܴ଴ sin ଴݉(ݐ)ݑ + ሶ݉ ݐ , (33)

(ݐ)ሶଷݔ = (ݐ)ଵݔ(ݐ)ଷݔ(ݐ)ଶݔ− + ܴ଴ cos ଴݉(ݐ)ݑ + ሶ݉ ݐ , ݐ ∈ [0, ி], (34)ݐ

with initial conditions ݔଵ(0) = 1, ଶ(0)ݔ = 0, ଷ(0)ݔ = 1, (35)

and final conditions ݔଵ(ݐி) = 1.525, (ிݐ)ଶݔ = 0, (ிݐ)ଷݔ = 0.8098. (36)

In [17], the original problem was transformed into a fixed time domain [−1, 1]. The
corresponding value for the transfer time, ݐி, was reported at 3.31873 using ninth-degree Chebyshev
polynomial approximations. Here, we solve the original free-time problem as stated in (31)–(36).

Figure 18. (a) Optimal trajectories for all variables of optimal control problem (17)–(29); (b) Selected
optimal trajectories.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 16 of 23

(a) (b)

Figure 18. (a) Optimal trajectories for all variables of optimal control problem (17)–(29); (b) Selected
optimal trajectories.

Microsoft Excel 16.0 Feasibility Report

Worksheet: [Examples.xlsx]Example 3

Report Created: 9/26/2017 6:43:45 PM

Constraints Which Make the Problem Infeasible

Cell Name Cell Value Formula Status Slack

H103 x_2 14.00000001 H103=14 Binding 0
 J103 x_4 2.499994248 J103=2.5 Violated −5.75165E-06

 L103 x_6 0.00072322 L103=0 Violated −0.00072322

Figure 19. Feasibility Report generated by Excel’s Solver for optimal control problem (17)–(29).

3.4. Minimum Time Orbit Transfer Problem

The fourth example describes a minimum time orbit transfer problem. The goal is to minimize
the transfer time of a constant thrust rocket between the orbits of Earth and Mars, and to determine
the optimal thrust angle control. The original free-time mathematical problem is stated as follows:

Minimize ܬ = ி (31)ݐ

subject to ݔሶଵ(ݐ) = (ݐ)ሶଶݔ (32) ,(ݐ)ଶݔ = (ݐ)ଵݔଶ(ݐ)ଷݔ − ଶ(ݐ)ଵݔߛ + ܴ଴ sin ଴݉(ݐ)ݑ + ሶ݉ ݐ , (33)

(ݐ)ሶଷݔ = (ݐ)ଵݔ(ݐ)ଷݔ(ݐ)ଶݔ− + ܴ଴ cos ଴݉(ݐ)ݑ + ሶ݉ ݐ , ݐ ∈ [0, ி], (34)ݐ

with initial conditions ݔଵ(0) = 1, ଶ(0)ݔ = 0, ଷ(0)ݔ = 1, (35)

and final conditions ݔଵ(ݐி) = 1.525, (ிݐ)ଶݔ = 0, (ிݐ)ଷݔ = 0.8098. (36)

In [17], the original problem was transformed into a fixed time domain [−1, 1]. The
corresponding value for the transfer time, ݐி, was reported at 3.31873 using ninth-degree Chebyshev
polynomial approximations. Here, we solve the original free-time problem as stated in (31)–(36).

Figure 19. Feasibility Report generated by Excel’s Solver for optimal control problem (17)–(29).

3.4. Minimum Time Orbit Transfer Problem

The fourth example describes a minimum time orbit transfer problem. The goal is to minimize
the transfer time of a constant thrust rocket between the orbits of Earth and Mars, and to determine
the optimal thrust angle control. The original free-time mathematical problem is stated as follows:

Minimize
J = tF (31)

subject to
.
x1(t) = x2(t), (32)

.
x2(t) =

x3(t)
2

x1(t)
− γ

x1(t)
2 +

R0 sin u(t)
m0 +

.
m t

, (33)

.
x3(t) = −

x2(t)x3(t)
x1(t)

+
R0 cos u(t)
m0 +

.
m t

, t ∈ [0, tF], (34)

with initial conditions
x1(0) = 1, x2(0) = 0, x3(0) = 1, (35)

and final conditions
x1(tF) = 1.525, x2(tF) = 0, x3(tF) = 0.8098. (36)

In [17], the original problem was transformed into a fixed time domain [−1, 1]. The corresponding
value for the transfer time, tF, was reported at 3.31873 using ninth-degree Chebyshev polynomial
approximations. Here, we solve the original free-time problem as stated in (31)–(36).

