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Abstract: This computational research study will analyze the multi-physics of lithium ion insertion
into a silicon nanowire in an attempt to explain the electrochemical kinetics at the nanoscale and
quantum level. The electron coherent states and a quantum field version of photon density waves
will be the joining theories that will explain the electron-photon interaction within the lithium-silicon
lattice structure. These two quantum particles will be responsible for the photon absorption rate of
silicon atoms that are hypothesized to be the leading cause of breaking diatomic silicon covalent
bonds that ultimately leads to volume expansion. It will be demonstrated through the combination
of Maxwell stress tensor, optical amplification and path integrals that a stochastic analyze using
a variety of Poisson distributions that the anisotropic expansion rates in the <110>, <111> and <112>
orthogonal directions confirms the findings ascertained in previous works made by other research
groups. The computational findings presented in this work are similar to those which were discovered
experimentally using transmission electron microscopy (TEM) and simulation models that used
density functional theory (DFT) and molecular dynamics (MD). The refractive index and electric
susceptibility parameters of lithiated silicon are interwoven in the first principle theoretical equations
and appears frequently throughout this research presentation, which should serve to demonstrate
the importance of these parameters in the understanding of this component in lithium ion batteries.
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1. Introduction

The research work that will be presented is a continuation from a study that examined how energy
was transformed within an electron flux that transverse a cubic silicon crystal lattice in the opposing
direction of lithium ion diffusion [1]. The previous study was a computational model to examine how
a surplus of electron charge could lead to an exponential increase in applied electromagnetic energy
that could possibly result in enough energy to sever the covalent bonds between silicon atoms that was
hypothesis to be the genesis of the anisotropic volume expansion witness during lithium ion insertion.
This work used an interdisciplinary approach within physics with quantum mechanics serving as the
main mathematical framework. The preceding study, which is the edifice of this current work, uses
first principle theories that are accepted throughout physics. This methodology will continue in this
paper. It is the goal at the end of this research study that we will come closer to the elusive explanation
of the electrochemical kinetics of lithiated silicon nanowires.

The research body of knowledge for lithiated silicon anode materials has been exclusively focused
on lithium ion diffusion process. The research work by Liu et al. anisotropic volume expansion
of lithiated silicon nanowires was studied employing transmission electron microscope (TEM) and
electron diffraction pattern (EDP) [2]. In this study, a morphology evolution of the lithiated silicon
nanowire started from a pristine crystalline silicon (c-Si) nanowire at 155 nm in diameter prior to
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lithium insertion to a 17% diameter increase in the <111> direction and a 170% increase in diameter
of 485 nm was measured in the <110> direction after full lithiation. In addition, a crack along the
longitudinal direction of <112> was detected. Similar results were performed by Yang et al. by utilizing
a chemomechanical finite element model to simulate several crystallographic orientation-dependent
anisotropic volume expansions of over 300%, with increases initiating at the interfacial reaction
fronts of lithiated silicon nanowire models [3]. The research study performed by Cubuk et al.
used the kinetic Monte Carlo (kMC) method to simulate the lithium atoms insertion into silicon
nanowire. The expansion rates were calculated seven times faster in the <110> direction than the <111>
direction [4]. This gave the expanded lithiated silicon nanowire a described “dumbbell cross section”
shape that resembled the Cassini oval curve geometry. The work drawn from Jung et al. molecular
dynamics/density functional theory (MD/DFT) simulation was created to study the atomistic behavior
of the two-phase interfacial reaction front barrier that separates the c-Si and LixSi material [5]. All of
these works support the findings that the volume of silicon nanowires during lithium atom/ion
insertion will increase non-isotopically by nature.

For the purpose of continuity, our theoretical apparatus will be briefly re-examined as it was
presented in our previous work. Prior to the beginning of the lithiation process, the individual lithium
atoms are ionized reducing them to the constitutive particles of lithium ions and free electrons [6].
A constant voltage of 2 V is applied to an electric series circuit in order for the lithiation process to begin.
The electrons and lithium ions will enter the silicon nanowire at opposing ends and therefore travel in
opposite directions (Figure 1). When the lithiation begins, this initiates a process of transforming the
silicon from c-Si to an amorphous lithiated silicon (a-LiSi) matrix [7,8]. The free electrons or electron flux
varies and increases with the continue diffusion of lithium ions within the silicon nanowire [9]. Since the
electrons are moving charge particles, they are the source of the applied quantized electromagnetic
field. The geometric model that will be the basis of our mathematical framework is a diamond crystal
silicon lattice, which is composed of eight silicon atoms (Figure 2). The silicon lattice is fully lithiated
with 30 lithium ions [10,11].
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Figure 1. (a) In situ experimental arrangement for a solid electrochemical cell using lithium metal 
counter electrode (W); (b) Silicon is a diamond crystalline cubic structure made up of tetrahedral 
molecules with its hybridized sp3 orbitals within their valence shells filled with covalent bonding 
electrons from neighboring silicon atoms [1]. 

There will be six theories that will be presented based on first principle, each describing a part 
of the mathematical framework that leads to the anisotropic volume expansion in this model. Each 
theory operates simultaneously and interdependent of each other, in fact some of the equations and 
parameters, especially refractive indices and electric susceptibilities, will be found repeatedly in the 
theories. The first theory defines the state of the net electric charge in terms of a series of possible 
Poisson distribution curves. The second theory that will be presented is a recreation of the work 
previously done by the author, Maxwell stress with optical amplification. The third theory will 
introduce the type of quantum harmonic oscillator that will define the energy of each individual 
electron within the model. The fourth theory will introduce coherent states that define the probability 

Figure 1. (a) In situ experimental arrangement for a solid electrochemical cell using lithium metal
counter electrode (W); (b) Silicon is a diamond crystalline cubic structure made up of tetrahedral
molecules with its hybridized sp3 orbitals within their valence shells filled with covalent bonding
electrons from neighboring silicon atoms [1].

