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Abstract: A complex nonlinear model for a single-mesh helical gear train is developed by including
a time-varying mesh stiffness, axial vibrations, torsional vibrations, shaft and bearing damping,
generator back EMF (Electromotive Force) and gear backlashes. With the help of a time series and Fast
Fourier Transform (FFT) frequency spectrum, the effects of these nonlinear terms on the wind turbine
and generator rotational speeds are studied under different excitation conditions by numerically
integrating the associated equations using the RK4 algorithm. Results show that for lightly damped
oscillations, an extra harmonic is induced in the generator dynamics due to contributions from
internal excitations. However, this extra vibration can be suppressed at higher damping. Big helical
angles will generally induce heavy nonlinear vibrations in the turbine and generator; a smaller mesh
frequency will induce extra noise in the generator; and the external excitation due to wind gust has
a greater influence on the nonlinearity of the wind turbine dynamics as compared to the internal
excitations due to static transmission errors, time-varying mesh stiffness and the generator back EMF.
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1. Introduction

1.1. Background

A wind turbine interacting with wind speed undergoes different mechanical dynamics. Some of
these dynamics are: tower vibration, torsional dynamics, axial vibrations and a 3p effect, which is
usually caused by a non-homogeneous wind speed across the turbine rotor plane and the presence
of a tower [1]. These vibrations greatly affect the efficiency of the wind turbine and the generator.
Therefore, it is worthwhile and necessary to study them. According to [2], a wind turbine drive train
can be seen as a multi-mass system consisting of three inertias, which include the generator rotor,
the turbine hub and the blades. Different structural models of a wind turbine drive train have been
studied by most researchers, which include the primitive two-mass model. The two-mass model [3] has
two inertias that are connected to each other through a spring where the spring represents low stiffness
of the drive-train shaft. This model of the drive train has two flexible points, which are: the flexible
blades with flexibility located at the blade tip and blade root and the gear box shafts [1]. The first mass
consists of the blade tip, and the second consists of the blade root, the hub and the low and high speed
shaft of the turbine. The main challenge of adopting this model is that the blade breaking point is
rarely provided by manufacturers [1]. Researchers of this model realize that there is a greater need
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to consider more sophisticated models as this model fails to address the actual behavior of the wind
turbine at the gear stage and only considers the entire gearbox as a gain that adds up to the speed of
a high speed shaft.

The multi-mass drive train model has serious drawbacks as it induces multiple torsional modes.
Higher torsional modes are also present due to self-oscillation of the hub and generator [1–3].
Moreover, this model presents the blades as flexible with the flexibility associated with the bending
effects of the blades that acts symmetrically in the rotor plane and collinear with the shaft torque [1–5].
As far as stability is concerned, this model of the drive train is difficult to stabilize compared to the
two-mass model as the system becomes more complex.

So far, there is not yet a mathematical model that can completely describe with accuracy the
dynamical behavior of a wind turbine drive train due to complex multi-torsional modes. Therefore,
our main focus in this work is to develop a nonlinear multi-mass mathematical model of the drive
train with a single helical gear stage to study the effects of tower vibrations, tower-induced vibrations
in the drive train and the effect of wind gust on the generator and turbine rotational speeds.

1.2. Literature Survey

To better describe the dynamic behavior of wind turbine components, different wind turbine
multi-mass models of the drive train have been studied: Mingming Zhao et al. studied the torsional
vibrations of a wind turbine gearbox having two planetary gear stages and one parallel gear stage [4].
They developed a nonlinear model for this gearbox by including a time-varying mesh stiffness,
damping, static transmission error and gear backlash. They also considered the external excitation
due to wind gust and the internal excitation due to static transmission error. By making use of the
time history, FFT spectrum, phase portrait, Poincare map and Lyapunov exponent, they found that
the external excitation has the most influence on the torsional vibrations of the wind turbine gearbox
components. The mesh stiffness, being another significant factor, has more influence than the other
internal excitation sources. The static transmission error has the least influence. In another paper,
Mingming Zhao et al. studied a four-degree-of-freedom (DOF) dynamic model of a gearbox using
a similar approach [5]. Their approach in this work explains under which conditions the fretting
corrosion, as one of the wind turbine gearbox failure modes, may occur. Fuchun Yang et al. [6] also
developed and studied a nonlinear dynamic behavior and load sharing model of double-mesh helical
gear trains by also including torsional vibration, axial vibration, time-varying mesh stiffness and
backlashes. Their results show that there are linear and nonlinear areas in the frequency responses of
the system. Jan Helsen et al. also model the wind turbine gearbox by means of three more complex
modeling techniques of varying complexity: a purely torsional, rigid six degrees of freedom with
discrete flexibility and a flexible multibody technique [7]. Through a non-linear finite element method,
which is extended by multi-body system functionalities and aerodynamics based on the blade element
momentum theory, the dynamic loads of wind turbine power trains, with particular emphasis on
planetary gearbox loads, has also been studied [8]. Many more interesting research has been carried
out on the gearbox structure and, in general, the dynamics of multi-body systems [9–12].