Math. Comput. Appl. 2018, 23, 6 17 of 23

3.4.1. Spreadsheet Model

Referring to Figure 20, the IVP (32)–(35) was modeled using a third-order parametrized
polynomial approximation for u(t), with an initial guess of zero for each of the unknown coefficients.
The differential equations in B21:B23 are defined in terms of the system variables in B2:B5, the control
u in B19, and the constants γ, m0,

.
m, and R0 which are assigned corresponding names in the figure.

In this problem, the end time, tF, is a design variable and is therefore assigned its own variable tF
in B13 with an initial guess of 10. Figure 21 shows a partial listing of the initial solution obtained by
evaluating the IVSOLVE formula

=IVSOLVE(B21:B23,B2:B5,B12:B13) (37)

in array E2:H103, along with the generated control column and the initial objective value.
The corresponding formulas are listed in Table 5, and the initial trajectories for the system states
and control are plotted in Figure 23a. Note that the third argument to the IVSOLVE formula is the
variable time domain [0, tF] which is represented by the range B12:B13.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 17 of 23

3.4.1. Spreadsheet Model

Referring to Figure 20, the IVP (32)–(35) was modeled using a third-order parametrized
polynomial approximation for (ݐ)ݑ, with an initial guess of zero for each of the unknown coefficients.
The differential equations in B21:B23 are defined in terms of the system variables in B2:B5, the control
u in B19, and the constants ߛ,݉଴, ሶ݉ , and ܴ଴ which are assigned corresponding names in the figure.
In this problem, the end time, ݐி, is a design variable and is therefore assigned its own variable tF in
B13 with an initial guess of 10. Figure 21 shows a partial listing of the initial solution obtained by
evaluating the IVSOLVE formula

=IVSOLVE(B21:B23,B2:B5,B12:B13) (37)

in array E2:H103, along with the generated control column and the initial objective value. The
corresponding formulas are listed in Table 5, and the initial trajectories for the system states and
control are plotted in Figure 23a. Note that the third argument to the IVSOLVE formula is the variable
time domain [0, .ி] which is represented by the range B12:B13ݐ

A B
1 ODE variables
2 t 0
3 x_1 1
4 x_2 0
5 x_3 1
6 Parameters
7 gamma 1
8 R0 0.1405
9 m0 1
10 mdot −0.07487
11 Time Domain
12 t0 0
13 tF 10
14 Parametrized control formula
15 c_0 0
16 c_1 0
17 c_2 0
18 c_3 0
19 u =c_0+c_1*t+c_2*t^2+c_3*t^3
20 ODE rhs equations
21 x1dot =x_2
22 x2dot =x_3^2/x_1−gamma/x_1^2+R0*SIN(u)/(m0+mdot*t)
23 x3dot =−x_2*x_3/x_1+R0*COS(u)/(m0+mdot*t)

Figure 20. Spreadsheet model for the IVP (32)–(35) with parametrized control function. The colored
ranges are input parameters for IVSOLVE Formula (37).

Table 5. Formula definitions used for solving optimal control problem (31)–(36).

Purpose Cell Formula
Initial value problem solution E2:H103 =IVSOLVE(B21:B23,B2:B5,B12:B13)

AutoFill formula for control values J3 =c_0+c_1*E3+c_2*E3^2+c_3*E3^3
Objective formula L3 =tF

Figure 20. Spreadsheet model for the IVP (32)–(35) with parametrized control function. The colored
ranges are input parameters for IVSOLVE Formula (37).

Table 5. Formula definitions used for solving optimal control problem (31)–(36).

Purpose Cell Formula

Initial value problem solution E2:H103 =IVSOLVE(B21:B23,B2:B5,B12:B13)
AutoFill formula for control values J3 =c_0+c_1*E3+c_2*E3ˆ2+c_3*E3ˆ3

Objective formula L3 =tF

Math. Comput. Appl. 2018, 23, 6 18 of 23

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 18 of 23

E F G H I J K L
1 IVP Solution
2 t x_1 x_2 x_3 u Cost functional
3 0.00 1 0 1 0 Objective 10
4 0.10 1.000047 0.001413 1.014055 0
5 0.20 1.000378 0.005681 1.027927 0
6 0.30 1.001278 0.012807 1.041313 0
7 0.40 1.003034 0.02276 1.053905 0

100 9.70 8.305837 1.499819 1.391005 0
101 9.80 8.456923 1.521927 1.417734 0
102 9.90 8.610249 1.544573 1.445546 0
103 10.00 8.765865 1.567783 1.474497 0

Figure 21. Partial listing of computed result by Formula (37). Also shown are generated control
column and the initial objective formula value. The associated formulas are listed in Table 5.

