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Abstract: The fundamental logic operations NOT, OR, AND, and XOR processing bit-streams of
∆Σ-modulators are discussed herein. The resulting bit-streams are evaluated on the basis of their
mean values and their standard deviations. Mathematical expressions are presented for their mean
values; i.e., the logic function XOR results in the negative multiplication of two bipolar bit-streams,
and the logic function AND results in the multiplication of two unipolar bit-streams. As the results
are valid for bit-streams with independent high-frequency components, the normed cross-product is
utilized for evaluation of the independence of the high-frequency components. In order to achieve
a high independence between the input bit-streams, representing the same value, the quantization
noise is affected. Multiple strategies are examined and ∆Σ-modulators with different designs are
chosen as the best-suited solution. The operations are evaluated on a testbench.
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1. Introduction

Operations in the delta sigma domain are a broad field of research. Previous publications have
utilized complex networks and operations to achieve the desired mathematical operations. The first
approaches were made in the 80’s based on logic chips [1,2]. Further mathematical operations were
introduced by the publications [3,4]. The described operations are linear or use long filters with more
than 100 elements. As the bit-streams are usually binary signals, an investigation of the fundamental
logic operations brings up mathematical operations without the need for filtering. The mathematical
functions describing the averaged output of the fundamental logic operations NOT, OR, AND, and
XOR will be presented in this publication. As these logic operations are dependent of the actual
values of the input bit-streams, the high-frequency signal components are investigated. As the
considerations are made for bit-streams with independent high-frequency components, the normed
cross-product is utilized for evaluation of the independence of the high-frequency components. In order
to achieve a high independence between the input bit-streams, if they represent the same value,
the local distribution can be influenced by noise shaping. Several strategies are examined to increase
the independence of the input bit-streams. The best rated strategy is examined on a testbench.

2. Delta-Sigma Modulators

Signal processing based on bit-streams requires an understanding of the operation of
∆Σ-modulators. In a classical AD-conversion setup an ∆Σ-analog-to-digital converter is comprised
of two elements; i.e., the ∆Σ-modulator and a low-pass filter with decimation, as shown in
Figure 1. By omitting the low-pass filter and directly operating on the high-frequency (≥10 Mbit/s)
bit-stream [5–9], a larger small signal bandwidth is achieved, e.g., in control loops.

The ∆Σ-modulator is composed of one or several integrators and a clocked comparator
with feedback loops and gains. The order of the ∆Σ-modulator is specified by the number of
implemented integrators; for example, in Figure 1 a first-order ∆Σ-modulator is shown. While
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first-order ∆Σ-modulators are always stable, for higher-order ∆Σ-modulators the feedback coefficients
to individual stages have to be designed carefully to stabilize the feedback loops [10]. Several
design methods are known from the literature [11,12]. For the presented evaluation, second-order
∆Σ-modulators are used.
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Figure 1. First-order ∆Σ-modulator with low-pass filter.

Considered as a closed control loop, the ∆Σ-modulator integrates the control error between the
input signal and the output signal. If this integral is greater than zero, it outputs a one, else a zero for
the next clock cycle. In conjunction with the feedback loop, this simple control law ensures that the
output bit-stream only consists of ones and zeros representing the input signal in average. As the
bit-stream can only transport 1 bit information per clock cycle, quantization noise is introduced to the
output bit-stream. Due to the internal structure, the ∆Σ-modulator provides noise shaping. As shown
in Figure 2, the quantization noise is mainly shifted to the high-frequency signal components. In a
classical digital signal processing (DSP) implementation, these are suppressed by a digital low-pass
filter. In ∆Σ-signal processing (DSSP), this noise remains in the bit-streams and thereby influences the
local distribution of ones and zeros.
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Figure 2. Power of the noise transfer function (NTF) of a first-order ∆Σ-modulator [10].

The ∆Σ-modulators can be implemented in two ways. In a hardware ∆Σ-modulator, the integrator
is an analog circuit and the feedback is a one-bit digital–analog-converter, whereas in a software
∆Σ-modulator the whole modulator is implemented digitally.