There will be six theories that will be presented based on first principle, each describing
a part of the mathematical framework that leads to the anisotropic volume expansion in this model.
Each theory operates simultaneously and interdependent of each other, in fact some of the equations
and parameters, especially refractive indices and electric susceptibilities, will be found repeatedly
in the theories. The first theory defines the state of the net electric charge in terms of a series of
possible Poisson distribution curves. The second theory that will be presented is a recreation of the
work previously done by the author, Maxwell stress with optical amplification. The third theory
will introduce the type of quantum harmonic oscillator that will define the energy of each individual
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electron within the model. The fourth theory will introduce coherent states that define the probability
of the individual electrons in the quantum harmonic oscillator. The photon density wave theory will
incorporate a quantum electromagnetic field to examine the photon absorption rate of the silicon atoms,
which will be presented by the fifth theory. The sixth and final theory will be the path integral method
as originally theorized by Richard Feynman which will ultimately calculate the expansion rates in
each of the orthogonal directions and predict the increase change in volume along with describing the
varies geometric cross-sectional areas of the silicon nanowire.
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Figure 2. The net difference between negative electrons and positive lithium ions is called the negative
charge differential nc and it is defined by a set of Poisson distribution curves with each curve having
a peak value being the average of the sum of nc for that particular curve define as nc.

2. Poisson Distribution of the Negative Charge Differential (nc)

As mentioned previously, negative free electrons and positive lithium ions enter into our
computational model from opposing directions. The electric charge difference between the two
constitutive mass particles, where the electrons are always greater or equal in number to the lithium
ions in our model, will be known as the negative charge differential nc which exist within the
conduction band of the quantum harmonic oscillator. The state of the negative charge distribution
within the conduction band is defined by a Poisson distribution called the negative charge differential
probability Npq.

Npq =
∞

∑
nc=1

∞

∑
nc=1

nc
nc exp(−nc)

nc!
(1)

where p = nc and q = nc. The variable nc is the average negative charge differential which is simply the
mean of nc during a given time interval. The nc parameter will be the main independent variable in
this research work. The negative charge differential nc will be thought of as varying at each moment in
time. Any particular average nc will be defined by the Poisson curve from 0 ≤ nc ≤ ∞ with the peak
value of any curve being the mean value nc. Each nc is assigned a probability between 0 to 1. Figure 3
displays a sample of the family of Poisson curves.

The nc variable can be thought of as being analogue to the electric charge variable found in
Butler-Volmer equation, which describes electrochemical kinetics by defining the macroscale current
density within a battery.
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3. Maxwell Stress

For this work, there will be a special notion that will be used throughout this study to indicate
the orthogonal directions that are essential element in the presentation of this paper. As an example,
the mathematical variables and functions that have directional characteristics will have subscripted
notations that will indicate which orthogonal direction is being represented:

Aij = A〈Orthogonal direction〉 i = j = 1 or 2or 3;
A11 = A〈110〉;
A22 = A〈111〉;
A33 = A〈112〉

The negative charge differential nc resides within the conduction bands of the lithiated silicon
lattice. In order to construct the minimum conduction band, a Bloch function based on electron
scattering theory is used

uc(r) = eikr +
1
kr

ei(δ+kr) sin δ +
3z
kr2 ei(δ+kr) sin δ (2)

with position vectors r and z as variables [12]. The wavenumber k is the expectation value of <k>
based on the silicon atoms’ ground state wave function within the c-Si lattice prior to the beginning of
lithiation. The silicon ground state wave function was calculated using Slater determinant of the four
core silicon atoms in c-Si lattice as shown in Figure 2. The phase shift δ(k, r) is define as function of
both <k> and position vector r. The Bloch function consist of three terms, the first term is known as
the incident wave function and the second and third term collectively is called the scattering wave
function. When an electron is traveling in the conduction band, the first term of the wave function
describes the electron from a point before impact with the oncoming atom (incident wave function)
and the second and third term of the wave function describes the electron after the impact with the

colliding atom (scattering wave function). The applied electric field
→
E ij and magnetic field

→
B ij are

defined as
→
E ij = iCEij

h̄2(3π2nc
) 2

3 vDOS

4nveme f f
[uc∇u∗c − u∗c∇uc] exp

γijr
2 (3)

→
B ij = iCBij

h̄
(
3π2nc

) 1
3 vDOS

2nve
[uc∇u∗c − u∗c∇uc] exp

γijr
2 (4)

me f f = mij =
rge
→
B ij

vd
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where e is the electric charge of an electron, h̄ is the Planck’s constant, nv is the electron density of
the maximum valence band, vDOS is defined as the density of state volume and γij is the optical
amplification, that will be explained later in this study, meff is the electron effective mass due to the
cyclotron resonance of the magnetic field induced by the silicon atoms, the radius of gyration rg is

the helix radial motion of the electron as it travels under the influence of
→
B ij, the drift velocity vd

of the electrons due to the 2-V source applied to the electric circuit. There is an electron cyclotron
effective mass me f f = mij assigned to each of the three orthogonal directions of <110>, <111> and
<112>. In fact, that me f f within the silicon matrix is dependent on the crystallographic directions has
been well researched and studied for many years [13]. A hypothesis of this computational research
is, that because of the anisotropic expansion of the lithiated silicon nanowire, the cyclotron effective
mass me f f has different values in each of the orthogonal directions. The coefficients CEij and CBij are
for the electric and magnetic fields that will allow these fields to be a solution to Maxwell equations.
The energy density Eij of the applied electromagnetic (EM) field is defined as

Eij =
1
2

[
εrij
→
E ij

2 +
1

µij

→
B ij

2

]
(5)

with i and j are indices with values 1, 2 and 3, εrij = εoεij is the relative electric permittivity which is
the constitutive property that defines how the dielectric material affects an applied electric field and εo

is the vacuum electric permittivity. The relative magnetic permeability µij is the constitutive property
that defines the amount of magnetization a material has in response to an applied magnetic field.
The magnetization is the magnetic moments per unit volume which is in essence the magnetic field that
is regenerated by the spin of the individual electrons in a unit volume. In this application, the magnetic
field is negligible which results in µij being defined as unity or one. Equation (5) is also known as
the Maxwell stress tensor [14,15]. When i = j, the three orthogonal directions that were discussed in
the introduction, namely <110>, <111> and <112>, will be given by the matrix elements ε11, ε22 and
ε33, respectively and are called the electric susceptibilities εij for lithiated silicon. For each of these
directions we will designate a matrix element on the principle diagonal of the dielectric tensor [16,17].