1.3. Contribution of This Study

Helical gears have been widely studied and found suitable to use in many mechanical transmission
systems because of their advantages such as high carrying capacity, smooth transmission and rare tooth
interference [6]. In this work, we will also adopt the helical gear and, in addition to the existing models,
consider one of the most important factor of the internal excitation that has rarely been considered,
which is the generator back EMF (Electromotive Force). Many researchers have focused more on
modeling the gearbox and studying its dynamics. However, in this work, we fill study the effects of
nonlinear coupling at the gear stage on the wind turbine and generator dynamics.

Therefore, the complete nonlinear model of our six-Degree-Of-Freedom (DOF) system will
include torsional vibrations, axial vibrations, time-varying mesh stiffness, shaft and bearing dampings,
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generator back EMF and backlashes, with the purpose of studying the characteristics of nonlinear
dynamical responses, analyzing the influences of the parameters on the frequency responses.

1.4. Organization of the Paper

The work is divided as follows: in Section 2, we present our model of the drive train, the nonlinear
terms and derive the associated equations. Section 3 presents the results from the numerical simulation
and discussions, then we end with the conclusions.

2. Methods

In this section, we consider a single-mesh helical gear train shown in Figure 1, which is a common
model used to design most wind turbines. If we consider a non-rigid shaft, Figure 2 is an illustrated
diagram showing damping and torsional factors attached to each inertia. Contrary to the two-mass
model, here, the inertia of the gear wheels is non-negligible. Axial vibrations are constrained by the
bearing damping and torsional factors. If motion is constrained only in two dimensions, there are
six generalized coordinates (θ1, θ2, θ3, θ4, x1, x2) associated with the six degrees of freedom; where θ1,
θ2, θ3 and θ4 are the angular positions of the turbine, first gear wheel, second gear wheel and generator,
respectively, and x1 and x2 are the axial displacements of the first and second gear wheels, respectively.
The other nonlinear terms are as follows.

Rotor blade

Gearbox

Generator

Tower

Wind direction

hub

Low speed shaft

High speed shaft

Figure 1. Single-mesh gearbox structure.
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2.1. Mesh Stiffness

The time-varying mesh stiffness is given by [13]:

Km(t) = Km(0) + K0(sin(2π fmt))2 (1)

where Km(0) is the mesh average stiffness [14], K0 is the amplitude of the fluctuating term and fm the
mesh frequency.

Another important component of the internal excitation is the static transmission error given
by [4,5,15]:

ei(t) = e0 sin(wit) (2)

where e0 is the small amplitude of the static transmission error and wi its frequency. The static
transmission error in this work is considered to be very small such that only the fluctuating term exists
at very low amplitude. Figure 3 is the time series of the mesh stiffness and its Fast Fourier Transform
frequency (FFT) spectrum showing the nature of the internal excitation.

0.0 0.2 0.4 Time  （s） 
0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

M
es

h 
st
iff
ne

ss
 [N

/m
]

−40 −20 0 20 40
Frequency in Hert  (Hz)

0

20

40

60

80

100

M
ag

ni
tu
de

Figure 3. Time-dependent mesh stiffness with its frequency spectrum.

2.2. External Excitation

As the wind drift velocity varies across the wind turbine blades, the torque will also vary.
Here, this fluctuation in wind speed, also known as wind gust, is considered sinusoidal given by [4,15]:

Tt(t) = T1 + T0 sin(2π fit) (3)

where T0 and fi are the amplitude and frequency of the external excitation and T1 is the average torque
due to incoming wind given by:

T1 =
ρairπr2

1v3Cp

2θ̇1
(4)

where ρair is the air density, r1 the radius of wind blades, v incoming wind speed, Cp power coefficient
and θ̇1 the rotational speed of the wind turbine. Figure 4 is the time series of the external excitation
due to wind gust and its Fast Fourier Transform frequency (FFT) spectrum showing the nature of
the excitation.
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Figure 4. Fluctuating excitation and its frequency spectrum.

