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Abstract

:

The auxiliary problem principle has been widely applied in power systems to solve the multi-area economic dispatch problem. Although the effectiveness and correctness of the auxiliary problem principle method have been demonstrated in relevant literatures, the aspect connected with accurate estimate of its convergence rate has not yet been established. In this paper, we prove the    O ( 1 / n )    convergence rate of the auxiliary problem principle method.
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1. Introduction


The auxiliary problem principle (APP) [1], originally proposed by G. Cohen in [2], has a wide range of applications in the power systems field [3,4,5,6,7,8]. In fact, the mathematical formulation of multi-area economic dispatch problem can be expressed as follows.





   min    f   x 1   + g   x 2     A  x 1  + B  x 2    = b ,  x 1  ∈  Ω 1  ,  x 2  ∈  Ω 2      



(1)




where    f :   R m  → R    and    g :   R n  → R    are convex function.     Ω 1  ⊆  R m     and     Ω 2  ⊆  R n     are closed convex sets.    A ∈  R  r × m      and    B ∈  R  r × n      are given fixed matrices (not necessarily full rank).    b ∈  R r     is given constant.



For solving (1), the corresponding APP iterative scheme can be expressed as follows.





       x 1  k + 1   = arg  min   f   x 1    +  β 2      A  x 1     2  - β   A  x 1  , A  x 1 k                                       +   -  λ k  + c  ( A  x 1 k  + B  x 2 k  - b )  , A  x 1       x 1  ∈  Ω 1          



(2)






       x 2  k + 1   = arg  min   g   x 2   +  β 2      B  x 2     2  - β   B  x 2  , B  x 2 k                                       +   -  λ k  + c  ( A  x 1 k  + B  x 2 k  - b )  , B  x 2       x 2  ∈  Ω 2          



(3)






    λ  k + 1   =  λ k  - c   A  x 1  k + 1   + B  x 2  k + 1   - b     



(4)




where    λ ∈  R r     is the Lagrangian multiplier for the linear constraint    A  x 1  + B  x 2  = 0    and    c > 0    is a given fixed penalty parameter.     · , ·     denotes the inner product, i.e.,      x , x   =  x T  x   . The superscript k denotes iteration index.    β > 2 c    is given fixed auxiliary problem principle parameter [7].



Although the APP iterative scheme is known to be an efficient approach for the convex problem with separable operators [9], the theoretical analysis of its convergence rate has not been established and applied in the literature.



In 2004, Nemirovski gave a proof to show that prox-type method has the    O ( 1 / n )    convergence rate for variational inequalities with Lipschitz continuous monotone operators, where n denotes the iteration number [10]. Then, for the same problem, the    O ( 1 / n )    convergence rate of the projection and contraction method was proved in [11]. Inspired by these literatures, taking advantage of the variational inequality approach, the accurate estimate of alternating direction method’s convergence rate has made considerable headway in recent years. To be more exact, in 2012, Bingsheng He’s analysis indicated that the Douglas-Rachford alternating direction method has the    O ( 1 / n )    convergence rate [12]. After that, in 2014, Yuan Shen and Minghua Xu studied the    O ( 1 / n )    convergence rate of Ye-Yuan’s modified alternating direction method of multipliers [13].



In this paper, our aim is to investigate the convergence rate of the iterative scheme APP under the framework of variational inequality. In fact, problem (1) is equivalent to solving the following variational inequality (VI) problem: Find      x 1  ,  x 2  , λ     such that


   f    x  1 ′   - f   x 1   +     x  1 ′  -  x 1      -  A T  λ   ≥ 0     ∀   x  1 ′  ∈  Ω 1    



(5)






   g    x  2 ′   - g   x 2   +     x  2 ′  -  x 2      -  B T  λ   ≥ 0     ∀   x  2 ′  ∈  Ω 2    



(6)






       λ  ′  - λ     A  x 1  + B  x 2  - b   ≥ 0     ∀   λ  ′  ∈  R r    



(7)







Then, the compact form of (5)–(7) can be expressed as follows.





