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Abstract: In this paper, new algorithms called the “Modified exp(´Ω)-expansion function method”
and “Improved Bernoulli sub-equation function method” have been proposed. The first algorithm
is based on the exp(´Ω(ξ))-expansion method; the latter is based on the Bernoulli sub-Ordinary
Differential Equation method. The methods proposed have been expressed comprehensively in this
manuscript. The analytical solutions and application results are presented by drawing the two- and
three-dimensional surfaces of solutions such as hyperbolic, complex, trigonometric and exponential
solutions for the (2+1)-dimensional dispersive long water–wave system. Finally, a conclusion has
been presented by mentioning the important discoveries in this manuscript.
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1. Introduction

In recent years, studies on the nonlinear differential equations (NDEs) and systems (NDESs) have
become a significant field among scientists. This is why many engineering problems can be represented
by using NDEs and with the rapid development of computational algorithms. Therefore, many
mathematical models have been proposed to understand of such problems in scientific and engineering
such as the optical fiber communications, coastal and oceans engineering, fluid dynamics, plasma
physics, chemical physics and many other scientific applications. Yong-Sik Cho, Dae-Hee Sohn
and Seung Oh Lee have conducted a study on shallow-water equations for distant propagation of
tsunamis [1]. Furthermore, even some important diseases such as dengue epidemics, tuberculosis,
HIV, AIDS, tsunamis, malaria, and cholera have been investigated by many scientists from all over
the word [2–7]. One of them is to obtain various solutions of coastal, oceans and fluid problems
such as approximate, numerical, analytical and traveling wave solutions. Some important traveling
wave solutions for nonlinear differential equations have been investigated by different authors [8–15].
In the rest of this manuscript; we have explained the fundamental properties of the modified
exp(´Ω(ξ))-expansion function method (MEFM) and Improved Bernoulli sub-equation function
method (IBSEFM) in Section 2. We have studied to obtain some new analytical solutions such as
hyperbolic, exponential, and complex hyperbolic function solutions by applying MEFM and IBSEFM
to the (2+1)-dimensional dispersive long water–wave (DLW) system defined by [16]:

uyt ` uxxy ´ 2vxx ´
`

u2˘

xy “ 0,

vt ´ vxx ´ 2 puvqx “ 0,
(1)
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where u = u(x, y, t) represents the horizontal velocity of water and v = v (x, y, t) gives the deviation
height from the equilibrium position of the liquid [16]. The solutions of (1) are very helpful for coastal
scientists and engineers to apply the nonlinear water model to coastal and harbor design [17–19].
Equation (1) was used to model nonlinear and dispersive long gravity waves traveling in two horizontal
directions on shallow waters of uniform depth. Equation (1) appears in many scientific applications
such as nonlinear fiber optics, plasma physics, fluid dynamics, and coastal engineering [16].

2. Fundamental Properties of Methods

2.1.The Modified Exp(´Ω(ξ))-Expansion Function Method

Let us consider the following nonlinear partial differential equations systems for functions
u, v [20,21]:

P1
`

ux, vx, ut, vt, uy, vy, ¨ ¨ ¨
˘

“ 0,
P2

`

ux, vx, ut, vt, uy, vy, ¨ ¨ ¨
˘

“ 0,
(2)

where u = u(x, y, t), v = v (x, y, t) are unknown functions, and Pi (i = 0, 1) are polynomials in u = u(x, y, t),
v = v (x, y, t)

Step 1: Combine the real variables x, y and t with a compound variable ξ:

u px, y, tq “ U pξq , ξ “ kx`wy´ ct,
v px, y, tq “ V pξq , ξ “ kx`wy´ ct,

(3)

ux “
Bu
Bx
“ kU1 pξq , uy “

Bu
By
“ wU1 pξq , ut “

Bu
Bt
“ ´cU1 pξq ,

vx “
Bv
Bx
“ kV1 pξq , vy “

Bv
By
“ wV1 pξq , vt “

Bv
Bt
“ ´cV1 pξq ,

...