2.3. Generator Torque Equation

Here, instead of considering the generator torque to be a constant, we consider it to be periodically
varying with the generator angular position. With the periodic motion induced by the back EMF of the
generator. The expression is of the form:

Tm(t) = Tm0 + Tj sin(wjt) (5)

where Tm0 is the average generator torque, Tj is the amplitude and wj is the angular frequency of the
induced back EMF.

2.4. Backlash Equation

The nonlinear backlash term is given as [4–6],

f (ui) =


ui − σ, ui > σ

0, −σ < ui < σ

ui + σ, ui < −σ

(6)

where ui is the mesh displacement and σ is the half backlash between the contact teeth, with ui given by:

u = θ2r2 cos(β) + θ3r3 cos(β) + x1 sin(β)− x2 sin(β) (7)

where θ1 and θ2 are the angular positions of the first and second gear wheels, respectively, r1 and r2 are
the radii of the first and second gear wheels, respectively, and β is the helical or pressure angle.

2.5. Rotational Equations of Motion

For the rotational degrees of freedom, the rotational equations of motions for the turbine, first and
second gear wheels and generator are given respectively by,

I1θ̈1 = Tt(t)− Kl(θ1 − θ2)− Cl(θ̇1 − θ̇2)− Dt θ̇1 (8)

I2θ̈2 = Kl(θ1 − θ2) + Cl(θ̇1 − θ̇2)− r2(Cm f ′(u) + Km(t) f (u)) cos(β) (9)
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I3θ̈3 = −Kh(θ3 − θ4)− Ch(θ̇3 − θ̇4)− r3(Cm f ′(u) + Km(t) f (u)) cos(β) (10)

I4θ̈4 = −Tm(t) + Kh(θ3 − θ4) + Ch(θ̇3 − θ̇4)− Dt θ̇4 (11)

where I1, I2, I3 and I4 are the moment of inertias of the turbine, first and second gear wheels
and generator, respectively. Tt(t) is the time-varying external torque; Tm(t) is the time-varying
generator torque; and Dt and Dg are turbine and generator damping, respectively. Kl and Cl are low
speed shaft torsional and damping constants, respectively; Kh and Ch are high speed shaft torsional
and damping constants, respectively; and Km(t) and Cm time-varying mesh stiffness and damping
constants, respectively.

2.6. Equations for Axial Vibrations

For translational degree of freedom, the translational equations of motion of the first and second
gear wheels are given respectively by,

m2 ẍ2 = −k2x2 − c2 ẋ2 − r2(Cm f ′(u) + Km(t) f (u)) sin(β) (12)

m3 ẍ3 = −k3x3 − c3 ẋ3 + r3(Cm f ′(u) + Km(t) f (u)) sin(β) (13)

The above six-degree-of-freedom system can be reduced to four degrees of freedom by imposing
a new constraint, which we consider here to be the case where the gear wheels do not slip during the
axial vibration; hence, only rotation is allowed. We then consider:

x2 = r2θ2 (14)

and:
x3 = r3θ3 (15)

where x2, x3 are the axial displacements, r2 and r3 are the radii of the first and second gear
wheels, k2 and c2 are the bearing stiffness and damping constants for the first gear wheel and k3

and c3 are the bearing stiffness and damping constants for the second gear wheel. Differentiating
Equations (14) and (15) twice, substituting into Equations (12) and (13) and adding the results with
Equations (9) and (10), the four-degree-of-freedom equations become:

θ̈1 =
Tt(t)

I1
− Kl

I1
(θ1 − θ2)−

Cl
I1
(θ̇1 − θ̇2)−

Dt

I1
θ̇1 (16)

θ̈2 = β1θ1 − β2θ2 + α1θ̇1 − α2θ̇2 − δ1(Cm f ′(u) + Km(t) f (u))(cos(β) + sin(β)) (17)

θ̈3 = β3θ4 − β4θ3 + α3θ̇4 − α4θ̇3 − δ2(Cm f ′(u) + Km(t) f (u))(cos(β) + sin(β)) (18)

θ̈1 =
Tm(t)

I4
− Kh

I4
(θ4 − θ3)−

Ch
I4
(θ̇4 − θ̇3)−

Dg

I4
θ̇1 (19)

where β1 = Kl/(I2 +m2r2), β2 = (Kl + k2r2)/(I2 +m2r2), α1 = Cl/(I2 +m2r2), α2 = (Cl + c2r2)/(I2 +

m2r2), δ1 = r2/(I2 + m2r2) and β3 = Kh/(I3 + m3r3), β4 = (Kh + k3r3)/(I3 + m3r3), α3 = Ch/(I3 +

m3r3), α4 = (Ch + c3r3)/(I3 + m3r3), δ2 = r3/(I3 + m3r3).
In the nondimensional form, the equations are solved by making the transformation:

τ = ωt (20)

The above set of equations is solved using the RK4 algorithm with the parameter specifications
presented in Tables 1 and 2.
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Table 1. Table of parameters for Figures 5 and 6.