   θ    u  ′   - θ  u  +      w  ′  - w   T  F  w  ≥ 0 ,     ∀   w  ′  ∈ W   



(8)




where


   u =      x 1       x 2      ,   w =     u     λ     ,   F  w  =      -  A T  λ       -  B T  λ       A  x 1  + B  x 2  - b         



(9)






    W =  Ω 1  ×  Ω 2  ×  R r  ,  θ  u  = f   x 1   + g   x 2     



(10)




and the mapping    F  w     is monotone.




2. The Convergence Analysis of APP


In this section, we give a convergence analysis of iterative scheme APP under the framework of variational inequality. Meanwhile, the analysis is useful for the accurate estimate of APP’s convergence rate in thr next section. Throughout this paper, we assume the solution set of VI problem (8) is nonempty and denoted by      W *    .    w *    denotes an arbitrary (but fixed) point in the solution set      W *    .



Lemma 1. 

A single iteration of APP


       x 1  k + 1   = arg  min   f   x 1    +  β 2      A  x 1     2  - β   A  x 1  , A  x 1 k                                       +   -  λ k  + c  ( A  x 1 k  + B  x 2 k  - b )  , A  x 1       x 1  ∈  Ω 1          



(11)






       x 2  k + 1   = arg  min   g   x 2   +  β 2      B  x 2     2  - β   B  x 2  , B  x 2 k                                       +   -  λ k  + c  ( A  x 1 k  + B  x 2 k  - b )  , B  x 2       x 2  ∈  Ω 2          



(12)




is equivalent to


       x 1  k + 1   = arg  min   f   x 1    +   β - c  2      A  x 1  - A  x 1 k     2                                    +    c 2      A  x 1  + B  x 2 k  - b    2  +   -  λ k  , A  x 1       x 1  ∈  Ω 1           



(13)






       x 2  k + 1   = arg  min   g   x 2   +   β - c  2      B  x 2  - B  x 2 k     2                                     +  c 2      A  x 1 k  + B  x 2  - b    2  +   -  λ k  , B  x 2       x 2  ∈  Ω 2          



(14)









Proof of Lemma 1. 

Adding a quadratic term     β 2     A  x  1  k    2     to the objective function (11) without changing its optimization result, then (11) can be expressed as follows.


       x 1  k + 1   = arg  min   f   x 1    +  β 2      A  x 1  - A  x 1 k     2                                    +     -  λ k  + c  ( A  x 1 k  + B  x 2 k  - b )  , A  x 1       x 1  ∈  Ω 1           



(15)









Considering the following equation


        c  ( A  x 1 k  + B  x 2 k  - b )  , A  x 1    = c   A  x 1 k  - A  x 1  , A  x 1    + c   A  x 1  + B  x  2  k  - b , A  x 1                                                  =  c 2        A  x 1  + B  x 2 k  - b    2  -     A  x 1  - A  x 1 k     2                                                      +  c 2        A  x 1 k     2  -     B  x 2 k  - b    2         



(16)







Then, combing (15) and (16), we obtain


       x 1  k + 1   = arg  min   f   x 1    +   β - c  2      A  x 1  - A  x 1 k     2  +  c 2      A  x 1  + B  x 2 k  - b    2                                      +   -  λ k  , A  x 1    +  c 2        A  x 1 k     2  -     B  x 2 k  - b    2       x 1  ∈  Ω 1           



(17)







Removing the constant term     c 2       A  x 1 k    2  -    B  x 2 k  - b   2      , we get


       x 1  k + 1   = arg  min   f   x 1    +   β - c  2      A  x 1  - A  x 1 k     2  +  c 2      A  x 1  + B  x 2 k  - b    2                                      +   -  λ k  , A  x 1       x 1  ∈  Ω 1           



(18)







Analogously, we have


       x 2  k + 1   = arg  min   g   x 2   +   β - c  2      B  x 2  - B  x 2 k     2  +  c 2      A  x 1 k  + B  x 2  - b    2                                      +   -  λ k  , B  x 2       x 2  ∈  Ω 2           



(19)




as we wanted to prove. Thus Lemma 1 is proved.   □



Lemma 2. 