(4)

where ω, c, k are both constants and non-zero. By travelling wave transformation, Equation (2) under
the terms of Equations (3) and (4) transforms Equation (2) system in a nonlinear ordinary differential
equation (NODE) as the following:

NODE
`

U, U1, U2 , U3 , ¨ ¨ ¨
˘

“ 0, (5)

where NODE is a polynomial of U and U1 “
dU
dξ

, U2 “
d2U
dξ2 , U3 “

d3U
dξ3 .

Step 2: Conjecture of the travelling wave solutions for Equation (5) can be stated in the following form:

U pξq “

N
ř

i“0
Ai rexp p´Ω pξqqs

i

M
ř

j“0
Bj rexp p´Ω pξqqs

j “
A0 ` A1exp p´Ω pξqq ` ¨ ¨ ¨ ` ANexp p´NΩ pξqq
B0 ` B1exp p´Ω pξqq ` ¨ ¨ ¨ ` BMexp p´MΩ pξqq

, (6)

where Ai (0 ď i ď N) and Bj (0 ď j ďM) are constants to be determined, such that AN “ 0, BM “ 0, and
Ω = Ω(ξ) satisfies the following ordinary differential equation:

Ω1 “ µexp pΩq ` exp p´Ωq ` λ. (7)

The following exact analytical solutions can be written from Equation (7) [22–24]:
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Family-1: If µ ‰ 0, λ2 ´ 4µ ą 0,

Ω pξq “ ln

˜

´
a

λ2 ´ 4µ

2µ
tanh

˜

a

λ2 ´ 4µ

2
pξ ` εq

¸

´
λ

2µ

¸

. (8)

Family-2: When µ ‰ 0, λ2 ´ 4µ ă 0,

Ω pξq “ ln

˜

a

´λ2 ` 4µ

2µ
tan

˜

a

´λ2 ` 4µ

2
pξ ` εq

¸

´
λ

2µ

¸

. (9)

Family-3: When µ “ 0, λ ‰ 0, and λ2 ´ 4µ ą 0,

Ω pξq “ ´ln
ˆ

λ

exp pλ pξ ` εqq ´ 1

˙

. (10)

Family-4: When µ ‰ 0, λ ‰ 0, and λ2 ´ 4µ “ 0,

Ω pξq “ ln
ˆ

´
2λ pξ ` εq ` 4

λ2 pξ ` εq

˙

. (11)

Family-5: When µ “ 0, λ “ 0, and λ2 ´ 4µ “ 0,

Ω pξq “ ln pξ ` εq , (12)

where A0,A1, . . . ,AN , B0,B1, . . . ,BM, ε, λ, µ are real constants to be identified later. ε is constant of
integration. The positive integer N and M can be identified by taking the balance rule between the
highest order derivatives and the nonlinear terms occurring in Equation (5).

Step 3: According to different values of N and M, we can find various forms of Equation (6). By putting
Equations (6) in (5), we can obtain a polynomial of exp(´Ω(ξ)). If we equal to zero all the coefficients
of same power of exp(´Ω(ξ)), we can obtain a system of equations. When we solve this system with
the aid of Wolfram Mathematica 9, this process gives different values of coefficients A0,A1, . . . ,AN ,
and B0,B1, . . . ,BM, ε. If we put these coefficients in Equation (6) by considering family conditions, we
obtain many analytical solutions for Equation (2).

2.1. Improved Bernoulli Sub-Equation Function Method (IBSEFM)

IBSEFM formed by improving the Bernoulli sub-equation function method [25] will be given in
this sub-section. Therefore, we consider the following steps.

Step 1. Let us consider the nonlinear partial differential equations system as the following:

P1
`

ux, vx, ut, vt, uy, vy, ¨ ¨ ¨
˘

“ 0,
P2

`

ux, vx, ut, vt, uy, vy, ¨ ¨ ¨
˘

“ 0,
(13)

and take the wave transformation

u px, y, tq “ U pξq , ξ “ kx`wy´ ct,
v px, y, tq “ V pξq , ξ “ kx`wy´ ct,

(14)

where w, k, c are both constants and non-zero and will be determined later. Substituting Equations (14)
into (13) converts a nonlinear ordinary differential equation (NODE) as the following:

NODE
`

U, U1, U2 , U3 , ¨ ¨ ¨
˘

“ 0, (15)
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where NODE is a polynomial of U, and, U1 “
dU
dξ

, U2 “
d2U
dξ2 , U3 “

d3U
dξ3 .