εij =

 ε11 ε12 0
ε21 ε22 0
0 0 ε33


−1

(6)

ε11 =
ω2

pX11

ω2
γ11−ω2

o11
ε22 =

ω2
pX22

ω2
γ22−ω2

o22

ε33 =
ω2

pX33

ω2
γ33

ε12 = −ε21 = ωo12
ωγ12

ω2
pX12

ω2
γ12−ω2

o12

(7)

ωγij =
a3

2h̄

[
εrij
→
E ij

2 +
1

µij

→
B ij

2

]
(8)

ωoij =

4πε0Mija3
Si

→
E ij

ZSieme f f


1
2

(9)

ωp =
1
h̄
〈Ψg∗

Li |Hp|Ψg
Li〉 (10)

χij =
e2ρω f

h̄a3

∣∣∣〈Ψe
Li

∣∣∣rij

∣∣∣Ψg
Li

〉∣∣∣2[ 1(
ωp −ωγij

) + 1(
ωp + ωγij

)] (11)

Ψe
Li =

〈
Ψm

Li

∣∣∣Hp

∣∣∣Ψg
Li

〉
(Eo − Em)

Ψm
Li (12)
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Hp = − e
2 me f f

B·L̂ +
e2

8me f f

[
B2r2 − (B·r)2

]
+

e2E2

2 me f f ωij
2 (13)

where ωp is the excited state energy per h̄ experienced by the lithium ion when they are in excitation,
ωγij is the energy per h̄ of the applied electromagnetic field, a3 is the silicon lattice cube volume of
Figure 1 and, ωoij is the resonant angular frequency of the silicon atoms. Analyzing the parameters of
Equation (9), Mij is the elastic modulus tensor for silicon, aSi is the silicon atomic radius and ZSi the
atomic number of silicon [18]. The electric susceptibilities for lithium χij are defined by the ground
state lithium ion Ψg

Li, the excited state lithium ion Ψe
Li wave functions, the resistivity ρ of lithium ions

within the silicon cubic lattice and the collision frequency ω f of electrons are defined as the number of
collisions per unit time an electron has between collisions with lithium-silicon particles. The excited
state wave function for lithium Ψe

Li is constructed by using time-independent perturbation theory
defined in Equation (12). The orthogonal wave function is Ψm

Li and Eo and Em are the ground state
energies for Ψg

Li and Ψm
Li respectively, ωij is the angular momentum of the electron as it travels in

the conduction band and will be further defined in the review of quantum harmonic oscillators later
in this study. The perturbed Hamiltonian Hp of Equation (13), where L̂ is the angular momentum
operator, describes the electromagnetic energy added to the silicon nanowire the moment lithiation
process begins.

4. Optical Amplification

The applied electromagnetic field, that is composed of photons, splits the energy levels within the
lithium ions due to the applied electric field (Stark Effect) and by the applied magnetic field (Zeeman
Effect). When photons are absorbed by a lithium ion, the ion experiences an excitation that transitions
the lithium ion from the ground state to excited state. The electrons in the excited lithium ion transition
to a higher discrete energy level. Once the lithium ion transitions to an elevated energy level, it is
subjected to the spontaneous emission process as displayed in Figure 4.
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Lithium ions during the diffusion process increase the density ratio of lithium to silicon atoms
define by x in LixSi [19]. The increase in x signifies that the lithium ions are increasing in number
within the silicon lattice [20]. With the continuation of photons absorbing into the diffused lithium
ions causing excitation and at the same time the diffusion process causes an increase in lithiated
silicon density, the total atomic system in our lithiated silicon lattice model experiences population
inversion which is define as a majority of atoms or ions being in the excited state. When the lithium
ions are in such a state with photons being transmitted and absorbed within this dense lithium-silicon
particle matrix, populated inversion is the prelude to the stimulated emission process (Figure 5).
Stimulated emission occurs when an incoming photon interacts with a lithium ion in the excited state
inducing it to transition an electron to the ground state emitting a photon that is approximately of
the same frequency, phase and direction of the incoming photon. These photons, which are in the
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electromagnetic mode and are analogous to oscillating waves, are said to be in a state of coherence.
The photons interfere with each other constructively instead of destructively. The start of stimulated
emission, with the majority of lithium ions in population inversion, causes the electromagnetic intensity
(I) to increase exponentially. The initial electromagnetic intensity Io is defined as

Io =

→
E ij ×

→
B ij

µoh̄ωijc
(14)

where c is the speed of light and µo is the magnetic permeability within a vacuum. This exponential
increase in Io is defined by a group of equations that includes Einstein coefficients that are used in
spontaneous and stimulated absorption and emission rates:
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the electric and magnetic fields [1,20].
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I(r, t) = Io expγijr (15)

γij(r, t) = σ21ij·∆N21 (16)

∆N21 = (N2 − N1) (17)

σ21ij = A21ij
λ2

8πn2
ij

g(ω) (18)

A21ij =
4e2ω3

p

3h̄c3

∣∣∣〈Ψg
Li

∣∣∣rij

∣∣∣Ψe
Li

〉∣∣∣2(ωp −ωγij
)

(19)

where µij = 1. Collectively these equations describe the process called optical amplification [21].
In Equation (17), ∆N21 is the difference of the number of excited state atoms/ions N2 and the

number of ground state atoms/ions N1 within our model. For this study we select only the lithium
ions to be in the excited state, N2 = 30 and only the silicon atoms to be in the ground state N1 =8.
Therefore, a ratio of x = N2/N1 equals 3.75, which is the same value of x in LixSi and at which the
silicon diamond cubic lattice in our model is considered to be fully lithiated [22]. Equation (18) is the
stimulated emission cross section area σ21ij which is defined by the Einstein A Coefficient A21ij [23],
the spectral line shape function g(ω), wavelength of the photon emitted is defined by λ and the
refractive index nij of the electromagnetic field which is defined as

nij =
√

εijµij (20)