3.4.2. Results and Discussion

We configured Excel’s Solver to minimize the objective formula L3 by varying the end time tF,
B13, and the control coefficients B15:B18, subject to the end point equality constraints on the state
variables (36). The constraints were added directly into the Solver’s dialog by referencing the
corresponding cells in the last row of the IVSOLVE solution array in Figure 21. The Solver reported,
in under 20 seconds, the feasible solution shown in the Answer Report of Figure 22. The minimum
orbit time, ݐி, was found to be 3.58656. This compares reasonably well to the value reported in [17]
at 3.31873 using ninth-degree Chebyshev polynomial approximations. The optimal trajectories are
plotted in Figure 23b. In Figure 24, we show a partial listing of the updated IVSOLVE solution result
reflecting the new end time, and the decreased output time increment in comparison to the initial
result shown in Figure 21.

Figure 22. Answer Report generated by Excel’s Solver for optimal control problem (31)–(36).

Figure 21. Partial listing of computed result by Formula (37). Also shown are generated control column
and the initial objective formula value. The associated formulas are listed in Table 5.

3.4.2. Results and Discussion

We configured Excel’s Solver to minimize the objective formula L3 by varying the end time tF, B13,
and the control coefficients B15:B18, subject to the end point equality constraints on the state variables
(36). The constraints were added directly into the Solver’s dialog by referencing the corresponding
cells in the last row of the IVSOLVE solution array in Figure 21. The Solver reported, in under 20 s,
the feasible solution shown in the Answer Report of Figure 22. The minimum orbit time, tF, was found
to be 3.58656. This compares reasonably well to the value reported in [17] at 3.31873 using ninth-degree
Chebyshev polynomial approximations. The optimal trajectories are plotted in Figure 23b. In Figure 24,
we show a partial listing of the updated IVSOLVE solution result reflecting the new end time, and the
decreased output time increment in comparison to the initial result shown in Figure 21.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 18 of 23

E F G H I J K L
1 IVP Solution
2 t x_1 x_2 x_3 u Cost functional
3 0.00 1 0 1 0 Objective 10
4 0.10 1.000047 0.001413 1.014055 0
5 0.20 1.000378 0.005681 1.027927 0
6 0.30 1.001278 0.012807 1.041313 0
7 0.40 1.003034 0.02276 1.053905 0

100 9.70 8.305837 1.499819 1.391005 0
101 9.80 8.456923 1.521927 1.417734 0
102 9.90 8.610249 1.544573 1.445546 0
103 10.00 8.765865 1.567783 1.474497 0

Figure 21. Partial listing of computed result by Formula (37). Also shown are generated control
column and the initial objective formula value. The associated formulas are listed in Table 5.

3.4.2. Results and Discussion

We configured Excel’s Solver to minimize the objective formula L3 by varying the end time tF,
B13, and the control coefficients B15:B18, subject to the end point equality constraints on the state
variables (36). The constraints were added directly into the Solver’s dialog by referencing the
corresponding cells in the last row of the IVSOLVE solution array in Figure 21. The Solver reported,
in under 20 seconds, the feasible solution shown in the Answer Report of Figure 22. The minimum
orbit time, ݐி, was found to be 3.58656. This compares reasonably well to the value reported in [17]
at 3.31873 using ninth-degree Chebyshev polynomial approximations. The optimal trajectories are
plotted in Figure 23b. In Figure 24, we show a partial listing of the updated IVSOLVE solution result
reflecting the new end time, and the decreased output time increment in comparison to the initial
result shown in Figure 21.

Figure 22. Answer Report generated by Excel’s Solver for optimal control problem (31)–(36). Figure 22. Answer Report generated by Excel’s Solver for optimal control problem (31)–(36).

Math. Comput. Appl. 2018, 23, 6 19 of 23

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 19 of 23

(a) (b)

Figure 23. (a) Initial trajectories for optimal control problem (31)–(36) based on default values shown
in Figure 20; (b) Optimal trajectories found by Excel’s NLP Solver.

 E F G H I J K L
1 IVP solution
2 t x_1 x_2 x_3 u Cost functional
3 0 1 0 1 0.12673 Objective 3.586556
4 0.03586 1.000018 0.001183 1.004922 0.273053
5 0.07173 1.000097 0.003406 1.009605 0.409846
6 0.10759 1.000274 0.00658 1.013935 0.537309
7 0.14346 1.000579 0.010605 1.017831 0.655639

100 3.47899 1.524526 0.01056 0.792036 −0.71564
101 3.51482 1.524818 0.005901 0.79735 −0.56733
102 3.55069 1.524962 0.002325 0.803313 −0.40924
103 3.58555 1.525 1.18E-06 0.809799 −0.24119

Figure 24. Partial listing of the updated initial result of Figure 21 which reflects the optimal final time
and adjusted output time values in Column E.

