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Abstract: Grey model GM(1,1) has attained excellent prediction accuracy with restricted data and
has been broadly utilized in a range of areas. However, the GM(1,1) forecasting model sometimes
yields large forecasting errors which directlyaffect the simulation and prediction precision directly.
Therefore, the improvement of the GM(1,1) model is an essential issue, and the current study aims to
enhance the prediction precision of the GM(1,1) model. Specifically, in order to improve the prediction
precision of GM(1,1) model, it is necessary to consider improving the initial condition in the response
function of the model. Consequently, the purpose of this paper is to put forward a new method to
enhance the performance of the GM(1,1) model by optimizing its initial condition. The minimum
sum of squared error was used to optimize the new initial condition of the model. The numerical
outcomes show that the improved GM(1,1) model provides considerably better performance than
traditional grey model GM(1,1) . The result demonstrates that the improved grey model GM(1,1)
achieves the objective of minimizing the forecast errors.
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1. Introduction

The grey systems theory, set up by Julong Deng in 1982, is a new system that spotlights on the
investigation of issues including small samples and poor information [1]. Through nearly 30 years of
development, this system has been extensively applied in various research branches and has achieved
great results.

Grey model GM(1,1) is the one core contents of this a new system. Meanwhile, it is the most
commonly used in the literature because of its computational efficiency [2]. However, the traditional
GM(1,1) model has demonstrated some restrictions which influence the relevance of the model and
its prediction precision. Therefore, to remedy the weaknesses of the traditional grey model GM(1,1),
numerous scholars gave careful consideration to the improvement research of this model. They found
that enhancements of the model can be categorized into three types, as follows:

(1) A number of scholars have paid much attention to grey derivative enhancement.
Wang et al. [3] proposed a GM(1,1) direct modeling technique with a gradually optimization of
whitened values of grey derivative to sequence modeling of unequal time interval. They also proved
that the new technique continues to have the same properties of linear transformation consistency as
the traditional technique. Sun and Wei [4] introduced the direct GM(1,1) with an enhanced method
of grey derivative, which raised the precision of the modeling method. The new approach has been
efficiently confirmed to have the characteristic of exponent, coefficient and conversion of continuous
superposition. The model is appropriate for the low growth sequence as well as the high growth
sequence. In addition, it is appropriate for the non-homogeneous exponential data. Another study
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by Zhou et al. [5] presented a new approach for optimization of the white differential equation by
using the original grey differential equation. The process started from the original grey differential
equation, via observing the correlation between the original data X(0) and the derivative of its 1-AGO.
A new whitened equation of GM(1,1) was constructed, which is equivalent to the original grey
differential equation. Meanwhile, the new GM(1,1) model which is nearer to the modifications of data
was obtained.

(2) Many scholars have concentrated on reconstruction of the background value. For example,
Chang et al. [6] proposed a new approach that combined the grey model to optimize the grey
prediction’s modeling error. The study considered every background value at a discrete point as an
independent parameter. Dai and Chen [7] asserted that the background value is a significant element
in affecting prediction accuracy of the GM(1,1) model. The scholars posited that the conventional
background value is substituted by using a new reconstruction strategy to the background value of
a conventional GM(1,1) model based totally on Gauss-Legendre formula. In another study, Yao and
Wang [8] utilized a modified GM(1,1) model primarily based on restructuring the background value
to predict the electrical energy consumption in the society of eastern China. Mahdi and Norizan [9]
developed an optimization model for the traditional GM(1,1) model based on reconstructing the
background value. Another study by Mahdi and Norizan [10] proposed a new approach to enhance
the prediction accuracy of a GM(1,1) model through an optimization of the background value. The
new background value that was deduced with the supposition used the discrete function with the
non-homogeneous exponential law.

(3) Some scholars focus on improvements on the initial condition in the time response function.
For instance, Dan et al. [11] proposed a method for grey model improvement using the last item of
X(1) as initial value of the grey differential equation to enhance prediction accuracy. Xie and Liu [12]
discussed the influence of different fitting points and proposed optimization model fitting point
contributes to the model. Another study by Wang et al., [13] introduced a new approach for grey
model improvement based on a modified initial condition using the first item and the last item of X(1)

to enhance prediction accuracy of a traditional GM(1,1) model. Chen and Li [14] also proposed a new
technique for a GM(1,1) model using an optimal weighted combination with a different initial value.
These improvement the new grey models make to the initial condition may raise the forecast accuracy
in certain practical applications. Nevertheless, various possibilities to improve prediction precision of
GM(1,1) model still exist. The first term of X(1) has been used as the initial condition of the GM(1,1)
model. This has repeatedly happened in practical applications in which new information contained in
different terms other than the first term of X(1) is not adequately utilized.