In general, there are two ways to map the logical values true and f alse, respectively 1 and 0,
to normalized signal values: signed and unsigned. In the signed case, the logical 1 is mapped to 1 and
the logical 0 is mapped to −1, whereas in the unsigned case the logical 0 is mapped to 0.
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3. Logic Operations

There are four fundamental logic operations, NOT, AND, OR, and XOR, which can be applied
on one or two bit-streams [13]. The logic operation NOT has one input (x), and the others require
two inputs (x1, x2). All fundamental logic operations have one output (y). The truth tables are shown
in Table 1–4.

Table 1. Truth table for NOT.

x y

0 1
1 0

Table 2. AND.

x1 x2 y

0 0 0
0 1 0
1 0 0
1 1 1

Table 3. Truth table for OR.

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 1

Table 4. Truth table for XOR.

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

4. Statistical Analysis

Statistical analysis is applied in order to evaluate which mathematical functions are executed on
the average value of bit-streams if fundamental logic operations are applied. The greatest difficulty
for operations on ∆Σ-bit-streams is that no meaningful instantaneous value can be attributed to
∆Σ-bit-streams. As a substitute for the missing instantaneous value, many operations are designed on
the average value over N samples, as this represents the actual value. The probability of ones in these
samples is p1|2, where the index 1|2 stands for either 1 or 2. For logical analysis, the expected number
of ones (o1|2 = p1|2 · N) is an integer value, resulting in an integer value of zeros (z1|2 = (1− p1|2) · N).
With rising sample size, the discretization step size of the probabilities decreases towards zero.

A statistical distribution of the positions of ones in the input bit-streams is assumed for the
operations with two input bit-streams. This leads to the urn problem of type “drawing without
replacement” for calculating the probability of ones in the output bit-stream [14].
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4.1. NOT

The NOT operator inverts the bit-stream, leading to the probability py = 1− p1. This is equivalent
to a multiplication with −1 for bipolar inputs, as stated in [15]. Due to the fact that this connection is
already known from the literature, the logical function NOT is not investigated any further.

4.2. OR

For the operation OR, each one in the first input bit-stream (x1) and each one in the second input
bit-stream (x2) at the position of a zero in x1 will lead to a one in the output bit-stream (y). Thus,
the probability of ones in the output bit-stream is at least the probability of ones in the first input
bit-stream. This can be written as

pOR1 =
o1

N
= p1. (1)

The distribution of ones in the output bit-stream is derived by the additional ones in the bit-stream,
caused by x2, which have to be described. As the output bit-stream already consists of the ones of the
first bit-stream, only the zeros of the first bit-stream can be conditionally converted to ones.

The number of combinatorial possibilities for a zero in the first bit-stream is given by

pOR2 =
(N − z1)!

N!
=

(p1 · N)!
N!

. (2)

The possibilities to obtain t ones from the second input bit-stream in the place of zeros from the
first input bit-stream are

pOR3(t) =
z1!

t! · (z1 − t)!
=

((1− p1) · N)!
t! · ((1− p1) · N − t)!

. (3)

This limits the possible amount of additional ones. The output bit-stream cannot have more ones
than there are places in the output bit-stream and no more ones than the sum of ones in both input
bit-streams. This leads to a maximum amount of additional ones in the output bit-stream, which can
be expressed as

tOR,max = min(z1, o2) = min(1− p1, p2) · N. (4)

The probability of more ones in the output bit-stream is zero, as this event is not possible.
The probability for t ones from the second input bit-stream being combined with zeros of the first

input bit-stream is given by

pOR4(t) =
o2!

(o2 − t)!
=

(p2 · N)!
(p2 · N − t)!

. (5)

The remaining copied zeros of the first input bit-stream ((1− p1) · N − t) also have to correspond
to zeros in the second input bit-stream. The probability for this event can be expressed by

pOR5(t) =
z2!

(z2 − z1 + t)!
=

((1− p2) · N)!
((p1 − p2) · N + t)!

. (6)

If the second input bit-stream has more ones than the first input bit-stream, the output bit-stream
has at least the amount of ones in the second input bit-stream. This forms the lower boundary for the
amount of additional ones in the output bit-stream. This can be expressed as

tOR,min = max(0, o2 − o1) = max(0, p2 − p1) · N. (7)

The limitations (4) and (7) ensure that the factorial is only calculated from values ∈ N0.
The product of (2), (3), (5), and (6) in the limits (4) and (7) describes the probability of t additional ones
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from the second input bit-stream in the output bit-stream if the input bit-streams are processed by the
logic operation OR. This can be written as

pOR(t) =
(p1 · N)!