Step 2. Considering the trial equation of the solution in Equation (15), it can be written as the following:

U “ U pξq “

n
ř

i“0
aiFi

m
ř

j“0
bjFj

“
a0 ` a1F` a2F2 ` ¨ ¨ ¨ ` anFn

b0 ` b1F` b2F2 ` ¨ ¨ ¨ ` bmFm , (16)

and, according to the Bernoulli theory,

F1 “ bF` dFM, b ‰ 0, d ‰ 0, M P R´ t0, 1, 2u , (17)

where F “ F pξq is Bernoulli differential polynomial and F1 “
dF
dξ
“

dF pξq
dξ

. Substituting the above

relations in Equation (15) yields an equation of polynomial Ω pFq of F “ F pξq

Ω pFq “ ρsFs ` ¨ ¨ ¨ ` ρ1F` ρ0 “ 0. (18)

According to the balance principle, we can get some values of n, m and M.

Step 3. Letting the coefficients of Ω(F) all be zero will yield an algebraic equations system

ρi “ 0, i “ 0, ¨ ¨ ¨ , s. (19)

Solving this system, we will determine the values of k, w, c, a0,a1,a2, . . . an, b0,b1,b2, . . . ,bm.

Step 4. When we solve nonlinear Bernoulli differential Equation (17), we obtain, according to b and d,
two situations as the following:

F pξq “
„

´d
b
`

ε

ebpM´1qξ



1
1´M , b ‰ d, (20)

F pξq “

»

—

—

–

pε´ 1q ` pε` 1q tanh
ˆ

b p1´Mq ξ

2

˙

1´ tanh
ˆ

b p1´Mq ξ

2

˙

fi

ffi

ffi

fl

1
1´M

, b “ d, ε P R, (21)

where ε is both an integration constant and non-zero. Using a complete discrimination system for
polynomial of F(ξ), we solve Equation (16) with the help of using Wolfram Mathematica 9 and classify
the exact solutions to Equation (16). For a better interpretations of results obtained in this way, we plot
two- and three-dimensional surfaces of the solutions obtained by taking suitable parameters.

3. The Implementations of Techniques

In this subsection of the paper, we have obtained new analytical solutions to the DLW system (1)
by using MEFM and IBSEFM.

3.1. Application of MEFM

Let us consider the travelling wave solutions of the DLW system (1) and we perform the
transformation as the following;

u px, y, tq “ U pξq , ξ “ kx`wy´ ct,
v px, y, tq “ V pξq , ξ “ kx`wy´ ct.

(22)
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First of all, if we consider the following transformations for the DLW system (1),

v px, y, tq “ uy px, y, tq “
Bu px, y, tq

By
, (23)

we can obtain following partial differential equations:

uyt ` uxxy ´ 2uyxx ´
´

u2
¯

xy
“ 0, (24)

uyt ´ uyxx ´ 2
`

uuy
˘

x “ 0. (25)

When we use the travelling wave transformations Equation (22),

uyt “ ´cwU2 , uxxy “ wk2U3 , uyxx “ wk2U3 , uxy “ wkU2 , ux “ kU1, uy “ wU1,
`

u2˘

xy “ 2 puuxqy “ 2
`

uyux ` uuxy
˘

“ 2wk
`

UU1
˘1 ,

(26)

and using Equations (26) in (24), we obtain the following NODE;

´ cU2 ´ k2U3 ´ 2k
`

UU1
˘1
“ 0. (27)

If we integrate Equation (27) twice by getting zero the integration constants, we obtain the
following NODE

´ cU ´ k2U1 ´ kU2 “ 0. (28)

When we use Equations (26) in (25), after integrating twice by getting zero the integration
constants we obtain the same NODE as Equation (28) below:

´ cU ´ k2U1 ´ kU2 “ 0. (29)

When we rearrange to Equation (6), with the help of balance principle between U’ and U2, we
obtain the term for suitability:

N “ M` 1. (30)

This relationship gives rise to various analytical solutions to the DLW system (1) as the following:

Case-1
If we choose M = 1 and N = 2, we can write the following equations for Equation (6):

U “
A0 ` A1exp p´Ωq ` A2exp p´2Ωq

B0 ` B1exp p´Ωq
“

Υ

Ψ
, (31)

and

U1 “
Υ1Ψ´Ψ1Υ

Ψ2 ,
...

(32)

where A2 “ 0, B1 “ 0 and Ω = Ω (ξ). When we use Equations (31,32) in the (29), we get a system of
equations for Equation (29) from the coefficients of polynomial of exp(´Ω(ξ)). Solving this system
with the help of Wolfram Mathematica 9 yields the following coefficients:

Case 1.1:

A1 “
2A0

λ
` kB0, A2 “

2kB0

λ
, B1 “

2B0

λ
, µ “

A0 p´A0 ` kλB0q

k2B2
0

, c “ k
ˆ

kλ´
2A0

B0

˙

. (33)
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Case 1.2:

A0 “
A2

1
4A2

, B0 “
´iλ

a

A2 pA1 ´ λA2q
?

2c
, B1 “

´i
a

2A2 pA1 ´ λA2q
?

c
, k “

i
?

cA2
?

2A1 ´ 2λA2
,

µ “
´A1 pA1 ´ 2λA2q

4A2
2

.
(34)

Case 1.3:

A0 “
´λ

4
p´2A1 ` λA2q , B0 “

´iλ
a

A2 pA1 ´ λA2q
?

2c
, B1 “

´i
a

2A2 pA1 ´ λA2q
?

c
,

k “
i
?

cA2
?

2A1 ´ 2λA2
, µ “ ´

3λ2

4
´

A1 pA1 ´ 2λA2q

A2
2

.
(35)

Case 1.4:

A0 “
A2

1
4A2

, B0 “
iλ
a

A2 pA1 ´ λA2q
?

2c
, B1 “

i
a

2A2 pA1 ´ λA2q
?

c
, k “

´i
?

cA2
?

2A1 ´ 2λA2
,

µ “ ´
A1 pA1 ´ 2λA2q

4A2
2

.
(36)

Case 1.5:

A0 “
k2B2

0
4A2

, A1 “ kB0, B1 “
A2

k
, µ “

3k2B2
0

4A2
2

, λ “
2kB0

A2
, c “

2k3B0

A2
. (37)

Therefore, when we substitute coefficients Equations (33) along with (8) in (31) for u(x, y, t) and in
Equation (23) for v(x, y, t), we can obtain hyperbolic function solution to the DLW system (1) as the
following, under the condition of Family-1; λ2 ´ 4µ “ p´2A0 ` kλB0q

2
{k2B2

0 ą 0 :

u1 px, y, tq “
A0

B0
`

2A0 pA0 ´ kλB0q

kλB2
0 ` 2kβB2

0tanh pβ f px, y, tqq
,

v1 px, y, tq “
wA0 p´2A0 ` kλB0q

2
p´A0 ` kλB0q sech2

pβ f px, y, tqq

kB2
0 `

”

kλB0 ` p´2A0 ` kλB0q tanh2
pβ f px, y, tqq

ı ,
(38)

where f px, y, tq “ ε ` wy ` k px´ λktq `
2kA0

B0
t, β “

´2A0 ` kλB0

2kB0
, and, A0, B0, λ, k, w, ε are both

constants and non-zero.
For Equation (34), if we use coefficients Equations (34) along with (8) in (31) for u px, y, tq and

in Equation (23) for v px, y, tq, we can obtain new complex hyperbolic function solution to the DLW
system(1) as the following, under the condition of Family-1; λ2 ´ 4µ “ pA1 ´ λA2q

2
{A2

2 ą 0 :

u2 px, y, tq “
iA2

1
?

cω r1` tanh rβ f px, y, tqss2

2
?