4. Practical Tips

Successful nonlinear optimization is often the result of numerical experimentation. In this
section, we share a few practical tips for effective use of the presented spreadsheet optimization
method.

4.1. Excel’s NLP Solver and Settings

The standard NLP Solver shipped with Excel uses the Generalized Reduced Gradient algorithm
[14], which has proved effective for smooth nonlinear problems. The standard Solver also offers a
simplex and evolutionary genetic algorithm options that may be suitable for linear or nonsmooth
problems. Nonetheless, it is possible to expand the available pool of NLP algorithms, including
sequential programming, interior point, and active set methods, by upgrading to a premium version
of the NLP Solver [18].

Perhaps the most important factor is the starting guess for the decision parameter vector which
may require a nonzero initial value for some problems. The author has found it generally quick to
find a good initial guess interactively by trial and error in just a few attempts given the fast response
of the Solver. Excel Solver’s dialog offers a few settings, two of which have proved influential in
aiding the convergence for some problems. In particular, the ‘Derivatives’ scheme is recommended
to be switched to Central from the default Forward, and the ‘Use Automatic Scaling’ option is
recommended to be left enabled (default setting).

Figure 23. (a) Initial trajectories for optimal control problem (31)–(36) based on default values shown
in Figure 20; (b) Optimal trajectories found by Excel’s NLP Solver.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 19 of 23

(a) (b)

Figure 23. (a) Initial trajectories for optimal control problem (31)–(36) based on default values shown
in Figure 20; (b) Optimal trajectories found by Excel’s NLP Solver.

 E F G H I J K L
1 IVP solution
2 t x_1 x_2 x_3 u Cost functional
3 0 1 0 1 0.12673 Objective 3.586556
4 0.03586 1.000018 0.001183 1.004922 0.273053
5 0.07173 1.000097 0.003406 1.009605 0.409846
6 0.10759 1.000274 0.00658 1.013935 0.537309
7 0.14346 1.000579 0.010605 1.017831 0.655639

100 3.47899 1.524526 0.01056 0.792036 −0.71564
101 3.51482 1.524818 0.005901 0.79735 −0.56733
102 3.55069 1.524962 0.002325 0.803313 −0.40924
103 3.58555 1.525 1.18E-06 0.809799 −0.24119

Figure 24. Partial listing of the updated initial result of Figure 21 which reflects the optimal final time
and adjusted output time values in Column E.

4. Practical Tips

Successful nonlinear optimization is often the result of numerical experimentation. In this
section, we share a few practical tips for effective use of the presented spreadsheet optimization
method.

4.1. Excel’s NLP Solver and Settings

The standard NLP Solver shipped with Excel uses the Generalized Reduced Gradient algorithm
[14], which has proved effective for smooth nonlinear problems. The standard Solver also offers a
simplex and evolutionary genetic algorithm options that may be suitable for linear or nonsmooth
problems. Nonetheless, it is possible to expand the available pool of NLP algorithms, including
sequential programming, interior point, and active set methods, by upgrading to a premium version
of the NLP Solver [18].

Perhaps the most important factor is the starting guess for the decision parameter vector which
may require a nonzero initial value for some problems. The author has found it generally quick to
find a good initial guess interactively by trial and error in just a few attempts given the fast response
of the Solver. Excel Solver’s dialog offers a few settings, two of which have proved influential in
aiding the convergence for some problems. In particular, the ‘Derivatives’ scheme is recommended
to be switched to Central from the default Forward, and the ‘Use Automatic Scaling’ option is
recommended to be left enabled (default setting).

Figure 24. Partial listing of the updated initial result of Figure 21 which reflects the optimal final time
and adjusted output time values in Column E.

4. Practical Tips

Successful nonlinear optimization is often the result of numerical experimentation. In this section,
we share a few practical tips for effective use of the presented spreadsheet optimization method.

4.1. Excel’s NLP Solver and Settings

The standard NLP Solver shipped with Excel uses the Generalized Reduced Gradient
algorithm [14], which has proved effective for smooth nonlinear problems. The standard Solver
also offers a simplex and evolutionary genetic algorithm options that may be suitable for linear or
nonsmooth problems. Nonetheless, it is possible to expand the available pool of NLP algorithms,
including sequential programming, interior point, and active set methods, by upgrading to a premium
version of the NLP Solver [18].

Perhaps the most important factor is the starting guess for the decision parameter vector which
may require a nonzero initial value for some problems. The author has found it generally quick to find
a good initial guess interactively by trial and error in just a few attempts given the fast response of
the Solver. Excel Solver’s dialog offers a few settings, two of which have proved influential in aiding
the convergence for some problems. In particular, the ‘Derivatives’ scheme is recommended to be

Math. Comput. Appl. 2018, 23, 6 20 of 23

switched to Central from the default Forward, and the ‘Use Automatic Scaling’ option is recommended
to be left enabled (default setting).