Let sequence     w k     is generated by the iterative scheme APP. We denote      x  M  =  x T  M x    and     x  =  x T  x   , then we get


          w k  -  w *    M 2  -     w  k + 1   -  w *    M 2  ≥     w k  -  w  k + 1     M 2    



(20)






      f   x 1   + g   x 2   - f   x 1  k + 1    - g   x 2  k + 1           +    w -  w  k + 1     T     F   w  k + 1    + M    w  k + 1   -  w k      ≥ 0 ,  ∀ w ∈ W      



(21)




where


   M =         β - c    A T  A     - c  A T  B    0      - c  B T  A       β - c    B T  B    0     0   0     1 c   I m       ,  β > 2 c   



(22)









Proof of Lemma 2. 

According to the description of Lemma 1 and using variational inequality approach, solving (11) and (12) is equivalent to solving      x 1  k + 1   ,  x 2  k + 1       which satisfies following inequalities,


      f   x 1   - f   x 1  k + 1    +     x 1  -  x 1  k + 1     T            β - c    A T    A  x 1  - A  x 1 k    + c  A T    A  x 1  + B  x 2 k  - b   -  A T   λ k    ≥ 0 ,  ∀  x 1  ∈  Ω 1       



(23)






      g   x 2   - g   x 2  k + 1    +     x 2  -  x 2  k + 1     T            β - c    B T    B  x 2  - B  x 2 k    + c  B T    A  x 1 k  + B  x 2  - b   -  B T   λ k    ≥ 0 ,  ∀  x 2  ∈  Ω 2       



(24)









Considering


    λ  k + 1   =  λ k  - c   A  x 1  k + 1   + B  x 2  k + 1   - b     



(25)







Thus, the following result is given by utilizing (23)–(25)


      f   x 1   + g   x 2   - f   x 1  k + 1    - g   x 2  k + 1          +    w -  w  k + 1     T    F   w  k + 1    + M    w  k + 1   -  w k      ≥ 0 ,  ∀ w ∈ W      



(26)







Setting    w =  w *     in (26), we get


          w *  -  w  k + 1     T  M    w  k + 1   -  w k          ≥ f   x 1  k + 1    + g   x 2  k + 1    - f   x 1 *   - g   x 2 *   +     w  k + 1   -  w *    T  F   w  k + 1         



(27)







Mapping F is monotone, we have


       w  k + 1   -  w *    T  F   w  k + 1    ≥     w  k + 1   -  w *    T  F   w *     



(28)







According to (8), we get


       w  k + 1   -  w *    T  F   w *   ≥ 0   



(29)







Combing (27)–(29), we get


           w *  -  w  k + 1      T  M    w  k + 1   -  w k             ≥ f   x 1  k + 1    + g   x 2  k + 1    - f   x 1 *   - g   x 2 *   +     w  k + 1   -  w *    T  F   w  k + 1          ≥ f   x 1  k + 1    + g   x 2  k + 1    - f   x 1 *   - g   x 2 *   +     w  k + 1   -  w *    T  F   w *         ≥ 0       ⇒     w *  -  w k  +  w k  -  w  k + 1     T  M    w  k + 1   -  w k    ≥ 0       ⇒     w *  -  w k    T  M    w  k + 1   -  w k    ≥     w k  -  w  k + 1     T  M    w k  -  w  k + 1             



(30)







Using (30), we obtain


              w k  -  w *    M 2  -     w  k + 1   -  w *    M 2        =     w k  -  w *    M 2  -     w k  -  w *  -  (  w k  -  w  k + 1   )    M 2        = 2     w *  -  w k    T  M    w  k + 1   -  w k    -     w k  -  w  k + 1     M 2        ≥ 2     w k  -  w  k + 1     M 2  -     w k  -  w  k + 1     M 2        =     w k  -  w  k + 1     M 2       



(31)







Based on the above discussion, the proof of Lemma 2 is completed.   □



If matrices A and B are full rank, for    ∀  w ∈ W   , we can get      w  M  =  w T  M w =   β - 2 c         A  x 1     2  +     B  x 2     2    + c    A  x 1  - B  x 2    2  +  1 c    λ  2  ≥ 0   , and the equality hold up if and only if    w = 0   . It is clear that matrix M is positive definite matrix and (20) is Fejér monotone. We get


    lim  k → ∞    w k  =  w *    



(32)