Name

Parameters Values

Inertia (Kgm2) I1 = I2 = I3 = I4 = 0.09
mass m1 = m2 = m3 = m4 = 2.0

Radius r1 = r2 = 1.0, r3 = r4 = 0.2
Pressure angle β = π/6

Torsional stiffness Kl = 1.0, Kh = 0.01,

Damping

K2 = K3 = 0.005
Cl = 0.05, Ch = 0.009,

C2 = C3 = 0.01,
Cm = 0.001, Dt = 0.01, Dr = 0.009

Torque T(0) = 50.0, Tm(0) = 5.0
Excitation frequencies ωi = 0.2, ωm = 0.5

Table 2. Table of parameters for Figures 7–10.

Name

Parameters Values

Inertia (Kgm2) I1 = I2 = I3 = I4 = 0.09
mass m1 = m2 = m3 = m4 = 2.0

Radius r1 = r2 = 1.0, r3 = r4 = 0.2
Torsional stiffness Kl = 10.0, Kh = 0.1,

Damping

K2 = K3 = 0.05
Cl = 0.5, Ch = 0.09,

C2 = C3 = 0.1,
Cm = 0.01, Dt = 0.1, Dr = 0.09

Torque T(0) = 50.0, Tm(0) = 5.0
Excitation frequencies ωi = 0.2, ωm = 0.5

3. Results and Discussion

In Figures 5 and 6, we investigate the effect of varying the damping and torsional stiffness on
the rotational speeds of both the wind turbine and generator, respectively. Figure 5a,b is the time
series and frequency response spectrum of wind turbine rotational speed, respectively, at very low
damping and torsional constants. Here, we see that multiple values and an amplitude jump exist
in the frequency response, which are typical characteristics of nonlinear vibrations. In Figure 5c,d,
the damping and torsional terms have been increased by a factor of 10. Here, we see a decrease in the
degree of nonlinear vibration at a low amplitude jump. The time series also show highly damped,
quasi-periodic vibrations. Hence, the vibrational effect of a wind turbine gearbox components can
greatly be controlled by including damping, such as shock absorbers. The effect of higher damping and
torsional stiffness is clearly visible in the generator time series and frequency spectrum. In Figure 6a,
the time series shows double-periodic vibrations with the system stabilizing at some point in time,
and in Figure 6b, two distinct double peaks corresponding to double-periodic oscillations are visible
in the frequency spectrum, which could be a result of the fact that the low damping terms failed to
suppress the influence of internal excitations on the natural frequency of oscillation of the generator.
Hence, extra harmonics are induced. The physical significance is that this can account for a faulty
gearbox, and therefore, it should be maintained or replaced. Figure 6c,d shows a reduction of this
stochastic vibration at higher damping and torsional constants.
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Figure 5. A plot of wind turbine rotational speed (θ̇1) vs. time (t) to study the effect of higher damping
and torsional stiffness. (a,b) are the time series and the corresponding FFT frequency spectrum plots
for low damping and torsional stiffness at Kl = 1.0, Kh = 0.01, K2 = K3 = 0.005,Cl = 0.05, Ch = 0.009,
C2 = C3 = 0.01, Cm = 0.001, Dt = 0.01, Dg = 0.009 and β = π/6. In (c,d), the damping and torsional
terms have been increased by a factor of 10.
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Figure 6. A plot of generator rotational speed (θ̇4) vs. time (t) to study the effect of higher damping
and torsional stiffness. (a,b) are the time series and the corresponding FFT frequency spectrum plots
for low damping and torsional stiffness at Kl = 1.0, Kh = 0.01, K2 = K3 = 0.005, Cl = 0.05, Ch = 0.009,
C2 = C3 = 0.01, Cm = 0.001, Dt = 0.01, Dg = 0.009 and β = π/6. In (c,d), the damping and torsional
terms have been increased by a factor of 10. The remaining parameters are fixed and presented in Table 1.
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In Figures 7 and 8, we study the effect of variation in the helical angle on the wind turbine and
generator rotational speed. Figure 7a,b is the time series and frequency spectrum for the case where
β = π/6 and Figure 7c,d is for the case where β = π/12. Both the time series and the frequency
spectrum show that heavy nonlinear vibrations come with a bigger helical angle, which might lead
to tooth separation at the gear stage. A small helical angle has also been seen to induce additional
vibration in the turbine that can be seen by the double peak in the frequency spectrum. While the
turbine dynamics show that a bigger helical angle can induce heavy nonlinear vibrations, the generator
dynamics of Figure 8 show that small helical angles induce more stochastic vibrations, but also become
heavily nonlinear at higher helical angles.