4.2. Spreadsheet Tips

• Naming spreadsheet variables (e.g., naming B1 as t) makes the formulas easier to read and spot
errors. However, it is also recommended to restrict the scope of a named variable to the specific
sheet it will be used on, and not the whole workbook. This prevents accidental interdependence
between multiple problems on different sheets sharing variables with the same name.

• The shown layouts for the model setup with labels ensures that the Answer Report generated by
Excel’s Solver has proper descriptive names for the variables and constraints.

• Excel gives precedence to the unary negation operator which may be confused with the binary
minus operator since they both use the same symbol. This can lead to hard-to-find errors in
formulas. For example, Excel evaluates the formula ‘=−X1ˆ2’ as ‘=(−X1)ˆ2’. The intention may
have been to do ‘−(X1ˆ2)’ instead. A simple fix is to either use parentheses when needed, or to use
the intrinsic POWER(X1,2) function instead of the operator ˆ. Also, when using the IF statement
in a formula, it is important to verify that the formula evaluates to a numeric value for all possible
conditions. Otherwise, the formula may evaluate to a nonnumeric Boolean condition, leading to a
solver error.

• The calculus functions are designed to operate in two modes: a silent mode, where only standard
spreadsheet errors are returned like #VALUE!, and a verbose mode, where the function may
display an informative error or warning message alert in a popup window. It is recommended
to work in the verbose mode when setting up the problem, but switch to the silent mode before
running the NLP Solver. Switching between the two modes is triggered by evaluating the formula
‘=VERBOSE(TRUE)’ or ‘=VERBOSE(FALSE)’ in any cell in the workbook. For some problems,
the Solver may wander into illegal input space before it recovers and adjusts its search. The silent
mode blocks any occasional error alerts from the calculus functions.

4.3. Generalization to a Special Class of Control Problems

By restricting the space of admissible control functions to, for example, variable-order polynomials
up to a fixed degree, it may not be always possible to find a solution to a certain class of control problems
for which the optimal control, in fact, lies outside the admissible space. It is difficult to know a priori
when an algorithm may or may not work, but this may arise in problems with a particularly long
time horizon. When all fails, it may well be that the only alternative is to use an indirect method and
maximize the Hamiltonian for a number of points, then use interpolation to construct the complete
control function(s). Nonetheless, we propose below a general idea that we have not tested but which
fits within our presented direct method, and may offer a potential solution in certain cases.

The idea, effectively, is to enlarge the admissible space by stitching together different parametrized
control functions defined over nonoverlapping subintervals of the time horizon. Both the interior end
points of the subintervals (stitching points), and the control functions’ parameters are unknown design
variables for the NLP Solver. The stitching is enforced by imposing additional constraints for the NLP
Solver that demand continuity of the control functions at the stitching points. A continuity condition
is easily derived algebraically by matching two parametrized functions’ values at a stitching point.
Excel NLP Solver poses no restriction on the number of design variables, although performance and
convergence will be impacted as the problem dimension grows.

5. Conclusions

We have demonstrated a practical technique which adapts the control parametrization direct
method for optimal control problems to the spreadsheet. The technique combines Excel’s NLP Solver
command with two calculus worksheet functions, an initial value problem solver, and a discrete data
integrator in a simple systematic procedure. The employed calculus functions are utilized from an

Math. Comput. Appl. 2018, 23, 6 21 of 23

Excel calculus Add-in library [19]. The technique has proved very effective on several highly nonlinear,
multivariable, constrained control problems, and produced results consistent with reported answers
obtained with highly accurate pseudo-spectral approximation and NLPQL optimization software
package using a full parametrization direct method. Excel’s Solver’s computing time has been in the
order of seconds to a minute on a laptop with an Intel 4-Core i7 CPU, which makes the technique
highly interactive for experimenting with different initial guesses and variations. As demonstrated
by the examples, using the devised method requires no more than defining a few formulas with
basic knowledge of the spreadsheet and requires no programming skills, offering a simpler solution
approach to optimal control problems.

A slightly modified version of the technique can also be applied for parameter estimation of
initial value problems where the parameters may include initial conditions or coefficients. In future
work, it may also be worth investigating a dual technique based on indirect methods for optimal
control problems. The indirect method requires the modeler to recast the problem in a different form
by applying Pontryagin’s maximum principle. However, the ensuing boundary value problem could
be solved with the aid of a boundary value problem solver function, BVSOLVE, also included in the
Excel calculus Add-in [19].