Furthermore, for general matrices A and B, (20) can be rewritten as follows.





          v k  -  v *    N 2  -     v  k + 1   -  v *    N 2  ≥     v k  -  v  k + 1     N 2    



(33)




where


   v =      A  x 1        B  x 2       λ     ,  N =        β - c   I     - c I    0      - c I       β - c   I    0     0   0     1 c   I m         



(34)







It is clear that (33) is Fejér monotone, so we get


    lim  k → ∞     A  x 1  k + 1   - A  x 1 k    = 0 ,    lim  k → ∞     B  x 2  k + 1   - B  x 2 k    = 0 ,    lim  k → ∞      λ  k + 1   -  λ k    = 0   



(35)







Lemma 3. 

Let sequence     w k     is generated by the iterative scheme APP. If


     A  x 1  k + 1   - A  x 1 k    = 0 ,     B  x 2  k + 1   - B  x 2 k    = 0 ,      λ  k + 1   -  λ k    = 0   



(36)




then,    w  k + 1     is the solution of VI problem (8).





Proof of Lemma 3. 

According to [14], solving (8) is equivalent to finding a zero point of e(w).


   e  w  =       e  x 1    w         e  x 2    w         e λ   w       =       x 1  -  P  Ω 1      x 1  -   ∇ f   x 1   -  A T  λ            x 2  -  P  Ω 2      x 2  -   ∇ g   x 2   -  B T  λ           A  x 1  + B  x 2  - b        



(37)




where     P Ω   ·     denotes the projection on Ω.    ∇ f  ·     denotes the gradient of    f  ·    .





Based on the iterative scheme APP and the projection equation, we obtain


       x 1  k + 1   =  P  Ω 1      x 1  k + 1   -   ∇ f   x 1  k + 1    -  A T     λ k  - c   A  x 1  k + 1   + B  x 2 k  - b                                      +   β - c    A T    A  x 1  k + 1   - A  x 1 k            



(38)






       x 2  k + 1   =  P  Ω 2      x 2  k + 1   -   ∇ g   x 2  k + 1    -  B T     λ k  - c   A  x 1 k  + B  x 2  k + 1   - b                                       +   β - c    B T    B  x 2  k + 1   - B  x 2 k            



(39)







Recall (37), we get,


   e   w  k + 1    =       e  x 1     w  k + 1           e  x 2     w  k + 1           e λ    w  k + 1         =       x 1  k + 1   -  P  Ω 1      x 1  k + 1   -   ∇ f   x 1  k + 1    -  A T   λ  k + 1              x 2  k + 1   -  P  Ω 2      x 2  k + 1   -   ∇ g   x 2  k + 1    -  B T   λ  k + 1             A  x 1  k + 1   + B  x 2  k + 1   - b        



(40)




and hence,


     e   w  k + 1      ≤    e  x 1     w  k + 1      +    e  x 2     w  k + 1      +    e λ    w  k + 1        



(41)







Replacing the first    x 1  k + 1     in     e  x 1     w  k + 1       by (38) and using


      P Ω   ( x )  -  P Ω   ( y )    ≤   x - y     



(42)







We get


         e  x 1     w  k + 1      =    x 1  k + 1   -  P  Ω 1      x 1  k + 1   -   ∇ f   x 1  k + 1    -  A T   λ  k + 1                                     ≤    A T       λ k  -  λ  k + 1     - c   A  x 1  k + 1   + B  x 2 k  - b                                          -   β - c    A T    A  x 1  k + 1   - A  x 1 k                                 ≤    A T       λ k  -  λ  k + 1     - c   A  x 1  k + 1   + B  x 2  k + 1   - b   + c   B  x 2  k + 1   - B  x 2 k                                       +     β - c    A T    A  x 1  k + 1   - A  x 1 k                                  ≤    A T  c     B  x 2  k + 1   - B  x 2 k    +     β - c    A T       A  x 1  k + 1   - A  x 1 k          



(43)