The motivation of novelty of this paper is to propose a new method to enhance the prediction
precision of the GM(1,1) model by optimizing the original initial condition and empirically compare it
with the traditional GM(1,1) model based on the measurement criteria for the forecasting performance.
The new initial condition is proven using the minimum sum of squared error.

The remaining parts of this paper are structured as follows: Section 2 focuses on improved GM(1,1)
model. Section 3 proves the application of the modified technique through a numerical examples
and results. Section 4 discusses on the results while a conclusion is drawn in Section 5 based on
the discussion.

2. Materials and Methods

Improved GM(1,1) Model: Let x(0) = {x(0)
(1), x(0)

(2), . . . , x(0)
(n)} n ≥ 4, be a sequence of raw data.

Denote its accumulation generated operation sequence (AGO) by X(1) = {x(1)
(1), x(1)

(2), . . . , x(1)
(n)} n ≥ 4,

where x(1)(k) =
k
∑

i=1
x(0)(i), k = 2, 3, . . . , n and x(1)(1) = x(0)(1).

Then

x(0)(k) + ax(1)(k) = b (1)
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is indicated to as the original form of the GM(1,1) model, where the symbol GM(1,1) represents
“first order grey model in one variable.”

Let Z(1) = {z(1)
(1), z(1)

(2), . . . , z(1)
(n)} be the sequence generated from X(1) by the adjacent neighbor

means. That is,

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k−1), k = 2, 3, . . . , n (2)

Then,
x(0)(k) + az(1)(k) = b (3)

is indicated to as the basic form of the GM(1,1) model, also called a grey differential equation.
And the equation

dx(1)

dt
+ ax(1) = b (4)

is the whitened (or image) equation of GM(1,1). If we let

Y =


x(0)(2)
x(0)(3)

...
x(0)(n)

, B =


−z(1)(2) 1
−z(1)(3) 1

...
−z(1)(n) 1


then the parameters estimated by least squares method are

[a, b]T =
(

BT B
)−1

BTY (5)

The solution, also known as time response function, of the whitenization equation is given by

x̂(1)
(t) =

(
x(0)(1) −

b
a

)
e−a(t−1) +

b
a

(6)

The time response sequence of the GM(1,1) model in Equation (3) is given below:

x̂(1)
(k) =

(
x(0)(1) −

b
a

)
e−a(k−1) +

b
a

(7)

The restored values of x(0) (k)’s are given as follows

x̂(0)
(k) = x̂(1)

(k) − x̂(1)
(k−1) = (1 − ea)

(
x(0)(1) −

b
a

)
e−ak (8)

where k = 2, 3, . . . , n.
Using the discrete form in Equation (7), x̂(1)

(k) can be expressed as:

x̂(1)
(k) = Ce−ak +

b
a

, k = 2, 3, . . . , n (9)

where, in traditional GM(1,1) model, initial condition is

C = [x(1)(1) −
b
a
]ea (10)

By implementing the inverse accumulated generating operation (IAGO) on x̂(1)
(k) , the restored

value of raw data is given as follows
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x̂(0)
(k) = x̂(1)

(k) − x̂(1)
(k−1)

= C[e−ak − e−a(k−1)], k = 2, 3, . . . , n
(11)

The initial condition is one of the important factors that impacts the accuracy of traditional
grey model GM(1,1). Since the optimal fitting curve might not pass a certain point in the raw data,
the original initial condition based on (10) is not the best, meaning that the optimization of the original
initial condition is required.

The estimate of C can be found by minimizing the sum of squared error based on the restored
values. Construct a function, as follows:

f (C) =
n

∑
k=2

[x̂(0)
(k) − x(0)(k)]

2 (12)

Substituting (11) into (12) gives

f (C) =
n
∑

k=2
[C(e−ak − e−a(k−1))− x(0)(k)]2

= C2
n
∑

k=2
(e−ak − e−a(k−1))

2 − 2C
n
∑

k=2
(e−ak − e−a(k−1))x(0)(k) +

n
∑

k=2
x(0)

2

(k)

(13)

d f (C)
dC

= 2C
n

∑
k=2

(e−ak − e−a(k−1))
2
− 2

n

∑
k=2

(e−ak − e−a(k−1))x(0)(k)

Let d f (C)
dC = 0, namely

C
n

∑
k=2

(e−ak − e−a(k−1))
2
=

n

∑
k=2

(e−ak − e−a(k−1))x(0)(k)

The optimum C can be written as

C =

n
∑

k=2
(e−ak − e−a(k−1))x(0)(k)
n
∑

k=2
(e−ak − e−a(k−1))

2
(14)

Here f (C) =
n
∑

k=2
[x̂(0)

(k) − x(0)(k)]2 is a minimum

From the above descriptions, we can summarize prediction steps of the improved grey model
GM(1,1) as follows:

Step 1: Calculating background values z(1)(k) in Equation (2) by using the new data
sequence i.e., X(1).