Supplementary Materials: An Excel workbook containing all the solved examples presented in this article is
available at www.mdpi.com/2297-8747/23/1/6/s1, (file Location to be determined.)

Acknowledgments: No funding has been received in support of this research work.

Conflicts of Interest: The author of the manuscript is the founder of ExcelWorks LLC of Massachusetts,
USA supplying the Excel calculus Add-in, ExceLab, utilized in this research work.

Appendix

Appendix A.1 Initial Value Problem Solver Spreadsheet Function

The spreadsheet function

=IVSOLVE(equations, variables, time_interval, mass_matrix, options)

is utilized from the calculus Add-in [19] to solve an initial value ordinary differential algebraic equation
system in the interval t ∈ [ts, te]:

M dx
dt = F(x(t), t),
x(ts) = xs,

(A1)

x(t) = (x1(t), x2(t), . . . , xn(t)), and M is an optional mass matrix. If M is singular, the system is
differential algebraic. IVSOLVE implements several adaptive integration schemes [12,20], suitable for
stiff and smooth problems. By default, it uses the RADUA5 algorithm [12]. Algorithm selection and
control parameters, as well as the system analytic Jacobian can be supplied via optional arguments [19].
At minimum, IVSOLVE requires three arguments:

1. Reference to the right-hand side formulas corresponding to the vector-valued function
F(x(t), t) = (f1(x(t), t), f2(x(t), t), . . . , fn(x(t), t)). Any algebraic equations should be ordered last.

2. Reference to the system variables corresponding to t and x(t) in the specific order
(t, x1, x2, . . . , xn).

3. The integration time interval end points.

IVSOLVE is run as a standard array formula in an allocated array of cells. It evaluates to an
ordered tabular result where the time values are listed in the first column and the corresponding state
variables’ values are listed in adjacent columns. By default, IVSOLVE reports the output at uniform
intervals according to the allocated number of rows for the output array. Custom output formats can

www.mdpi.com/2297-8747/23/1/6/s1

Math. Comput. Appl. 2018, 23, 6 22 of 23

be achieved via the optional parameters, including specifying custom divisions or output points [19].
We demonstrate IVSOLVE for the following DAE example:

dy1
dt = −0.04y1 + 104y2y3, t ∈ [0, 1000],

dy2
dt = 0.04y1 − 104y2y3 − 3 ∗ 107y2

2,
0 = y1 + y2 + y3 − 1,

y1(0) = 1, y2(0) = 0, y3(0) = 0.

(A2)

The system RHS formulas are defined in cells A1:A3 using cell T1 for the time variable and Y1,
Y2, Y3 for the state variables with the specified initial conditions shown in Figure A1.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 22 of 23

ݐଶ݀ݕ݀ = ଵݕ0.04 − 10ସݕଶݕଷ − 3 ∗ 10଻ݕଶଶ, 0 = ଵݕ + ଶݕ + ଷݕ − ଵ(0)ݕ ,1 = 1, ଶ(0)ݕ = 0, ଷ(0)ݕ = 0.
The system RHS formulas are defined in cells A1:A3 using cell T1 for the time variable and Y1,

Y2, Y3 for the state variables with the specified initial conditions shown in Figure A1.

 A Y
1 =-0.04*Y1+10000*Y2*Y3 1 1
2 =0.04*Y1-10000*Y2*Y3-30000000*Y2^2 2 0
3 = Y1+Y2+Y3-1 3 0

Figure A1. Spreadsheet input model for equation system A2.

To solve the system, we evaluate in the array C1:F22 the formula

=IVSOLVE (A1:A3,(T1,Y1:Y3),{0,1000},1) (A3)

which computes and displays the solution shown in Figure A2. Note that the fourth argument, 1,
instructs the solver that the last equation in A1:A3 is an algebraic equation.

(a) (b)

Figure A2. (a) Partial listing of the computed solution by formula A3; (b) Plots of the trajectories.

Appendix A.2. Discrete Data Integrator Spreadsheet Function

The spreadsheet function

=QUADXY(x, y, options)

is utilized from the calculus Add-in [19] to integrate a set of discrete (x, y(x)) data points. The
integration limits are determined from the endpoints of the x vector. QUADXY performs the
integration with the aid of cubic (default) or linear splines [13]. The third optional argument allows
the specification of boundary conditions for the data, including starting and end slopes. Options are
specified by (key, value) pairs as detailed in [19].

References

1. La Torre, D.; Kunze, H.; Ruiz-Galan, M.; Malik, T.; Marsiglio, S. Optimal Control: Theory and Application
to Science, Engineering, and Social Sciences. Abstr. Appl. Anal. 2015, 2015, 890527, doi:10.1155/2015/890527.