Similarly, replacing the first    x 2  k + 1     in     e  x 2     w  k + 1       by (39) and using (42), we get


         e  x 2     w  k + 1      =    x 2  k + 1   -  P  Ω 2      x 2  k + 1   -   ∇ g   x 2  k + 1    -  B T   λ  k + 1                                     ≤    B T       λ k  -  λ  k + 1     - c   A  x 1 k  + B  x 2  k + 1   - b                                         -   β - c    B T    B  x 2  k + 1   - B  x 2 k                                  ≤    B T       λ k  -  λ  k + 1     - c   A  x 1  k + 1   + B  x 2  k + 1   - b   + c   A  x 1  k + 1   - A  x 1 k                                        +     β - c    B T    B  x 2  k + 1   - B  x 2 k                                  =    B T  c   A  x 1  k + 1   - A  x 1 k      +     β - c    B T    B  x 2  k + 1   - B  x 2 k                                  ≤    B T  c     A  x 1  k + 1   - A  x 1 k    +     β - c    B T      B  x 2  k + 1   - B  x 2 k         



(44)







Combining (41), (43) and (44), we obtain


        e   w  k + 1      ≤    e  x 1     w  k + 1      +    e  x 2     w  k + 1      +    e λ    w  k + 1                               ≤      A T  c   +     β - c    B T        B  x 2  k + 1   - B  x 2 k                                 +       β - c    A T    +    B T  c       A  x 1  k + 1   - A  x 1 k    +   A  x 1  k + 1   + B  x 2  k + 1   - b        



(45)




and using


    λ  k + 1   =  λ k  - c   A  x 1  k + 1   + B  x 2  k + 1   - b     



(46)







Hence, we need only prove that if    w  k + 1     satisfies


    lim  k → ∞     A  x 1  k + 1   - A  x 1 k    = 0 ,    lim  k → ∞     B  x 2  k + 1   - B  x 2 k    = 0 ,    lim  k → ∞      λ  k + 1   -  λ k    = 0   



(47)




then,    w  k + 1     is the solution of problem (8).



Therefore, the proof of lemma 3 is completed.   □




3. The Convergence Rate Analysis of APP


In this section, we first introduce Lemma 4 which is originally described as Theorem 2.1 in [12]. Lemma 4 provides a basic property for the solution set of VI problem.



Lemma 4. 

The solution set of VI problem is convex and can be characterized as,


    W *  =  ∩  w ∈ W      w ˜  ∈ W : θ  u  - θ   u ˜   +    w -  w ˜    T  F  w  ≥ 0     



(48)









Lemma 4 demonstrates, for    ε = O ( 1 / n )   , if there is a point     w ˜  ∈ W    satisfying


   θ   u ˜   - θ  u  +     w ˜  - w   T  F  w  ≤ ε , ∀ w ∈ W   



(49)




then, iterative scheme APP has    O ( 1 / n )    convergence rate.



Lemma 5. 

Let sequence     w k     be generated by APP algorithm, we get


   θ  u  - θ   u  k + 1    +    w -  w  k + 1     T  F  w  +  1 2     w -  w k    M 2  ≥  1 2     w -  w  k  + 1      M 2  , ∀ w ∈ W   



(50)









Proof of Lemma 5.  

Using the following equation [12],


      a - b   T  H   c - d   =  1 2       a - d   H 2  -    a - c   H 2    +  1 2       c - b   H 2  -    d - b   H 2      



(51)




where H is a symmetric and positive semidefinite matrix.





Here, setting    a = w ,  b =  w  k + 1   ,  c =  w k  ,  d =  w  k + 1     , we get


            w -  w  k + 1     T  M    w k  -  w  k + 1           =  1 2       w -  w  k + 1     M 2  -    w -  w k    M 2    +  1 2        w k  -  w  k + 1     M 2  -     w  k + 1   -  w  k + 1     M 2          =  1 2       w -  w  k + 1     M 2  -    w -  w k    M 2    +  1 2      w k  -  w  k + 1     M 2        ≥  1 2       w -  w  k + 1     M 2  -    w -  w k    M 2         



(52)







Combining Lemma 2 and (52), we obtain


   θ  u  - θ   u  k + 1    +    w -  w  k + 1     T  F   w  k + 1    +  1 2     w -  w k    M 2  ≥  1 2     w -  w  k  + 1      M 2    



(53)







Based on the above discussion, the proof of Lemma 5 is completed.   □



Lemma 6. 