Step 2: Calculating parameters a and b in Equation (5) based on the vector Y and the matrix B.
Step 3: Calculating the optimum value of C by substituting a and raw data x(0)

(k) in (14).
Step 4: Substituting a and the optimum value of C in (11), to get the restored values sequence

x̂(0)
(k) (k = 1, 2, . . . , n + p), where p indicates the prediction step size.

Evaluative accuracy of forecasting models: We consider two examples to demonstrate the
advantage of the improved GM(1,1) model. The prediction accuracy performance is assessed by
using the mean absolute percentage error (MAPE) is given below:

MAPE =
1
n

n

∑
k=1

∣∣∣x(0)(k) − x̂(0)
(k)

∣∣∣
x(0)(k)

× 100%
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where Absolute Relative Error =

∣∣∣x(0)(k)−x̂(0)
(k)

∣∣∣
x(0)(k)

× 100%

3. Results

Example 3.1:

Let us take the simulated data sequence created by f (t) = e0.3t, t = 1, 2, . . . , 11.
(1.349859, 1.822119, 2.459603, 3.320117, 4.481689, 6.049647, 8.16617, 11.02318, 14.87973, 20.08554,

27.11264). To evaluate the prediction accuracy of the traditional GM(1,1) and the improved GM(1,1)
models put forward in this study, we use the first eight observations in the simulated data sequence
(in-sample data) to structure the two models , i.e.,

X(0) = (1.349859, 1.822119, 2.459603, 3.320117, 4.481689, 6.049647, 8.16617, 11.02318)
On the other hand, the last three observations in the simulated data sequence, i.e.,

(14.87973, 20.08554, 27.11264) (out-of-sample) are used for predictive inspection.
First, the estimation of parameters is done and the traditional grey model GM(1,1) is structured

as follows:

a = −0.2978, b = 1.1489, x̂(0)
(k) = (1 − e−0.2978)(x(0)(1) +

1.1489
0.2978

)e0.2978(k−1), k = 2, 3, . . . , 8

Second, the estimation of parameters is done and the improved GM(1,1) model is structured as follows:

a = −2978, x̂(0)
(k) = 3.9431[e0.2978k − e0.2978(k−1)], k = 2, 3, . . . , 8

The comparison of the prediction accuracy results for the above mentioned models is displayed
in Table 1.

Table 1. The comparison of the prediction accuracy results of the traditional Grey model GM(1,1) and
the improved model. MAPE: mean absolute percentage error.

Raw Data Traditional GM(1,1) Model Improved GM(1,1) Model

k Actual Values Model Values Absolute Relative
Error (%) Model Values Absolute Relative

Error (%)

1 1.3499
2 1.8221 1.8064 0.8594 1.8421 1.0950
3 2.4596 2.4330 1.0809 2.4810 0.8692
4 3.3201 3.2769 1.3006 3.3415 0.6451
5 4.4816 4.4135 1.5188 4.5005 0.4226
6 6.0497 5.9444 1.7407 6.0616 0.1963
7 8.1662 8.0062 1.9589 8.1641 0.0261
8 11.0232 10.7832 2.1769 10.9958 0.2484

MAPE 1.5195 0.5004
9 * 14.8797 14.5235 2.3942 14.8098 0.4700
10 * 20.0855 19.5610 2.6114 19.9466 0.6915
11 * 27.1126 26.3458 2.8281 26.8652 0.9125

MAPE 2.6112 0.6913

Forecasting value with *.

Example 3.2:

We employ the historical annual LCD TV output of China from 1996 to 2005 from reference [15]
as our research data, which are listed in Table 2.

Table 2. The LCD TV output per year (unit: ten thousand)

Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Output 3.28 5.48 10.07 17.70 29.73 49.39 92.67 162.23 280.86 513.40
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To evaluate prediction accuracy of the traditional GM(1,1) and the improved GM(1,1) models put
forward in this study, we use the first seven observations in the research data sequence (in-sample
data) to structure the two models, i.e.,

X(0) = (3.28, 5.48, 10.07, 17.70, 29.73, 49.39, 92.67)

On the other hand, the last three observations in the research data sequence, i.e., (162.23, 280.86,
513.40) (out-of-sample) are used for predictive inspection.