2A2 rA1 ` λA2 r´1` tanh pβ f px, y, tqqss r´λA2 ´ωtanh pβ f px, y, tqqs
,

v2 px, y, tq “
γ px, y, tq A2

1ω3{2 p´ωq p1` σ px, y, tqq2

4
?

2A3{2
2 ` px, y, tq g px, y, tq2

´
γ px, y, tq A2

1ω3{2 p1` σ px, y, tqq

2
?

2A3{2
2 ` px, y, tq g px, y, tq

`
γ px, y, tq A2

1ω3{2 p1` σ px, y, tqq2

4
?

2
?

A2` px, y, tq g px, y, tq
,

(39)

where β “
A1 ´ λA2

2A2
, f px, y, tq “ ε ´ ct ` wy `

i
?

cA2x
a

2 pA1 ´ λA2q
, ω “ A1 ´ λA2,

γ px, y, tq “ i
?

cwSech
„

ω f px, y, tq
2A2

2
, σ px, y, tq “ tanh

„

ω f px, y, tq
2A2



, ` px, y, tq “ A1 `

λA2 p´1` σ px, y, tqq , g px, y, tq “ ´λA2 ´ωσ px, y, tq and, A0, B0, λ, k, w, ε are constants and not zero.
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Considering Equations (35) along with (8) in (31) for u px, y, tq and in Equation (23) for v px, y, tq, we
can obtain another new complex hyperbolic function solution to the DLW system (1) as the following,
under the condition of Family-1; λ2 ´ 4µ “ 4 pA1 ´ λA2q

2
{A2

2 ą 0 :

u3 px, y, tq “
i
?

cω p2A1 ´ λA2q p1` tanh rω f px, y, tqsq
?

2A3{2
2

ˆ

λ`
2ω

A2
tanh rω f px, y, tqs

˙ ,

v3 px, y, tq “
´i
?

cw p2A1 ´ 3λA2qω3{2 p2A1 ´ λA2q

?
2A3{2

2

ˆ

λA2Cosh
„

ω

A2
f px, y, tq



` 2ωSinh
„

ω

A2
f px, y, tq

˙2 ,
(40)

being f px, y, tq “ ε´ ct`wy`
i
?

cA2x
?

2ω
, ω “ A1 ´ λA2.

Substituting Equations (36) along with (8) in (31) for u px, y, tq and in Equation (23) for v px, y, tq, we
can obtain another new complex hyperbolic function solution to the DLW system (1) as the following,
under the condition of Family-1; λ2 ´ 4µ “ pA1 ´ λA2q

2
{A2

2 ą 0:

u4 px, y, tq “
i
?

cωA2
1 p1` σ px, y, tqq2

2
a

2A2 pA1 ` λA2 p´1` σ px, y, tqqq p´λA2 ´ωσ px, y, tqq
,

v4 px, y, tq “
γ px, y, tq A2

1ω5{2 p1` σ px, y, tqq2

4
?

2A3{2
2 ` px, y, tq

´

g px, y, tq2
¯ `

γ px, y, tq A2
1ω3{2 p1` σ px, y, tqq

2
?

2A3{2
2 ` px, y, tq g px, y, tq

´
γ px, y, tq A2

1ω3{2 p1` σ px, y, tqq2

4
?

2A2`2 px, y, tq g px, y, tq
,

(41)

where f px, y, tq “ ε ´ ct ` wy ´
i
?

cA2
?

2ω
x, γ px, y, tq “ i

?
cwSech2

„

ω

2A2
f px, y, tq



, σ px, y, tq “

tanh
„

ω

2A2
f px, y, tq



, ω “ A1 ´ λA2, ` px, y, tq “ A1 ` λA2 p´1` σ px, y, tqq , g px, y, tq “ ´λA2 ´

ωσ px, y, tq.
Taking Equations (37) along with (8) in (31) for u px, y, tq and in Equation (23) for v px, y, tq, we can

obtain another new hyperbolic function solution to the DLW system(1) as the following, under the
condition of Family-1; λ2 ´ 4µ “ k2B2

0{A
2
2 ą 0 :

u5 px, y, tq “
k2B0

4A2

ˆ

1´
6

2` tanh rh px, y, tqs
`

3
1` 2tanh rh px, y, tqs

˙

,

v5 px, y, tq “ ´
9k3wsech4

rh px, y, tqs B2
0

4A2
2 p2` tanh rh px, y, tqsq2 p1` 2tanh rh px, y, tqsq2

,
(42)

where h px, y, tq “
kB0

2A2
2

`

pε` kx`wyq A2 ´ 2k3B0t
˘

.