N!
· ((1− p1) · N)!

t! · ((1− p1) · N − t)!
· (p2 · N)!
(p2 · N − t)!

· ((1− p2) · N)!
((p1 − p2) · N + t)!

. (8)

As a result, the probability of a one in the output bit-stream (py,OR) is given by combining (1)
and (8)

py,OR =
min(z1,o2)

∑
t=max(0,o2−o1)

(
t + o1

N

)
· pOR(t) =

min(1−p1,p2)·N
∑

t=max(0,p2−p1)·N

t
N
· pOR(t) + p1. (9)

With (9) the probability of a one in the output bit-stream can be calculated for combinations of
p1|2 ∈ {0, 1}. Figure 3 illustrates the results for the logic operation OR.
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Figure 3. Expected probability of a one in the output bit-stream for the input bit-streams x1 and x2,
with the probability of ones p1|2, operated by OR.

4.3. AND

For the operation AND, each one in x1 at the position of a one in x2 leads to a one in y. Thus,
the minimal number of ones in the output bit-stream results if the ones in x1 are combined with zeros
in x2 and vice versa. The resulting ones—which cannot be combined with zeros—gives the minimal
count of ones in the output bit-stream. These can be described by the ones, which are more than the
length of the bit-stream

tAND,min = max(0, o1 + o2 − N) = max(0, p1 + p2 − 1) · N. (10)

The maximal number of ones in the output bit-stream is the minimum of ones in one of the input
bit-streams, as a one can only result if two ones are combined. This can be expressed as

tAND,max = min(o1, o2) = min(p1, p2) · N. (11)

For the description of the event, that two ones from both input bit-streams are in the same position,
and the ones in the first bit-stream are taken into account. The number of combinatorial possibilities
for a one in the first bit-stream is given by

pAND1 =
(N − o1)!

N!
=

((1− p1) · N)!
N!

. (12)
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The possibilities of arranging t ones from the second input bit-stream in the places of ones in the
first input bit-stream are given by

pAND2(t) =
o1!

t! · (o1 − t)!
=

(p1 · N)!
t! · (p1 · N − t)!

. (13)

The probability for t ones from the second input bit-stream to be in the same place as ones of the
first input bit-stream can be described as

pAND3(t) =
o2!

(o2 − t)!
=

(p2 · N)!
(p2 · N − t)!

. (14)

In the position of the other ones in the first input bit-stream should be zeros in the second input
bit-stream. The probability for this is expressed by

pAND4(t) =
z2!

(z2 − o1 + t)!
=

((1− p2) · N)!
((1− p1 − p2) · N + t)!

. (15)

The product of (12)–(15) with the limits (10) and (11) describes the probability of t ones in the
output bit-stream, if the input bit-streams are processed by the logic operation AND

pAND(t) =
((1− p1) · N)!

N!
· (p1 · N)!

t! · ((1− p1) · N − t)!
· (p2 · N)!
(p2 · N − t)!

· ((1− p2) · N)!
((1− p1 − p2) · N + t)!

. (16)

The probability of a one in the output bit-stream (py,AND) follows from (16)

py,AND =
min(o1,o2)

∑
t=max(0,o1+o2−N)

t
N
· pAND(t) =

min(p1,p2)·N
∑

t=max(0,p1+p2−1)·N

t
N
· pAND(t). (17)

With (17) the probability of a one in the output bit-stream can be calculated for combinations of
p1|2 ∈ {0, 1}. Figure 4 illustrates the results for the logic operation AND.
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Figure 4. Expected probability of a one in the output bit-stream for the input bit-streams x1 and x2,
with the probability of ones p1|2, operated by AND.

4.4. XOR

For the operation XOR, a one in the output results if the inputs have opposite logical values in
that position. As the logic operation XOR counts the differences in the bit-streams, only the probability
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of a one in the second input bit-stream combined with a zero in the first input bit-stream has to be
described in order to calculate the amount of ones in the output bit-stream.