The electromagnetic field increases with the magnitude of exp
γijr

2 as noted in Equations (3) and
(4). As previously mentioned, the variable nc is defined as the negative charge differential within the
quantum harmonic oscillator conduction bands per unit volume which is the difference between the
electrons that are traveling in the conduction bands and the number of positively charged lithium ions
within silicon cubic lattice model. Theoretically, there is no applied electromagnetic field, if there is
an equal number (or if there are equal numbers of) of electrons and lithium ions within the model.
When the number of electrons is greater than the lithium ions an applied EM field is created. When the
electrons enter the silicon nanowire, at first the electrons travel through c-Si before making contact
with lithium ions. At this point the electric and magnetic fields are extremely weak. The electric
field is of the order of 10−15 and the magnetic field is 10−22. The energy that is stored in the applied
electromagnetic field is of the magnitude of 10−44 eV. However, when electrons cross the interfacial
reaction front that separates c-Si and LixSi the EM field increases by the order of 1025 due to the metallic
properties of lithium. When electrons and lithium ions make contact and nc is non zero, the EM field
diverges into the three orthogonal components of <110>, <111> and <112> as mentioned earlier in
this study (Figure 5a,b). The three electric fields are of the order of 109. However, the magnetic field
is of the order of 100 and thus its contributions to the EM field are negligible. When nc = 6 in the
<110> direction, there is a great surge in the applied EM energy of the magnitude of 30.7 eV due to the
Maxwell stress tensor. When the applied EM field stores this much energy, the individual photons that
comprise the quantized electromagnetic field are energetic enough to break covalent bonds between
silicon atoms [23]. Similarly, in the other orthogonal directions of <111> and <112>, there are surges of
approximately 30 eV of EM energy, however at nc = 13 and 19 respectively. The surges in energy in
the EM field are caused by optical amplification, which is due to stimulated emission. In addition, as
the electromagnetic field increases the refractive indices, nij in all three orthogonal directions decrease,
which contributes to the overall amplification of the EM field and EM energy (Figure 6a,b).
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Figure 6. (a) The electric susceptibility εij trends downwards in all three directions as nc increases;
(b) The electromagnetic intensity is much higher in the <110> direction than <111> and <112> which
could be the reason for the faster rate of expansion in the <110> direction that were documented in
TEM research study and molecular dynamics/density functional theory (MD/DFT) [1,4].

5. Quantum Harmonic Oscillator

The computational model in this research work employs two conduction band or energy band
quantum harmonic oscillator (QHO) where E0 is the minimum conduction band and E1 is the upper
conduction band that is responsible for the optical amplification of the electromagnetic field [24].
The equations for the QHO are

Enls =

(
n +

1
2

)
h ωij + kBT ln

 2
nc

(2πme f f kBT

h
2

) 3
2

 (21)

ωij =
e
→
E

h̄(3π2nc)
1
3

for n = 0 (22)
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ωij =
h̄
(
3π2nc

) 2
3

2me f f
for n = 1 (23)

The indices in Enls are analogues to quantum numbers when describing atomic energy states.
The index n has the values 0 and 1, which label the minimum and upper conduction bands respectively.
The index l with values 1, 2 and 3, defines which angular momentum the energy state represents i.e.,
l = 1 is ω11, l = 2 is ω22 and l = 3 is ω33. The index s is equal to nc. The first term of Equation (21)
describes the energy due to the angular momentum ωij of the electron. The second term is the thermal
energy that the electron experiences while in the QHO where kb and T are the Boltzmann constant
and temperature, respectively. Each of the two energy bands are represented by a different angular
momentum equation, as shown in Equations (22) and (23), and are composed of sub-energy levels
or energy states that are a function of the negative charge differential nc. It was found necessary to
utilize two different angular momentums for En in order to maintain the energy gap between the
minimum and upper conduction bands and to prevent the energy states of E0 and E1 from over
lapping. The QHO is nonlinear due to the angular momentum is not constant and is dependent of the
negative charge differential nc [25,26]. The individual energy states in the conduction band E1 increase
exponentially in alternate patterns of the energy states that represents the three orthogonal directions
of <110>, <111> and <112> (Figure 7a). The energy states are divided into two groups that depend
on the magnitude of the drift velocity vd. The allowable energy states have energies that have drift
velocities below the speed of light c. All other energy states are above c and therefore are disregarded.

The nonlinear QHO can be thought of as three interwoven quantum harmonic oscillators; one
for each of the orthogonal directions. When all three directional nonlinear QHOs are analyzed
separately, the individual energy states are shown to be not equally spaced (Figure 7b). Analyzing
the E1 conduction band structure by separating the individual QHOs, one can see that most of the
lowest energy states reside in the <110> direction. When a particular electron obtains enough energy
due to photon absorption during optical amplification of the EM field, the electron transition from the
minimum conduction band E0 to an available energy state in E1 (Figure 7c). It is the hypothesis of this
research work that due to the strain that is created during the anisotropic volume expansion primarily
in the <110> direction—due to optical amplification of the electromagnetic field—that the electrons in
the sub-energy levels in E0 will generally transition to the lowest and most stable energy states in the
<110> direction in the E1 conduction band since it has lowest sub-energy levels than the <111> and
<112> energy state directions [27–29].

The minimum conduction band E0 is also composed of a series of sub-energy levels or energy
states in each of the three orthogonal directions the same as E1. However, the individual energy
gaps between the energy states in E0 are smaller then E1. Initially, when free electrons cross the
interfacial reaction front from the crystallized silicon c-Si to the lithiated silicon LixSi, the electron flux
has an average energy of 2 eV due to the 2 V energy source described in Figure 1. Most electrons that
enter the lithium-silicon matrix only have enough energy to transition to the minimum conduction
band E0 since the lowest energy state in E1 is 8.24 eV. Therefore, the probability that an electron will
have enough energy to reach that energy state without optical amplification of the EM field is remote.

As a result, when electrons enter the lithiated silicon from c-Si, there is a high probability that
they will transition to the minimum conduction band E0 at which time photons are emitted that will
aid in the spontaneous and stimulated emission process of lithium ions that was described earlier.
Until optical amplification occurs, there is a low probability that any electrons will transition to the
energy band E1 and therefore the majority of electrons will exist in the E0 energy band as they transition
or “bounce” from one energy state to another within the minimum energy band of E0 (Figure 7d).

It is this movement of electrons within E0 that creates the low applied electromagnetic field that
was displayed in Figure 5b. The reason individual electrons transition from one energy state to another
are the multiple electron–photon interactions within E0. The lowest energy state in the minimum
conduction band E0 is 0.14 eV, which can be interpreted as the direct band gap energy between the
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maximum valence band and the minimum conduction band in lithiated silicon, which is in sharp
contrast to crystalline silicon with an indirect band gap energy of 1.1 eV [30].