Case-2
If we choose M “ 2 and N “ 3, we can write following equations for Equation (6):

U “
A0 ` A1exp p´Ωq ` A2exp p´2Ωq ` A3exp p´3Ωq

B0 ` B1exp p´Ωq ` B2exp p´2Ωq
“

Υ

Ψ
, (43)

and

U1 “
Υ1Ψ´Ψ1Υ

Ψ2 ,
...

(44)
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where A3 ‰ 0, B2 ‰ 0 and Ω “ Ω pξq . When we use Equations (43) and (44) in the (29), we get a system
of equations for Equation (29) from the coefficients of polynomial of exp(´Ω(ξ)). Solving this system
with the help of Wolfram Mathematica 9 yields the following coefficients:

Case 2.1:

A0 “

´

λ´
a

λ2 ´ 4µ
¯

A3B0

2B2
, A1 “

A3

´

2B0 `
´

λ´
a

λ2 ´ 4µ
¯

B1

¯

2B2
,

A2 “
1
2

A3

ˆ

λ´
a

λ2 ´ 4µ`
2B1

B2

˙

, c “

a

λ2 ´ 4µA2
3

B2
2

, k “
A3

B2
,

(45)

Case 2.2:
A3 “

1
2µ3

“`

λ3 ` λ2?p´ 3λµ´
?pµ

˘

A0 ` µ p´ pλr´ 2µq A1 ` rµA2q
‰

,

B0 “
rp1{4 A0

2
?

cµ
, B1 “

p1{4 p´ pλr´ 2µq A0 ` rµA1q

2
?

cµ2 ,

B2 “
p1{4 `λ3 ` λ2?p´ 3λµ´

?pµ
˘

A0 ` µ p´ pλr´ 2µq A1 ` rµA2q

A0 ` µ p´ pλr´ 2µq A1 ` rµA2q
,

k “
?

c
p1{4

, p “ λ2 ´ 4µ, r “ λ`
?p.

(46)

When considering Equations (45) along with (8) in (31) for u px, y, tq and in Equation (23) for
v px, y, tq, another new hyperbolic function solution to the DLW system(1) can be obtained as the
following, under the condition of Family-1; λ2 ´ 4µ ą 0:

u6 px, y, tq “
A3

2B2

¨

˚

˚

˝

λ´
a

ψ´
4µ

λ`
a

ψtanh
„

1
2
a

ψ pz px, y, tqq


˛

‹

‹

‚

,

v6 px, y, tq “
wψµA3

ˆ

λCosh
„

1
2
a

ψ pz px, y, tqq


`
a

ψSinh
„

1
2
a

ψ pz px, y, tqq
˙2 ,

(47)

where z px, y, tq “ ε`wy`
A3

B2
2

´

´t
a

λ2 ´ 4µA3 ` xB2

¯

, and ψ “ λ2 ´ 4µ.

Putting Equation (46) along with Equation (8) in Equation (31) for u px, y, tq and in Equation (23)
for v px, y, tq gives another new hyperbolic function solution to the DLW system (1) as the following,
under the condition of Family-1; λ2 ´ 4µ ą 0 :

u7 px, y, tq “

?
cψ1{4

´

λ2 ´ λ
a

ψ` 2
´

´1` e´pθpx,y,tqq
¯

µ
¯

sech2
„

1
2
pθ px, y, tqq



´8µ´ 2ψsech2
„

1
2
pθ px, y, tqq

 ,

v7 px, y, tq “
?

cwψ1{4µ
`

2
a

ψµ`
a

ψ
`

λ2 ´ 2µ
˘

cosh rθ px, y, tqs ´ λψsinh rθ px, y, tqs
˘

`

λ2 ´ 2µ` 2µcosh rθ px, y, tqs
˘2 ,

(48)

where θ px, y, tq “
a

ψ

ˆ

ε´ ct`wy`
?

cx
ψ1{4

˙

, ψ “ λ2 ´ 4µ.