Thus, the minimal occurrence of this event is the difference between the ones in the second input
bit-stream to the first input bit-stream, which is given by

tXOR,min = max(0, o2 − o1) = max(0, p2 − p1) · N. (18)

The maximum number of ones of the second input bit-stream combined with zeros of the first
input bit-stream is limited by the amount of ones in the second input bit-stream and by the amount of
zeros in the first input bit-stream, resulting in

tXOR,max = min(z1, o2) = min(1− p1, p2) · N. (19)

The operation XOR requires special precautions, as it is not possible to change the parity of ones
(parity((p1 + p2) ·N) = parity(py ·N)), with parity(x) defined in Definition 1. As the statistical model
does not regard this matter and returns for those events the same probability as for the events with the
right parity, the probabilities of the events with different parities have to be set to zero. This can be
achieved by multiplication with

(1− |parity(t)− parity((p1 + p2) · N)|). (20)

Definition 1. Let parity(x) be a function of N0 → N0: parity(x) = x mod 2.

First, the number of possibilities to place the zeros in the first input bit-stream is described,
which can be expressed by

pXOR1 =
(N − z1)!

N!
=

(p1 · N)!
N!

. (21)

The possibilities of arranging t ones from the second input bit-stream in the places of zeros from
the first input bit-stream can be described as

pXOR2(t) =
z1!

t! · (z1 − t)!
=

((1− p1) · N)!
t! · ((1− p1) · N − t)!

. (22)

The probability of t ones from the second input bit-stream falling on the places of zeros in the first
input bit-stream is given by

pXOR3(t) =
o2!

(o2 − t)!
=

(p2 · N)!
(p2 · N − t)!

. (23)

The other zeros of the first input bit-stream ((1− p1) · N − t) should also be zeros in the second
input bit-stream. The probability for this event can be expressed by

pXOR4(t) =
z2!

(z2 − z1 + t)!
=

((1− p2) · N)!
((p1 − p2) · N + t)!

. (24)

The product of (21)–(24) and the parity check (20) with the limits (18) and (19) leads to the
probability for t events of this kind, which can be expressed as

pXOR(t) =
(p1 · N)!

N!
· ((1− p1) · N)!

t! · ((1− p1) · N − t)!
· (p2 · N)!
(p2 · N − t)!

· ((1− p2) · N)!
((p1 − p2) · N + t)!

·(1− |parity(t)− parity((p1 + p2) · N)|).
(25)

The probability of a one in the output bit-stream (py,XOR) can be calculated. As the count of
ones in the second input bit-stream combined with zeros from the first input bit-stream is known
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as t, the output bit-stream must contain t ones. The remaining zeros from the first input bit-stream
are combined with zeros from the second bit-stream. These do not add ones to the output bit-stream.
More ones in the output bit-stream can be added by the ones in the first input bit-stream if they match
zeros in the second input bit-stream. This event will occur for all ones in the first input bit-stream
(o1) minus the resulting ones in the second input bit-stream (o2 − t), as t ones from the second input
bit-stream are already combined with zeros from the first input bit-stream. This can be described as

nones,y = t + o1 − o2 + t = 2 · t + (p1 − p2) · N. (26)

The probability of ones in the output bit-stream can be derived from (25) and (26)

py,XOR =
min(z1,o2)

∑
t=max(0,o2−o1)

(
2 · t + o1 − o2

N

)
· pXOR(t) =

min(1−p1,p2)·N
∑

t=max(0,p2−p1)·N

2 · t
N
· pXOR(t) + p1 − p2. (27)

With (27), the probability of a one in the output bit-stream can be calculated for combinations of
p1|2 ∈ {0, 1}. Figure 5 illustrates the results for the logic operation XOR.
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Figure 5. Expected probability of a one in the output bit-stream for the input bit-streams x1 and x2,
with the probability of ones p1|2, operated by XOR.

With the Equations (9), (17), and (27), a distribution of ones in the output of a logical operation
for independent bit-streams can be derived. In the next section, mathematical functions for the
expected probability of ones in the output bit-stream depending on the probability of ones in the input
bit-streams are presented.