The nonlinear quantum harmonic oscillator within this computational model has similar features
to the quantum confined Stark effect (QCSE) [31,32]. The nonlinear QHO can be thought of as
a two-energy band quantum well, where upon an applied electric field a fine structure of separate
energy states would be created within both E0 and E1 conduction bands.
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Figure 7. (a) The nonlinear quantum harmonic oscillator (QHO) has allowable energy states that are
associated with electrons having drift velocities at non-relativistic speeds; (b) When analyzing the
nonlinear QHO, it can be divided into three separate quantum harmonic oscillators, one for each of the
three orthogonal directions of <110>, <111> and <112>; (c) The allowable energy states are displayed
at a magnified view in order to examine the electron-photon interactions. When an electron absorbs
a photon with sufficient energy by optical amplification the result is that the electron will transition
from the minimum conduction band E0 to E1 and conversely when an electron emits a photon while in
the upper conduction band the electron will transition from E1 back to E0; (d) A magnified view of
the minimum conduction band E0 showing the rapid transition of electrons as they move within E0.
The majority of electrons reside in the minimum conduction band and their multiple transitions in E0

are the source of the low electromagnetic field prior to optical amplification as it was displayed earlier
in Figure 5b.

6. Coherent State of Electrons

Since the free electrons are considered to exist in a discrete energy state within a quantum
harmonic oscillator, these electrons can be thought of as being in a coherent state [33]. The Bloch
function that was introduced in Equation (2) can be used to define the time-dependent coherent state
of E1

ucij(r, t) =
3

∑
i=1

3

∑
j=1

Uij exp
[
−i
(

n +
1
2

)
ωijt

]
uc(r) (24)
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uc(r) = eikr +
1
kr

ei(δ+kr) sin δ +
3z
kr2 ei(δ+kr) sin δ (25)

where i = j, n = 1 and Uij obeys the Poisson distribution

Cij =
∣∣Uij

∣∣2 =
3

∑
i=1

3

∑
j=1

nij
n1 exp

(
−nij

)
n!

(26)

with Cij known as the electron probability. It is defined as the probability of an electron occupying the
upper conduction band E1. The average number of electrons neij in the upper conduction band E1 is
defined as

neij = Ia3

(↔
E ij ×

↔
B ij

)
a3

µo h̄ωijc
eγijr (27)

which is the product of electromagnetic intensity I(r) (Equations (14) and (15)) and the volume of the
silicon cubic lattice [34]. The probability amplitude of Uij is part of the quantum harmonic oscillator
and therefore is in a dynamic state. This results in the time-dependent Bloch function ucij(r, t) being
a function of the average negative charge differential nc.

The location of the probability amplitudes Uij for each of the coherent states for the three
orthogonal directions of <110>, <111> and <112> corresponds to the maximum EM field energy
as displayed in Figure 5a. When nc = 6, direction <110> has a maximum EM energy of approximately
30 eV and a C〈110〉 of 0.3553. Similarly, for the <111> (nc = 13) and <112> (nc = 21) directions, we
have the corresponding C〈111〉 = 0.2546 and C〈112〉 = 0.3062, respectively, with an EM energy of
approximately 30 eV (Figure 8).
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Figure 8. The highest probability that an electron might transition from the minimum conduction
band E0 to the upper conduction band E1 corresponds to a specific average negative charge
differential nc, where the electromagnetic field energies are at their maximum for each of the three
orthogonal directions.

7. Photon Density Wave

The applied electromagnetic field, as defined with the aid of Maxwell stress and optical
amplification, is mainly a quantum mechanical theory. The photon density wave theory will be utilized
to explain the absorption rate of the individual photons that comprise the EM field. Originally this
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theory is not based on quantum mechanics, but on a diffusion theory based on a partial differential
equation, that is different from the Schrödinger equation. However, this theory will be transformed
from a diffusion theory, where the photons are thought of as material-like particles diffusing through
a medium, to that of a quantum field theory, where the photons are the traditional particles of energy.
The insertion of Fermi’s golden rule is the quantum mechanical equation that is used to define the
photon absorption rate of silicon atoms [35]. The group of equations for the photon density wave
theory is

∇2 Iij(r, t)−
cµaij

Dγij
Iij(r, t)− 1

Dγij

∂Iij(r, t)
∂t

= − 1
Dγij

Sij(r, t) (28)

Iij(r, t) =
n
a3 =

→
E ij ×

→
B ij

µohωijc
e(γijr−ωγijt) (29)

Sij(r, t) = cµaij Iij (30)

Dγij =
c

3
(

µ′sij + µaij

) (31)

µ′sij =
1

leij
(1− 〈cos δ〉) (32)

µaij =
Wγij

neij
(33)

Wγij =
2π

h

∣∣∣〈uc

∣∣∣Hp

∣∣∣Ψg
Si

〉∣∣∣2 1
4π2

(2me f f

h
2

) 3
2 (

Eij −Ecoh
) 1

2 (34)

where Eij ≥ Ecoh [36].
The general solution to Equation (28) is the time-dependent electromagnetic intensity I(r, t) as

stated in Equation (29). Sij(r, t) is defined as the source of the electron flux, Dγij is the photon diffusion
coefficient and µ′s is the reduce scattering coefficient, which is a function of the phase shift δ and mean
free path le of the number of electrons in the two conduction bands. The absorption coefficient µaij
is defined by the photon absorption rate of silicon atoms Wγij, neij is the mean number of electrons
within the EM field, Ψg

Si is the silicon atom ground state wave function and Ecoh is the cohesive
energy between two silicon atoms [37]. The applied electromagnetic field has photons of various
energies. Once again, it is the hypothesis of this research that the photons must have energies greater
than the cohesion energy in order to break any diatomic silicon bond for volume expansion to begin.
The boundary conditions for the diffusion partial differential equation of Equation (28) are defined by
the Fresnel coefficients Fγij

n2
1ij

n2
0ij

I0ij(r, z)|z=0 − FγijD0ij
∂I0ij(r, z)

∂z
|z=0 = I1ij(r, z)|z=0 (35)

nγij =
√

εijµij i = j = 1 or 2or 3 γ = 0 or 1, (36)

where the refractive index nγij is the same as nij as defined in Equation (20). The index γ indicates the
difference in the adjacent medium that the photon experiences as it travels through the lithiated silicon
matrix. The value of γ = 0 is the initial part of the medium, that the photon travels through, where
γ = 1 is the adjacent part of the medium in which the photon experiences. The difference of the two
media, since both are heterogeneous lithium-silicon materials, is the difference in the negative charge
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differential nc in both media. When boundary conditions are satisfied, the Fresnel coefficients Fγij are
used to calculate the photon transmission Tij and the photon reflection Rij coefficients [38].