First, the estimation of parameters is done and the traditional grey model GM(1,1) is structured
as follows:

a = −0.5521, b = 1.7999, x̂(0)
(k) = (1 − e−0.5521)(x(0)(1) +

1.7999
0.5521

)e0.5521(k−1), k = 2, 3, . . . , 7

Second, the estimation of parameters is done and the improved GM(1,1) model is structured
as follows:

x̂(0)
(k) = 4.4932[e0.5521k − e0.5521(k−1)], k = 2, 3, . . . , 7

The comparison of the prediction accuracy results for the above mentioned models is displayed
in Table 3.

Table 3. The comparison of the prediction accuracy results of the traditional GM(1,1) model and the
improved model.

Raw Data Traditional GM(1,1) Model Improved GM(1,1) Model

k Actual Values Model Values Absolute Relative
Error (%) Model Values Absolute Relative

Error (%)

1 3.28
2 5.48 4.82 12.06 5.75 4.94
3 10.07 8.37 16.88 9.99 0.81
4 17.70 14.54 17.86 17.35 1.99
5 29.73 25.25 15.06 30.13 1.35
6 49.39 43.86 11.20 52.34 5.96
7 92.67 76.18 17.80 90.90 1.91

MAPE 15.14 2.83
8 * 162.23 132.31 18.44 157.88 2.68
9 * 280.86 229.80 18.18 274.22 2.36
10 * 513.40 399.14 22.26 476.29 7.23

MAPE 19.63 4.09

Forecasting value with *.

The comparison of prediction accuracy results for the above mentioned models is displayed in
Tables 1 and 3 respectively. From Table 1, the MAPE of in sample data for the traditional GM(1,1)
model and the improved GM(1,1) model is 1.5195% and 0.5004% respectively. And the MAPE of
out sample data for the traditional GM(1,1) model and the improved GM(1,1) model is 2.6112% and
0.6913% respectively.

From Table 3, the MAPE of in sample data for the traditional GM(1,1) model and the improved
GM(1,1) model is 15.14% and 2.83% respectively. And the MAPE of out sample data for the traditional
GM(1,1) model and the improved GM(1,1) model is 19.63% and 4.09% respectively.

4. Discussion

The fitness and prediction error of the improved GM(1,1) model is fairly small and its absolute
relative error is much less than the former model greatly. Furthermore, Table 1 provides a way of
assessing the performance of the prediction values following the function f (t) = e0.3t. For absolute
relative errors, it is necessary to have an absolute relative error as near to zero as possible. And Table 1
also shows that the absolute relative errors from the improved GM(1,1) model are much closer to zero
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than those from the traditional GM(1,1) model. Actual values and the fitted values of two compared
models are depicted in Table 1. As presented in Table 1, the improved GM(1,1) model has smaller
MAPE (0.5004%) in comparison with the traditional grey model GM(1,1) model (1.5195%) in-sample
data respectively. This implies that the improved GM(1,1) model can decrease the fitted error of a
traditional GM(1,1) model. From a short-term forecasting perspective, the improved GM(1,1) model
has a lower MAPE as (0.6913) compared with the traditional GM(1,1) model, which means that the
improved GM(1,1) model reaches the objective of minimizing the forecasting error.

It can be seen from Table 3 that the fitted and the predictive values of the traditional GM(1,1)
model are completely underrated through parameter k and the absolute relative errors range between
11.20% and 22.26%. While, the fitted and predictive values of the improved GM(1,1) model are
overrated in points of the sequent data and the absolute relative errors range between 0.81% and
7.23%. Table 3 depicts the actual and fitted values of the two compared models. Table 3 points out that
there are major differences amongst the outcomes of the two models. Since MAPE is 15.14% too high,
the traditional GM(1,1) model is confirmed to be invalid. This high error was caused because at the
first entry of raw data sequence for initial condition, the traditional GM(1,1) model utilizes x(0)

(1).
The accuracy of performance will rise significantly if the optimization of the initial condition proposed
in this study is utilized, since the results of the improved model indicated that the MAPE is 2.83%.
From a short-term forecasting viewpoint, the prediction MAPE of improved model in 2003, 2004 and
2005 is 4.09%, which is less than the error of any other model, and the prediction accuracy of the
improved model is considerably higher.

From the comparative analysis of Tables 1 and 3 it is obvious that improved model has superiority
both in fitness and in prediction. Finally, the results of the improved GM(1,1) model performed better
than the results of other studies [1,2,13].

5. Conclusions

This study proposed a new formula for calculation of the initial condition of the GM(1,1) model.
The minimum sum of squared error method was utilized to develop the new initial condition of
GM(1,1) forecast formula. Hence, the initial condition of the traditional grey model GM(1,1) has been
freed from automatically passing a single point of raw data. The improved GM(1,1) model significantly
enhances the precision of the gray forecasting model, as shown in the results of numerical examples.
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