5. Mathematical Operations

In order to utilize the fundamental logic operations as mathematical operations for ∆Σ-signal
processing (DSSP), a mathematical function creating the same mapping of input values to output
values must be fitted.

The statistical description developed in Section 4 leads to an expectation of ones in the output
bit-streams of the logical operations OR, AND, and XOR for the input bit-streams with the probability
p1|2 ∈ {0, . . . , 1}. As stated in Section 4, the value represented in a bit-stream can be interpreted
by averaging. The expected percentage of ones in N sampled bits from a bit-stream contains the
same information as the averaged value, as it represents the average probability. Thus, the expected
percentage of ones in the bit-stream is directly linked to the represented value.

With the numerical interpretation of the input and output bit-streams, as presented in Section 2,
mathematical functions can be fitted to the transformation of the logic operations.
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5.1. OR

In Figure 3, the percentage of ones in the output bit-stream of the logical operation OR is shown for
different probabilities of ones in the input signals x1 and x2. If x1 or x2 contain only zeros, the output
value has a linear dependency on the probability of ones in the other input. This leads to the term
x1 + x2. To match the flat boarder at only ones for x1 or x2, the value represented by the output must
be reduced by the value represented by the other input. One way to achieve this is to subtract x1 · x2,
as the other input is only ones and is therefore mapped to one. Summed up, the unipolar mathematical
function x1 + x2 − x1 · x2 concludes. This function forms the same image, e.g., Figure 6.
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Figure 6. Results of the function x1 + x2 − x1 · x2.

5.2. AND

In Figure 4, the percentage of ones in the output bit-stream of the logical operation AND is shown
for different probabilities of ones in the input signals x1 and x2. For any input consisting of only zeros,
the output is only zeros. For an input consisting of only ones, the output has a linear dependency on
the probability of ones of the other input. This leads to the unipolar mathematical function x1 · x2.
The expected probability of ones compared to Figure 7 reveals that they form the same image.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

x1x2

x 1
·x

2

Figure 7. Results of the function x1 · x2.

5.3. XOR

In Figure 5 the percentage of ones in the output bit-stream of the logical operation XOR is shown
for different probabilities of ones in the input signals x1 and x2. In this case, a flat cross at py = 0.5 is



Math. Comput. Appl. 2018, 23, 4 10 of 16

revealed for p1 or p2 equal 0.5. This behaviour matches the interpretation that p = 0.5 equals zero and
the bipolar function is x1 · x2. Furthermore, there is always a linear dependency on the probability of
ones in one input if the other input is constant zeros or ones. The maxima occur when the bit-streams
are different, and the minima occur if they are equal. This is expected for a multiplication, but the
maxima and the minima are interchanged, thus leading to the bipolar function −x1 · x2. The figure of
the bipolar function is similar to the image of the percentage of ones in the output bit-stream of the
logical operation XOR (e.g., Figure 8).
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1
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1
−1

0

1

x1x2

−
x 1

·x
2

Figure 8. Results of the function −x1 · x2.

Concerning the average values, the resulting functions can be written as

for(x1, x2) = x1 + x2 − x1 · x2 : ∀x1, x2 ∈ [0 . . . 1] (28)

fand(x1, x2) = x1 · x2 : ∀x1, x2 ∈ [0 . . . 1] (29)

fxor(x1, x2) = −x1 · x2 : ∀x1, x2 ∈ [−1 . . . 1] (30)

6. Prediction of the Standard Deviation

The intention is to utilize these functions in DSSP. Therefore, not only the average value has to be
considered, but the standard deviation is also of interest, as it can be used as a measure for the image
quality of the function. Thus, the standard deviation is discussed in this section.

The standard deviation must always be considered in the statistics for the mean value; in this
case, it may also be used as a measure for the image quality of the derived mathematical function.
According to the laws of logic, the standard deviation is calculated by [16]:

σ =

√
n

∑
k=0

(
p(k) · k− py

)2. (31)

Based on (31), the distribution of the results from the logical operations can be calculated. For the
logic operations OR and AND, the standard deviations are the same. This is shown in Figure 9.
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Figure 9. Standard deviation for the event of a one in the output bit-stream for the input bit-streams x1

and x2, with the probability of ones p1|2, operated by OR or by AND.