3.2. Application of IBSEFM

Let us consider the travelling wave solutions of the DLW system (1), and we perform the
transformation as the following:

u px, y, tq “ U pξq , ξ “ kx`wy´ ct,
v px, y, tq “ V pξq , ξ “ kx`wy´ ct.

(49)
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First of all, if we consider the above transformations for the DLW system (1), we can obtain the
same NODE as Equation (29):

´ cU ´ k2U1 ´ kU2 “ 0. (50)

When we rearrange to Equation (16), with the help of balance principle between U1 and U2, we
obtain the term for suitability:

m`M “ n` 1. (51)

This relationship allows us various analytical solution forms for the DLW system (1).

Case-1
If we choose M “ n “ 3 and m “ 1, we can write the following equations for Equation (6):

U pξq “
a0 ` a1F` a2F2 ` a3F3

b0 ` b1F
“

Υ

Ψ
, (52)

and

U1 “
Υ1Ψ´Ψ1Υ

Ψ2 ,
...

(53)

where a3 ‰ 0, b1 ‰ 0 and F “ F pξq .When we use Equations (52) and (53) in Equation (50), we get a
system of equations for Equation (50) from the coefficients of polynomial of F. Solving this system
with the help of Wolfram Mathematica 9 yields the following coefficients:

Case 1.1:

a0 “ 0, a1 “ 0, a2 “
i
?

2
?

cdb0
?

b
, a3 “

i
?

2
?

cdb1
?

b
, k “ ´

i
?

c
?

2
?

b
, (54)

Case 1.2:

a0 “
?

2
?

b
?

cb0, a1 “
?

2
?

b
?

cb1, a2 “

?
2
?

cdb0
?

b
, a3 “

?
2
?

cdb1
?

b
, k “ ´

?
c

?
2
?

b
, (55)

Case 1.3:

a0 “ 0, a1 “ 0, a2 “ 0, a3 “ ´
i
?

2
?

cdb1
?

b
, b0 “ 0, k “

i
?

c
?

2
?

b
. (56)

If Equations (54) along with (8) is put into (51) for u px, y, tq and in Equation (23) for v px, y, tq, new
complex exponential function solution to the DLW system(1) can be obtained as the following:

u8 px, y, tq “
i
?

2
?

cd
?

b
ˆ

´
d
b
` e2bct`i

?
2
?

b
?

cx´2bwyε

˙ ,

v8 px, y, tq “
2i
?

2b5{2?cde2bct`i
?

2
?

b
?

cx´2bwyεw
´

de2bwy ´ be2bct`i
?

2
?

b
?

cxε
¯2 .

(57)

When we use coefficients Equations (55) along with (8) in (51) for u px, y, tq and in Equation (23)
for v px, y, tq, we can obtain another new exponential function solution to the DLW system (1) as
the following:

u9 px, y, tq “
?

2b3{2?cε

´de´2bct´
?

2
?

b
?

cx`2bwy ` bε
,

v9 px, y, tq “
2
?

2b5{2?cde2bct`
?

2
?

b
?

cx`2bwyεw
´

de2bwy ´ be2bct`
?

2
?

b
?

cxε
¯2 .

(58)
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Substituting Equations (56) along with (8) in (51) for u px, y, tq and in Equation (23) for v px, y, tq, we
can obtain another new complex exponential function solution to the DLW system(1) as the following:

u10 px, y, tq “ ´
i
?

2
?

cd
?

b
ˆ

´
d
b
` e2bct´i

?
2
?

b
?

cx´2bwyε

˙ ,

v10 px, y, tq “ ´
2i
?

2b5{2?cde2bct`i
?