Tij =
2n1ij

2D0ijk0

n2
0ijD0ijk0

[
1− iFγijD1ijk1

]
+ k1D1ijn2

1ij
(37)

Rij =
k0D0ijn2

0ij
[
1− iFγijD1ijk1

]
− k1D1ijn2

1ij

k0D0ijn2
0ij
[
1− iFγijD1ijk1

]
+ k1D1ijn2

1ij
, (38)

where k0 is the photon incident wave vector and k1 is the photon scattering wave vector. These two
coefficients are interpreted in terms of quantum mechanics and are analogues to transmission and
reflection coefficients of the probability current density. When the photon experiences both media
with the same nc value, the refractive indices are n0ij = n1ij; therefore Tij = 1 and there is no silicon
atom photon absorption in this part of the media. Please note, that the photon density wave theory is
originally a classical or continuum wave theory and as such the incident wave on a surface reflects
according to a prescribed angle. However, since in this quantized version of this theory, the waves are
actually photons, the reflection coefficient Rij acts like an absorption coefficient with values between 0
and 1 (Figure 9).
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Figure 9. The reflection coefficient Rij is the probability that after a photon is emitted during an electron
transition from the E1 conduction band to the minimum conduction band E0 that the photon will be
absorbed by a silicon atom.

8. Path Integral Method

The transition probability Pij is the product of three probability variables that have been defined
earlier in this study, namely the negative charge differential probability Npq, the electron probability
Cij and the photon reflection coefficient Rij

Pij =NpqCijRij (39)
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The transition probability Pij is the probabilistic calculation of a series of events that starts
with the probability Npq (that a specific average negative charge differential nc will exist at any
given moment), which follows the probability Cij (that an electron might absorb a photon and
transition from the minimum conduction band E0 to the energy band E1 at a specific energy state)
and finally the probability Rij (that an electron might transition from the E1 energy band back to the
minimum conduction band E0 and in so doing emit a photon that will be absorbed by a silicon atom).
Figure 10 displays the transition probabilities of P11 , P22 and P33 for each of the three orthogonal
directions <110>, <111> and <112>, respectively. As it can be examined, each transition probability has
a Poisson distribution that is similar to one another with amplitudes ranging approximately between
0.020 and 0.025. The inference of the three directional Pij distributions is that the expansion rate should
be closer to being isotropic in nature instead of the anisotropic volume expansion that is actually
witnessed in TEM images [39].
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Figure 10. The transition probability Pij for each of the orthogonal directions suggest that the expansion
rate and volume increase is resembling to be isotropic rather than anisotropic as reported in several
research studies.

In order to derive the anisotropic geometry of the silicon nanowire during lithium ion insertion
the transition probability is interpreted as a propagator Pij, which is an important element of the path
integral method in quantum field theory [40]

Pij = a
√

me f f ωij

2πih
ei

Sij
h , (40)

where Sij is the principle of least action defined for this paper as:

Sij =
∫ τ1

τ0

∆Eijdt =
∫ τ1

τ0

→
p ij·∆

.
→
r ijdt = −ih

→
∇ij

∫ τ1

τ0

∆
.
→
r ijdt = −ih ln

(
τij
)
∆
→
r ij
→
∇ij. (41)
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The change in energy ∆Eij is the change in the Maxwell stress tensor,
→
p ij = −ih

→
∇ij is the

momentum operator of the electron, ∆
→
r ij is the change in distance of the position vector

→
r that will be

defined below and τij is known as the time-normalization defined as:

τij =
ame f f ωij

e
→
E ijt

(42)

The time-normalization τij is dimensionless and due to the drift velocity vd of the electron flux [41].
The definition of τij is the amount of time it takes for the electrons in nc to travel the distance of the
silicon lattice constant a. In general, the propagator Pijpq can best be described mathematically as
a function that transforms an initial state of a wave function Ψi to a final state Ψ f

Ψ f

(→
r 1ij, t1

)
=
∫ ∞

−∞
Ψi

(→
r 0ij, t0

)
Pij

(
∆
→
r ij, ∆t

)
dr (43)

where
→
r 0ij is the initial state vector of Ψi

(→
r 0ij, t0

)
and

→
r 1ij is the final state vector of Ψ f

(→
r 1ij, t1

)
.

The propagator Pij will transform the lithium ion excited state wave function Ψe
Li defined earlier as (12).

Before we continue with the path integral method, it is necessary to further refine the definition
of nc. Prior to the electrons crossing the interfacial reaction front and encountering lithium ions, the
positive Li ions are the only charged particles within the lithiated silicon lattice structure (Figure 11a).
These positive-charge particles are under a Coulombic repulsive potential that intends to push them
farther apart from one another. When the electron flux encounters these Li ions, the negative
electrons interact with the positive Li ions, in which an attractive potential manifests that creates
the quasi-particles called polarons [9]. Each individual polaron will be assigned the variable nc, for
which this value changes with respect to both space and time. The polaron are define by a wave
function Ψe

p and a transition state vector
→
r ij which is define as the difference between initial and final

state vectors
→
r ij =

→
r 1ij −

→
r 0ij (Figure 11b).
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Figure 11. (a) Lithium ions before they encounter the electron flux; (b) The lithium ion and electrons
form a quasi-particle known as a polaron, which in this computational model has a surplus of electrons
compared to the positive ions and therefore a negative charge differential of nc. In the example there
are 9 Li ions and 13 electrons, which create a polaron of nc = 4.