Let     w k     be generated by APP algorithm. For any integer    n > 0   ,


   θ    u ˜  n   - θ  u  +      w ˜  n  - w   T  F  w  ≤  1  2   n + 1        w -  w 0    M 2  , ∀ w ∈ W   



(54)




where      w ˜  n  =  1  n + 1    ∑  k = 0  n   w  k + 1     ,      u ˜  n  =  1  n + 1    ∑  k = 0  n   u  k + 1     , n is the iteration number,    w 0    denotes the initial point.





Proof of Lemma 6. 

According to lemma 5, we sum the inequality (50) over    k = 0 , 1 , ⋯ , n   , we obtain


        ∑  k = 0  n     θ  u  - θ   u  k + 1      +      n + 1   w -   ∑  k = 0  n    w  k + 1     T  F  w  +  1 2     w -  w 0    M 2  ≥        1 2     w -  w  k  + 1      M 2  , ∀ w ∈ W      



(55)




(55) can be rewritten as,


       w -  w 0    M 2   2   n + 1     ≥  1  n + 1    ∑  k = 0  n   θ   u  k + 1    - θ  u   +     1  n + 1    ∑  k = 0  n   w  k + 1   - w   T  F  w  , ∀ w ∈ W   



(56)









Because


   θ  u  = f   x 1    + g    x 2     



(57)




and    f   x 1     ,    g   x 2      are convex functions, we have,


   θ    u ˜  n   ≤  1  n + 1    ∑  k = 0  n   θ   u  k + 1       



(58)







Combining (56) and (58), we obtain,


       w -  w 0    M 2   2   n + 1     ≥ θ    u ˜  n   - θ  u  +      w ˜  n  - w   T  F  w  , ∀ w ∈ W   



(59)







Based on above discussion, the proof of Lemma 6 is completed.   □



According to Lemmas 4 and 5, it is found that iterative scheme APP has    O ( 1 / n )    convergence rate in an ergodic sense.




4. Numerical Experiments


In this section, we present the 40-unit test system to show the efficiency of the auxiliary problem principle. To be exact, the test system consists of two areas (area 1 and area 2). There are 25 units and 15 units in area 1 and area 2 respectively. The corresponding mathematical formulation can be expressed as follows.





   min    f   x 1   + g   x 2     A  x 1  + B  x 2    = b ,  x 1  ∈  Ω 1  ,  x 2  ∈  Ω 2      



(60)




where


   A =      0 , ⋯ , 0  ︸  25  , 1   , B =      0 , ⋯ , 0  ︸  15  , - 1   , b = 0   



(61)






    x 1  =     P 1  ,  P 2  , ⋯ ,  P 25  ,  P  b 1     T  ,   x 2  =     P 26  ,  P 27  , ⋯ ,  P 40  ,  P  b 2     T    



(62)






   f   x 1   =  ∑  i = 1  25     a i 2   P i 2  +  b i   P i  +  c i    ,   g   x 2   =  ∑  i = 26  40     a i 2   P i 2  +  b i   P i  +  c i      



(63)






    Ω 1  =    x 1     ∑  i = 1  25    P i  +  P  b 1   = 8000 ;   P  i ,  min   ≤  P i  ≤  P  i ,  max   ,  1 ≤ i ≤ 25 ;    P  b 1    ≤ 800         



(64)






    Ω 2  =    x 2     ∑  i = 26  40    P i  -  P  b 2   = 2000 ;   P  i ,  min   ≤  P i  ≤  P  i ,  max   ,  26 ≤ i ≤ 40 ;    P  b 2    ≤ 800         



(65)







   P i    is the active output of unit i in this test system. Both    P  b 1     and    P  b 2     denote transfer power flow between two areas.    P  i ,  min    ,    P  i ,  max     are given variable upper and lower limits, and     a i  ,  b i  ,  c i     are given fixed parameters for objective function as shown in Table 1 [15].