For the logic operation XOR, the standard deviation is doubled in comparison to the operations
OR and AND. The standard deviation of the operation XOR is shown in Figure 10.
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Figure 10. Standard deviation for the event of a one in the output bit-stream for the input bit-streams
x1 and x2, with the probability of ones p1|2, operated by XOR.

As can be seen, the shape of the standard deviation is the same for all three logic operations.
There are no combinatorial possibilities at the edges of the displayed plane, because at least one
bit-stream (x1, x2) consists only of zeros or ones. Therefore, it can be reasoned that the result depends
only on the probability of the other bit-streams. In the middle of the area (where both bit-streams
consist of half ones and half zeros), there are—as expected—the most combinatorial possibilities.
If, in extreme cases, the ones of one bit-stream coincide with the ones of the other bit-stream, the logical
operations OR and AND result in output bit-streams corresponding to the input bit-streams. For the
logical operation XOR, a bit-stream containing only zeros is the output bit-stream. In the other extreme
case, if the ones of one bit-stream fall on the zeros of the other bit-stream, an output bit-stream of zeros
results for the logical operation AND. For the logical operations OR and XOR, an output bit-stream
consisting of ones results. For all other combinations of probabilities, at least one combination cannot
be changed. Therefore, the largest standard deviations can be expected at this point. Due to the fact
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that the output bit stream changes from zero to one with XOR and only from 0.5 to zero or one with
OR and AND, the scaling is expected to be a factor of two of the standard deviations from OR and
AND to XOR. This leads to the expectation that the image quality is very good at the definition limits
of the input values in the number space and gets worse at the center.

In review, the influence of the logic operations OR, AND, and XOR on the mean value of two input
bit-streams with independent high-frequency components to the output bit-stream and the standard
deviation of these operations are discussed.

7. Quantization Noise

In this section, the independence of the quantization noise—which results in the high-frequency
signal components—of two bit-streams will be discussed.

The mean value and the standard deviation have been discussed for statistical distributed
bit-streams. This assumption is based on the linear model of the ∆Σ-modulator (i.e., Figure 11) [17].

kq

e(n)
q(n) y(n)linearizedq(n) y(n)

Figure 11. Linear model of the quantizer utilized in a ∆Σ-modulator comprised of a gain (kq) and
a white noise source (e(n)) [17].

As shown in previous publications [6,10,17–19], this assumption is quite common. In the case
of non-linear DSSP, the assumption of a white noise source is bold, as the single bits at each clock
cycle have an impact on the output bit-stream, whereas the white noise source assumption is more
appropriate for a larger time scale. Therefore, the noise sources of the utilized ∆Σ-modulators must be
independent, or the discussed probabilities are invalid.

The high-frequency quantization noise is able to interchange the positions of ones and zeros locally
in the bit-stream, but will not affect the overall ratio. Thus, the independence of the noise between
two bit-streams representing the same signal can be approximated by the normed cross-product
without shift (32) using the signed mapping of the bit-streams.

Rx1,x2 =
1
n

n

∑
i=0

x1{−1;1}(i) · x2{−1;1}(i). (32)

The evaluation of the presented approaches for modifying the high-frequency signal components
are examined with a sinusoidal excitation in simulation, as shown in Figure 12.

sin

∆Σ−M1

∆Σ−M2

1

1

1

1

1
n

fs1

fs2

y

Figure 12. Testbench for evaluating the independence of the noise from ∆Σ-modulators.

The intention is to measure the independence of the two signals; therefore, lower values of Rx1,x2

are preferable. Especially for two software ∆Σ-modulators, which are created from logic cells in
a field-programmable gate array (FPGA), driven by the same clock with the same parameter set and
zero input value Rx1,x2 = 1. This behaviour is expected, as the main noise source is the quantization.
Since the modulator is a non-linear operator, this behaviour can change with different input signals.
However, it is not guaranteed that the input signals are different for all load points of the plant, or if
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both signals are mapped to independent input ranges, the usable data range is significantly reduced
and the result must be processed further. Another opportunity is to use different designs for the
∆Σ-modulators [7] (e.g., [10,12]). With this combination, Rx1,x2 = 0.278. The last evaluated possibility
to overcome this issue is utilizing different clock rates of the ∆Σ-modulators ( fs1 6= fs2), which leads to
different bit-streams. For a second-order ∆Σ-modulator with minimal parameters [12] and fs1 = 2 · fs2

follows Rx1,x2 = 0.298. This option has the drawback that the overall system clock has to be faster than
necessary for the requested bandwidth.