2. Geering, H.P. Optimal Control with Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2007.
3. Aniţa, S.; Arnăutu, V.; Capasso, V. An Introduction to Optimal Control Problems in Life Sciences and Economics:

From Mathematical Models to Numerical Simulation with MATLAB; Birkhäuser: Basel, Switzerland, 2011.

Figure A1. Spreadsheet input model for equation system A2.

To solve the system, we evaluate in the array C1:F22 the formula

=IVSOLVE (A1:A3,(T1,Y1:Y3),{0,1000},1) (A3)

which computes and displays the solution shown in Figure A2. Note that the fourth argument, 1,
instructs the solver that the last equation in A1:A3 is an algebraic equation.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 22 of 23

ݐଶ݀ݕ݀ = ଵݕ0.04 − 10ସݕଶݕଷ − 3 ∗ 10଻ݕଶଶ, 0 = ଵݕ + ଶݕ + ଷݕ − ଵ(0)ݕ ,1 = 1, ଶ(0)ݕ = 0, ଷ(0)ݕ = 0.
The system RHS formulas are defined in cells A1:A3 using cell T1 for the time variable and Y1,

Y2, Y3 for the state variables with the specified initial conditions shown in Figure A1.

 A Y
1 =-0.04*Y1+10000*Y2*Y3 1 1
2 =0.04*Y1-10000*Y2*Y3-30000000*Y2^2 2 0
3 = Y1+Y2+Y3-1 3 0

Figure A1. Spreadsheet input model for equation system A2.

To solve the system, we evaluate in the array C1:F22 the formula

=IVSOLVE (A1:A3,(T1,Y1:Y3),{0,1000},1) (A3)

which computes and displays the solution shown in Figure A2. Note that the fourth argument, 1,
instructs the solver that the last equation in A1:A3 is an algebraic equation.

(a) (b)

Figure A2. (a) Partial listing of the computed solution by formula A3; (b) Plots of the trajectories.

Appendix A.2. Discrete Data Integrator Spreadsheet Function

The spreadsheet function

=QUADXY(x, y, options)

is utilized from the calculus Add-in [19] to integrate a set of discrete (x, y(x)) data points. The
integration limits are determined from the endpoints of the x vector. QUADXY performs the
integration with the aid of cubic (default) or linear splines [13]. The third optional argument allows
the specification of boundary conditions for the data, including starting and end slopes. Options are
specified by (key, value) pairs as detailed in [19].

References

1. La Torre, D.; Kunze, H.; Ruiz-Galan, M.; Malik, T.; Marsiglio, S. Optimal Control: Theory and Application
to Science, Engineering, and Social Sciences. Abstr. Appl. Anal. 2015, 2015, 890527, doi:10.1155/2015/890527.

2. Geering, H.P. Optimal Control with Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2007.
3. Aniţa, S.; Arnăutu, V.; Capasso, V. An Introduction to Optimal Control Problems in Life Sciences and Economics:

From Mathematical Models to Numerical Simulation with MATLAB; Birkhäuser: Basel, Switzerland, 2011.

Figure A2. (a) Partial listing of the computed solution by formula A3; (b) Plots of the trajectories.

Appendix A.2 Discrete Data Integrator Spreadsheet Function

The spreadsheet function
=QUADXY(x, y, options)

is utilized from the calculus Add-in [19] to integrate a set of discrete (x, y(x)) data points. The integration
limits are determined from the endpoints of the x vector. QUADXY performs the integration with the
aid of cubic (default) or linear splines [13]. The third optional argument allows the specification of
boundary conditions for the data, including starting and end slopes. Options are specified by (key,
value) pairs as detailed in [19].

Math. Comput. Appl. 2018, 23, 6 23 of 23

References

1. La Torre, D.; Kunze, H.; Ruiz-Galan, M.; Malik, T.; Marsiglio, S. Optimal Control: Theory and Application to
Science, Engineering, and Social Sciences. Abstr. Appl. Anal. 2015, 2015, 890527. [CrossRef]

2. Geering, H.P. Optimal Control with Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2007.
3. Aniţa, S.; Arnăutu, V.; Capasso, V. An Introduction to Optimal Control Problems in Life Sciences and Economics:

From Mathematical Models to Numerical Simulation with MATLAB; Birkhäuser: Basel, Switzerland, 2011.
4. Böhme, T.J.; Frank, B. Indirect Methods for Optimal Control. In Hybrid Systems, Optimal Control and Hybrid

Vehicles. Advances in Industrial Control; Springer: Cham, Switzerland, 2017.
5. Böhme, T.J.; Frank, B. Direct Methods for Optimal Control. In Hybrid Systems, Optimal Control and Hybrid

Vehicles. Advances in Industrial Control; Springer: Cham, Switzerland, 2017.
6. Banga, J.R.; Balsa-Canto, E.; Moles, C.G.; Alonso, A.A. Dynamic optimization of bioprocesses: Efficient and

robust numerical strategies. J. Biotechnol. 2003, 117, 407–419. [CrossRef] [PubMed]
7. Rodrigues, H.S.; Monteiro, M.T.T.; Torres, D.F.M. Optimal Control and Numerical Software: An Overview.