In Figure 9, we study the effect of variation in the mesh frequency on the turbine and generator
rotational speed using only the frequency spectrum. Figure 9a,b is the turbine and generator frequency
response at wm = 0.05 Hz, respectively. Figure 9c,d is the turbine and generator frequency responses
at wm = 0.5 Hz. Here, we see that the generator frequency response shows higher, nonlinear stochastic
dynamics at lower mesh frequency than at higher mesh frequency, but has very little effect on the
turbine dynamics.

Figure 10 is the study of the effect of variation in the frequency of the external excitation on
the wind turbine dynamics. Figure 10a is for the case wi = 0.02 Hz, and Figure 10b is for the case
wi = 0.2 Hz. Here, we see that an increase in the frequency of the external excitation has a greater
influence on the nonlinear vibration of the wind turbine as the frequency response becomes more
nonlinear at higher external frequencies.
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Figure 7. The effect of a bigger helical angle on wind turbine rotational speed (θ̇1). (a,b) are the time
series and the corresponding FFT frequency spectrum plots for the case β = π/6. In (c,d), the helical
angle has been set to β = π/12. The other parameters are fixed and listed in Table 2.
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Figure 8. The effect of a bigger helical angle on generator rotational speed (θ̇4). (a,b) are the time series
and the corresponding FFT frequency spectrum plots for the case β = π/6. In (c,d), the helical angle
has been set to β = π/12. The other parameters are fixed and listed in Table 2.
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Figure 9. The effect of a smaller mesh frequency on wind turbine and generator rotational speed.
(a,b) are the turbine and generator FFT frequency spectrum respectively for ωm = 0.05. In (c,d), the mesh
frequency has been set to ωm = 0.5. The other parameters used for these plots are presented in Table 2.
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Figure 10. The effect of external excitation frequency on wind turbine rotational speed. (a) is for the
case ωi = 0.02; and (b) is for the case ωi = 0.2. The other parameters used for these plots are presented
in Table 2.

4. Conclusions

To conclude, we have developed a complex nonlinear model for a six-degree-of-freedom
(DOF) single-mesh helical gear train by including a time-varying mesh stiffness, axial vibrations,
torsional vibrations, shaft and bearing damping, generator back EMF and gear backlashes. With the
help of a time series and FFT frequency spectrum, we have studied the effects of these nonlinear
terms on the wind turbine and generator rotational speeds under different excitation conditions by
numerically integrating the associated equations using the RK4 algorithm. In our results, we have seen
that lightly damped oscillations lead to the generation of extra harmonics in the turbine, which is not
favorable for quality current generation. Hence, this can be solved at higher damping, torsional and
axial stiffness. This means that including shock absorbers during wind turbine gearbox design will
go a long way toward reducing noisy vibrations in the gearbox and hence improving the quality of
generated current. We have also seen that big helical angles will generally induce heavy nonlinear
vibrations, which might lead to tooth separation at the gear stage, and also, very small small helical
angles induce noisy dynamics in the generator. Hence, the helical angle should be set to an optimum
value for efficient power conversion. Moreover, we have equally seen that a smaller mesh frequency
will induce extra noise in the generator, and the external excitation due to wind gust has a greater
influence on the nonlinearity of the wind turbine dynamics as compared to the internal excitations due
to static transmission errors, time varying mesh stiffness and the generator back EMF.

5. Future Work

In the future, we are looking forward to where the theory presented here can be applied for new
small wind turbine gearbox designs using helices instead of tooth/tooth couplings.
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Abbreviations

The following abbreviations are used in this manuscript:

Tt, Tm the turbine and generator torques
Ii the moment of inertia of the wheels
mi the masses of the wheels
θi the angular positions of the wheels
Kl , Kh, K2, K3 the low speed shaft torsional stiffness, high speed shaft torsional stiffness

and bearing stiffness for Gear 1 and Gear 2, respectively
Cl ,Ch, C2, C3 the low speed shaft damping, high speed shaft damping

and bearing damping for Gear 1 and Gear 2, respectively
β the helical or pressure angle
Cm and Km the mesh damping and stiffness, respectively
RK4 Runge-Kutta of order 4
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