APP algorithm is employed to solve the problem. Here, parameters are selected as penalty parameter    c = 0 . 01    and auxiliary problem principle parameter    β = 0 . 03   . Stop criterion is set to be


   max     A  x 1  k + 1   - A  x 1 k    ,    B  x 2  k + 1   - B  x 2 k    ,     λ  k + 1   -  λ k      ≤  10  - 4     



(66)







Figure 1 and Figure 2 reflect the convergence characteristic of objective function and stop criterion for this test system, respectively. It is clear that objective function is converged to the optimal solution and the stop criterion is very close to zero when the number of iterations reaches 20. The effectiveness and correctness of the auxiliary problem principle have been demonstrated.




5. Conclusions


In this paper, taking advantage of special characterization of variational inequality solution set, we derive the    O ( 1 / n )    convergence rate of the auxiliary problem principle.
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Figure 1. Convergence characteristic of objective function. 
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Figure 2. Convergence characteristic of stop criterion. 
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Table 1. Data for 40-Unit test sysem.
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i

	
   P  i , min    

	
   P  i , max    

	
   a i   

	
   b i   

	
   c i   






	
1

	
40

	
80

	
0.03073

	
8.336

	
170.44




	
2

	
60

	
120

	
0.02028

	
7.0706

	
309.54




	
3

	
80

	
190

	
0.00942

	
8.1817

	
369.03




	
4

	
24

	
42

	
0.08482

	
6.9467

	
135.48




	
5

	
26

	
42

	
0.09693

	
6.5595

	
135.19




	
6

	
68

	
140

	
0.01142

	
8.0543

	
222.33




	
7

	
110

	
300

	
0.00357

	
8.0323

	
287.71




	
8

	
135

	
300

	
0.00492

	
6.999

	
391.98




	
9

	
135

	
300

	
0.00573

	
6.602

	
455.76




	
10

	
130

	
300

	
0.00605

	
12.908

	
722.82




	
11

	
94

	
375

	
0.00515

	
12.986

	
635.2




	
12

	
94

	
375

	
0.00569

	
12.796

	
654.69




	
13

	
125

	
500

	
0.00421

	
12.501

	
913.4




	
14

	
125

	
500

	
0.00752

	
8.8412

	
1760.4




	
15

	
125

	
500

	
0.00708

	
9.1575

	
1728.3




	
16

	
125

	
500

	
0.00708

	
9.1575

	
1728.3




	
17

	
125

	
500

	
0.00708

	
9.1575

	
1728.3




	
18

	
220

	
500

	
0.00313

	
7.9691

	
647.85




	
19

	
220

	
500

	
0.00313

	
7.955

	
649.69




	
20

	
242

	
550

	
0.00313

	
7.9691

	
647.83




	
21

	
242

	
550

	
0.00313

	
7.9691

	
647.81




	
22

	
254

	
550

	
0.00298

	
6.6313

	
785.96




	
23

	
254

	
550

	
0.00298

	
6.6313

	
785.96




	
24

	
254

	
550

	
0.00298

	
6.6313

	
785.53




	
25

	
254

	
550

	
0.00298

	
6.6313

	
785.53




	
26

	
254

	
550

	
0.00277

	
7.1032

	
801.32




	
27

	
254

	
550

	
0.00277

	
7.1032

	
801.32




	
28

	
10

	
150

	
0.52124

	
3.3353

	
1055.1




	
29

	
10

	
150

	
0.52124

	
3.3353

	
1055.1




	
30

	
10

	
150

	
0.52124

	
3.3353

	
1055.1




	
31

	
20

	
70

	
0.25098

	
13.052

	
1207.8




	
32

	
20

	
70

	
0.16766

	
21.887

	
810.79




	
33

	
20

	
70

	
0.2635

	
10.244

	
1247.7




	
34

	
20

	
70

	
0.30575

	
8.3707

	
1219.2




	
35

	
18

	
60

	
0.18362

	
26.258

	
641.43




	
36

	
18

	
60

	
0.32563

	
9.6956

	
1112.8




	
37

	
20

	
60

	
0.33722

	
7.1633

	
1044.4




	
38

	
25

	
60

	
0.23915

	
16.339

	
832.24




	
39

	
25

	
60

	
0.23915

	
16.339

	
834.24




	
40

	
25

	
60

	
0.23915

	
16.339

	
1035.2
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