This is a preprint of a paper whose final and definite form will appear in the book. In Systems Theory:
Perspectives, Applications and Developments; Miranda, F., Ed.; Nova Science Publishers: Hauppauge, NY, USA,
2014. Available online: https://arxiv.org/abs/1401.7279 (accessed on 23 January 2018).

8. Ghaddar, C. Method, Apparatus, and Computer Program Product for Optimizing Parameterized Models
Using Functional Paradigm of Spreadsheet Software. U.S. Patent 9,286,286, 15 March 2016.

9. Ghaddar, C. Method, Apparatus, and Computer Program Product for Solving Equation System Models
Using Spreadsheet Software. U.S. Patent 15,003,848, 2018. in Press.

10. Ghaddar, C. Unconventional Calculus Spreadsheet Functions. World Academy of Science, Engineering
and Technology, International Science Index 112. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 2016, 10,
194–200. Available online: http://waset.org/publications/10004374 (accessed on 23 January 2018).

11. Ghaddar, C. Unlocking the Spreadsheet Utility for Calculus: A Pure Worksheet Solver for Differential
Equations. Spreadsheets Educ. 2016, 9, 5. Available online: http://epublications.bond.edu.au/ejsie/vol9/
iss1/5 (accessed on 23 January 2018).

12. Hairer, E.; Wanner, G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems; Springer
Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 1996.

13. De Boor, C. A Practical Guide to Splines (Applied Mathematical Sciences); Springer: Berlin/Heidelberg,
Germany, 2001.

14. Lasdon, L.S.; Waren, A.D.; Jain, A.; Ratner, M. Design and Testing of a Generalized Reduced Gradient Code
for Nonlinear Programming. ACM Trans. Math. Softw. 1978, 4, 34–50. [CrossRef]

15. Weber, E.J. Optimal Control Theory for Undergraduates Using the Microsoft Excel Solver Tool. Comput. High.
Educ. Econ. Rev. 2007, 19, 4–15.

16. Nævdal, E. Solving Continuous Time Optimal Control Problems with a Spreadsheet. J. Econ. Educ. 2003, 34,
99–122. [CrossRef]

17. Elnagar, G.; Kazemi, M.A. Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical
Systems. Comput. Optim. Appl. 1998, 11, 195–217. [CrossRef]

18. FrontlineSolvers. Available online: https://www.solver.com/ (accessed on 23 January 2018).
19. ExcelWorks LLC; MA, USA. ExceLab Calculus Add-in for Excel and Reference Manual. Available online:

https://excel-works.com (accessed on 23 January 2018).
20. Hindmarsh, A.C. ODEPACK, A Systematized Collection of ODE Solvers. In Scientific Computing;

Stepleman, R.S., Carver, M., Peskin, R., Ames, W.F., Vichnevetsky, R., Eds.; North-Holland Publishing:
Amsterdam, The Netherlands, 1983; pp. 55–64.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2015/890527
http://dx.doi.org/10.1016/j.jbiotec.2005.02.013
http://www.ncbi.nlm.nih.gov/pubmed/15888349
https://arxiv.org/abs/1401.7279
http://waset.org/publications/10004374
http://epublications.bond.edu.au/ejsie/vol9/iss1/5
http://epublications.bond.edu.au/ejsie/vol9/iss1/5
http://dx.doi.org/10.1145/355769.355773
http://dx.doi.org/10.1080/00220480309595206
http://dx.doi.org/10.1023/A:1018694111831
https://www.solver.com/
https://excel-works.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Spreadsheet-Adapted Direct Solution Method
	Illustrative Examples
	A Bang–Bang Control Problem
	Spreadsheet Model
	Results and Discussion

	Unconstrained Nonlinear Optimal Control Problem
	Spreadsheet Model
	Results and Discussion

	Minimal Swing Container Transfer Problem
	Spreadsheet Model
	Results and Discussion

	Minimum Time Orbit Transfer Problem
	Spreadsheet Model
	Results and Discussion

	Practical Tips
	Excel’s NLP Solver and Settings
	Spreadsheet Tips
	Generalization to a Special Class of Control Problems

	Conclusions
	
	Initial Value Problem Solver Spreadsheet Function
	Discrete Data Integrator Spreadsheet Function

	References