In this research study an assumption is established that Ψe
Li is similar to the polaron wave function

Ψe
p, therefore Ψe

p ≈ Ψe
Li. Since both wave functions consist of the same constitutive particles that

define the same mathematical parameters within their respective wave functions, i.e., the quasi-particle
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polarons are composed of the excited state Li ions and free electrons within the cubic silicon lattice. The
reason the Li ion is in the excited state is indirectly caused by energetic free electrons emitting photons
that cause excitation of the Li ions. The initial state of Ψe

p is at the initial state vector
→
r 0ij and the final

state of Ψe
p is at the final state vector

→
r 1ij. With further algebraic manipulation of Equations (40) and

(41) and subsequently introducing Ψe
p into Equation (40), the path integral equation becomes

∆
→
r ij
→
∇ijΨe

p = τij

(
Pij

a

√
2πih

me f f ωij

)
Ψe

p. (44)

This path integral equation is a solution for ∆
→
r ij which is defined as the decrease in the length of

the transition state vector
→
r ij (Figure 12). The reason for the decrease in the transition state vector is

greater in the <110> direction than the <111> and <112> direction is due to a larger electromagnetic
field energy cause by optical amplification as described earlier in Figure 6b.

Math. Comput. Appl. 2017, 22, 41 17 of 24 

 

is greater in the <110> direction than the <111> and <112> direction is due to a larger electromagnetic 
field energy cause by optical amplification as described earlier in Figure 6b. 

 
Figure 12. The decrease in the transition state vector ∆ݎԦ௜௝  is result of the amplification of the 
electromagnetic field, which is greater in the <110> orthogonal direction than <111> and <112>. 

As a polaron transitions from an initial state arrive at a final state (Figure 11), the transition 
probability ௜ܲ௝	 at the end of the transition state vector ݎԦ௜௝ is the parameter that determines whether 
an electron from the polaron will emit a photon ॱ௜௝ that will be absorb by a silicon atom with energy 
greater than the cohesive energy ॱ௖௢௛	 of two silicon atoms. In general, the shorter the transition state 
vectors ݎԦ௜௝ in one of the orthogonal directions, the greater the number of transition probability ௜ܲ௝ 
events per unit length in that direction.  

The transition probability ௜ܲ௝  for each of the three orthogonal directions is very low in 
magnitude as shown previously in Figure 10. Therefore, at each final state vector there is a low 
probability that there will be a photon absorption event of ॱ௜௝ ≥ ॱ௖௢௛. When there is an equal number 
of Li ions and electrons (݊௖ = 0) in a cubic lattice structure, the length of the transition state vector ݎԦ௜௝ 
is the same in all three orthogonal directions. With the increase in ത݊௖ and thus the increase in the 
applied electromagnetic field, the	ݎԦ௜௝ vector decreases in length. The differences between the three 
transition state vectors ݎԦଵଵ	, ,	ሬሬሬԦଶଶݎ  Ԧଷଷ in the <110>, <111> and <112> directions respectively become veryݎ
significant when optical amplification develops (Figure 13). The largest reduction in vector ݎԦଵଵ is at ത݊௖ = 6 when the applied electromagnetic field is at its maximum in the <110> direction, with only 
minimal and negligible decrease changes in vectors ݎԦଶଶ	and	ݎԦଷଷ, respectively. 

(a)

0.0E+00

1.0E-13

2.0E-13

3.0E-13

4.0E-13

5.0E-13

6.0E-13

0 10 20 30 40

Re
du

ct
io

n 
in

 T
ra

ns
iti

on
 S

ta
te

 V
ec

to
r -

m
et

er
s (

m
) 

Average Negative Charge Differential 

Transition State Vector Reduction

ത݊௖

at	 ത݊௖=

at	 ത݊௖=

at	 ത݊௖=20

Figure 12. The decrease in the transition state vector ∆
→
r ij is result of the amplification of the

electromagnetic field, which is greater in the <110> orthogonal direction than <111> and <112>.

As a polaron transitions from an initial state arrive at a final state (Figure 11), the transition
probability Pij at the end of the transition state vector

→
r ij is the parameter that determines whether

an electron from the polaron will emit a photon Eij that will be absorb by a silicon atom with energy
greater than the cohesive energy Ecoh of two silicon atoms. In general, the shorter the transition state
vectors

→
r ij in one of the orthogonal directions, the greater the number of transition probability Pij

events per unit length in that direction.
The transition probability Pij for each of the three orthogonal directions is very low in magnitude

as shown previously in Figure 10. Therefore, at each final state vector there is a low probability that
there will be a photon absorption event of Eij ≥ Ecoh. When there is an equal number of Li ions

and electrons (nc = 0) in a cubic lattice structure, the length of the transition state vector
→
r ij is the

same in all three orthogonal directions. With the increase in nc and thus the increase in the applied
electromagnetic field, the

→
r ij vector decreases in length. The differences between the three transition

state vectors
→
r 11 ,

→
r 22 ,

→
r 33 in the <110>, <111> and <112> directions respectively become very

significant when optical amplification develops (Figure 13). The largest reduction in vector
→
r 11 is at

nc = 6 when the applied electromagnetic field is at its maximum in the <110> direction, with only
minimal and negligible decrease changes in vectors

→
r 22 and

→
r 33, respectively.
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(b) A series of transition state vectors are linked together when rij is at nc = 6. The red dots mark the
events when photon absorption occurs when the applied electromagnetic energy is greater than the
silicon atom cohesion energy.

At the end of each transition state vector
→
r ij at the final state there is a probability for an occurrence

or an event. In this work, there are four probable events that could occur following the emittance of
a photon due to the transition of an electron from E1 conduction band to the minimum conduction
E0. The first probability is that the photon could interact with an electron that could possibly give
the electron sufficient energy to transition to a higher energy state. Another probability is that the
photon could be absorbed by a Li ion, which add in the optical amplification process and augment the
electromagnetic field. The third probability is that the photon goes through a transmission process
travel through silicon lattice model without being absorbed. The fourth and final possible occurrence
is the only event that this research study is interested in—the probability of the photon being absorbed
by a silicon atom.