2
?

b
?

cx´2bwyεw
´

dei
?

2
?

b
?

cx`2bwy ´ be2bctε
¯2 .

(59)

4. Conclusions

The MEFM and IBSEFM have been applied to the (2+1)-dimensional dispersive long water–wave
system Equation (1). Then, these methods which are newly submitted to literature in this paper have
given new complex and exponential functional solutions such as Equations (39)–(41) and (57)–(59) for
the DLW system Equation (1). We have shown that these analytical solutions are verified in Equation (1).
Furthermore, we have already found the similar hyperbolic function solutions such as Equations (38),
(42), (47), (48), and (58) with analytical solutions obtained by Wazwaz [16]. Moreover, complex function
solutions such as Equations (39)–(41), (57), and (59) obtained in this paper by MEFM and IBSEFM
are new analytical solutions when compared with analytical solutions obtained by Wazwaz [16].
These results are very helpful for coastal and civil engineers to apply the nonlinear water model to
coastal and harbor design [16]. Figures 1–15 have been plotted by using Wolfram Mathematica 9
under the suitable values of parameters. It can be predicted that they are very useful for applications
in engineering and science, especially, coastal and ocean engineering. To the best of our knowledge,
applications of MEFM and IBSEFM to the DLW system (1) have not previously been submitted to
literature. We think that these newly modified methods can also be applied to other models that result
from engineering, science, coastal and ocean engineering.
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Figure 1. The 3D and 2D surfaces of Equation (38) by considering the values A0 = 2, B0 = 3, k = 5,
λ = 0.2, ω = 6, ε = 4, y = 0.2, ´50 < x < 50, ´50 < t < 50, and t = 0.2, for 2D surfaces.
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Figure 3. The 2D surfaces of Equation (39) by considering the values A1 = 2, A2 = 3, c = 5, λ = 0.2,
ω = 0.1, ε = ´3, y = t = 0.2, ´50 < x < 50.
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Figure 5. The 2D surfaces of Equation (40) by considering the values A1 “ 2, A2 “ 3, c “ 5,
λ = 0.2, w “ 0.12, ε “ ´3, y “ t “ 0.2,´50 ă x ă 50.
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Figure 7. The 2D surfaces of Equation (41) by considering the values A1 “ 2, A2 “ 3, c “ 5,
λ = 0.2, w “ 0.12, ε “ ´3, y “ t “ 0.2,´50 ă x ă 50.
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When considering Equation (45) along with Equation (8) in Equation (31) for  , ,u x y t and in 

Equation (23) for  , ,v x y t , another new hyperbolic function solution to the DLW system(1) can be 
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Figure 9. The 3D and 2D surfaces of Equation (47) by considering the values A3 “ ´2, B2 “ 3, λ “ 2,
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4. Conclusions 

The MEFM and IBSEFM have been applied to the (2 + 1)-dimensional dispersive long 

water–wave system Equation (1). Then, these methods which are newly submitted to literature in 

this paper have given new complex and exponential functional solutions such as Equations (39)–(41) 

and (57)–(59) for the DLW system Equation (1). We have shown that these analytical solutions are 

verified in Equation (1). Furthermore, we have already found the similar hyperbolic function 

solutions such as Equations (38), (42), (47), (48), and (58) with analytical solutions obtained by 

Wazwaz [16]. Moreover, complex function solutions such as Equations (39)–(41), (57), and (59) 

obtained in this paper by MEFM and IBSEFM are new analytical solutions when compared with 

analytical solutions obtained by Wazwaz [16]. These results are very helpful for coastal and civil 

engineers to apply the nonlinear water model to coastal and harbor design [16]. Figures (1-15) have 

been plotted by using Wolfram Mathematica 9 under the suitable values of parameters. It can be 

predicted that they are very useful for applications in engineering and science, especially, coastal and 

ocean engineering. To the best of our knowledge, applications of MEFM and IBSEFM to the DLW system 

(1) have not previously been submitted to literature. We think that these newly modified methods can 

also be applied to other models that result from engineering, science, coastal and ocean engineering. 
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