For different modulator design combinations, it can be possible to reach a higher independence of
the high-frequency noise signal components. Therefore, the proposed solution is to utilize differently
designed ∆Σ-modulators, since the investigated implementations have the lowest Rx1,x2 of all the
proposed solutions.

8. Validation of the Results

The testbench in Figure 13 modulates the input signals with two different designed
∆Σ-modulators. The resulting bit-streams are fed into a dual input logic operation (AND, OR, or XOR)
and filtered with an sinc3 filter [10]. The resulting multibit value is compared against the sinc3 filtered
multibit value of the corresponding multibit mathematical operation. For the unipolar functions AND
and OR, unipolar signal sources and ∆Σ-modulators are used, and the bipolar function XOR is driven
by bipolar input signals with bipolar ∆Σ-modulators.

∆Σ−M1

∆Σ−M2

OR
AND
or
XOR

filter

math. operation filter

filter

filter

sin

y

fy

In1

In2

Figure 13. Testbench for evaluating the logic functions.

The input sources are chosen as shown in Figure 13. The phase shift for the sinus source (Input1)
and the delay followed by an overshoot by the ramp input (Input2) is due to the sinc3 filter.

The functional relation for OR and AND are proven in simulation (e.g., Figure 14). Nevertheless,
the greatest deviations occur not in the region around 0.5 ms, where they are estimated from the
considerations in Section 6. The resulting value for the logic operation OR deviates the most around
0.8 ms and the logic function AND in the mirrored region around 0.2 ms. This fact shows the necessity
of evaluating the deviation for different ∆Σ-modulator implementations on a testbench with the
expected input signals.

The result in Figure 15 for the logic function XOR shows the expected behaviour. For input signals
at the definition boarder (e.g., the beginning and the ending of the simulation), the represented value
in the output bit-stream follows the expected signal. The deviations are most severe when both input
signals represent a value in the middle of the definition range, which occurs in the range around
0.5 ms.
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The simulation results show that the statistical considerations are valid. The resulting deviations
are lower than expected from the calculated mean deviations. In order to use the logic operations as
mathematical functions, the implementation of the ∆Σ-modulators must be verified using the expected
input signals.
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Figure 14. Results from the testbench for the logic operations OR and AND and corresponding
operations for = x1 + x2 − x1 · x2 and fand = x1 · x2.
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Figure 15. Results from the testbench for the logic operation XOR and the float operation fxor = −x1 · x2.
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9. Conclusions

In this publication, the results of the fundamental logic operations NOT, AND, OR, and XOR on
bit-streams are investigated and interpreted statistically. The operation NOT represents a negation
for a bipolar input signal. The operation AND results in the product for unipolar input signals.
The operation OR results in the addition of the input signals minus the product for unipolar input
signals. The operation XOR results in the negative product for bipolar input signals. All operations
with multiple inputs have in common that the standard deviation reaches a minimum for input values
at the border and a maximum for values in the center of the input range. As the results are based on the
assumption of input bit-streams with independent high-frequency components, multiple optimisation
strategies for decoupling the quantization noise are discussed and evaluated. The best-rated solution
is to implement different designs for the ∆Σ-modulators; for example, [10,12]. This combination has
been simulated for all three dual input logic operations (AND, OR, XOR). The deviation between
the filtered output bit-streams and the filtered functions show better results than expected from the
standard deviation, and support the previous theses. In order to achieve the best independence
of the high-frequency signal components, different designs must be evaluated with the expected
input signals.
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Abbreviations

The following abbreviations are used in this manuscript:

DSP digital signal processing
DSSP ∆Σ-Signal Processing
NOT logic function not
OR logic function or
AND logic function and
XOR logic function xor
FPGA Field Programmable Gate Array
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