9. Anisotropic Expansion Rate

The expansion rates are compared from the ∆
→
r ij calculations that were determined from the

path integral method in Figure 12. The ratio of ∆
→
r 11/∆

→
r 22 (or ∆

→
r 〈110〉/∆

→
r 〈111〉) fastest expansion

rates was calculated to be 11.88 at nc = 6 which is greater than what was determine from the density
functional theory study, which reported an expansion rate seven times faster in the <110> direction
than in the <111> direction [4].

However, the expansion rate that is reported in this study correlates with a TEM research study,
where the finding implicitly determined the anisotropic expansion rate was between 10.5 and 13.3
greater expansion in the <110> direction than the <111> direction [42]. The other two orthogonal
directions fastest anisotropic volume expansion rates were calculated to be ∆

→
r 〈110〉/∆

→
r 〈112〉 = 64.57

and ∆
→
r 〈111〉/∆

→
r 〈112〉 = 25.20 at nc = 6 and nc = 11 respectively (Figure 14).
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which was reported by previous research studies both experimentally with the transmission electron
microscopy and with density functional theory /molecular dynamics simulations.

10. Volume Increase and Geometric Cross-Sectional Area Configuration

The volume expansion and geometric configuration of the silicon nanowire at full lithiation can
best be demonstrated by deriving a set of equations from the Cassini oval geometry [39]. In this study,
the computational model simulated the nanowire volume increase of 300% upon the conclusion of
lithium ion insertion. There is a volume change ∆Vij in each of the three orthogonal directions of

<110>, <111> and <112>, with each volume component a function of ∆
→
r ij
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with Vmax being the total maximum volume increase and is define as Vmax = ∆V11 + ∆V22 + ∆V33

(Figure 15a). The maximum decrease in the transition state vector ∆
→
r max is defined as ∆

→
r 11 at nc = 6

in the <110> direction as displayed in Figure 12.
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Figure 15. (a) The computational model simulated a maximum volume increase of over 300% during
full lithiation. The majority of the volume increase was in the <110> direction with only a small
volumetric increase in the <111> and <112> directions; (b) The largest radius increase was in the <110>
direction due to the overwhelming volume expansion in this direction compared to the <111> and
<112> orthogonal directions.

The Cassini oval mathematics was applied, because the cross-sectional area of the fully lithiated
silicon nanowire resembles the analytical geometry of those set of mathematical curves. The radii dij
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of the cross-sectional area are equations that are also derived from the Cassini oval geometry and are
defined as

d11 = β11

Vmax
∆
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r

2
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→
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max
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√(
2
π
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)) 1
3

, (46)

where the constant βij is based on the orientation between the three orthogonal directions and the
reference coordinate system of the computation model (Figure 15b). The radius value of dij = 1 in
all three orthogonal directions defines the initial volume of the silicon nanowire prior to anisotropic
expansion. The lithiated silicon nanowire is at its largest volume expansion when the average negative
charge differential is nc = 6. This corresponds to the time when the radius d〈110〉 is at its greatest
value d11 = 2.31 and the radius d〈111〉 is at d22 = 1.10, which together these two radii form the
Cassini oval cross-section geometry (Figure 16). This specific shape has been witnessed in TEM
before. However, this work predicts that at nc = 13 the radius in the <111> direction is slightly larger
(d22 = 1.29) than in the <110> direction (d11 = 1.10). At even higher nc values (nc >18), there is
a negligible increase in volume in the cross sectional area of the silicon nanowire with a very small
increase in volume in longitudinal direction of <112> with an increase in length of L33 = 1.15 at
nc = 18.
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Figure 16. The cross-sectional configuration at various nc values. As the average negative charge
differential increases, the anisotropic Cassini oval area reaches its peak at nc = 6. At this point with
increasing nc the cross-sectional areas are beginning to resemble areas from lower nc. It is important to
note that the lithiated silicon nanowire is not elastic but plastic in nature. Therefore, once the nanowire
has expanded to a certain volume, it does not contract to a previous smaller volume [2,3,43].

11. Summary

In this work, we have demonstrated the need for a multi-physics approach based on first principle
theories in order to create a computational model to study the quantum effects of a silicon nanowire
during lithium ion insertion. The working hypothesis that has been presented in this paper begins
with an electron flux, lithium ions and silicon atoms that serve as the background within our model.
The net negative charge density is defined by an independent variable called the negative charge
differential nc and is defined mathematically by a Poisson distribution. This nc variable ultimately
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defines the energy within our model as the moving charges induce an applied EM field. The energy of
this EM field is defined by the Maxwell stress tensor.

With the application of energy from the applied electromagnetic field, several processes begin.
First, the applied EM field begins the process of spontaneous and stimulated emission that will lead
to the optical amplification of the electromagnetic field. This will ultimately lead to a coherent state
for the electrons once amplification occurs. With the increase of the electromagnetic field, energetic
photons within the field interact with constitutive particles that are present within the matrix of our
model. These photons will be absorbed by electrons, lithium ions and silicon atoms. The optical
amplification of photons will be absorbed by electrons in the minimum conduction band and transition
to the upper conduction band. In an iterative process, amplified photons that are absorbed by lithium
ions—which were induced by optical amplification initially—will continue to be the driving energy
throughout the lithiated silicon nanowire. In addition, amplified photons with energy greater than the
cohesion energy of silicon atoms will also be absorbed by these particles that will possibly break the
cohesion bond between two silicon atoms that will initiate the start of silicon nanowire expansion.

It was also demonstrated in this research that due to the nature of quantum physics, physical
processes are governed by probabilistic events. A series of calculated events culminated into the
transition probability Pij, that stochastically determines the silicon atom photon absorption rate.
However, that alone would not produce the anisotropic expansion that is witnessed in TEM images.
The optical amplification of the EM field was discovered to be greater in the <110> orthogonal direction
than in the <111> and <112> direction due to the refractive indices nij or electric susceptibilities εij of
the lithium-silicon material. The nij or εij was present in the Maxwell stress, the optical amplification,
the nonlinear quantum harmonic oscillator, the electron coherent state, the photon density waves and
the path integral method equations. The refractive indices were found to be inversely proportional to
the electric field and thus as the electric susceptibilities decrease in magnitude the electric field increases
in strength especially in the <110> direction. The path integral method was the mathematical theory to
show that a dramatic increase in the Maxwell stress or energy density in the <110> orthogonal direction
will result in a greater expansion in this direction than in the <111> and <112> orthogonal directions.
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