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Abstract:

 This paper proposes a new hybrid block method of order five for solving second-order ordinary differential equations directly. The method is developed using interpolation and collocation techniques. The use of the power series approximate solution as an interpolation polynomial and its second derivative as a collocation equation is considered in deriving the method. Properties of the method such as zero stability, order, consistency, convergence and region of absolute stability are investigated. The new method is then applied to solve the system of second-order ordinary differential equations and the accuracy is better when compared with the existing methods in terms of error.
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1. Introduction


Ordinary differential equations (ODEs) are commonly used for mathematical modeling in many diverse fields such as engineering, operation research, industrial mathematics, behavioral sciences, artificial intelligence, management and sociology. This mathematical modeling is the art of translating problems from an application area into tractable mathematical formulations whose theoretical and numerical analysis provide insight, answers and guidance useful for the originating application [1]. This type of problem can be formulated either in terms of first-order or higher-order ODEs.



In this article, the system of second-order ODEs of the following form is considered.


y″1=f1(x,y1,y′1),  y1(x0)=a0,y′1(x0)=b0y″2=f2(x,y2,y′2), y2(x0)=a1,y′2(x0)=b1⋮y″m=fm(x,ym,y′m),   ym(x0)=an,y′m(x0)=bn



(1)







The method of solving higher-order ODEs by reducing them to a system of first-order approach involves more functions to evaluate them and then leads to a computational burden as mentioned in [2,3,4]. The multistep methods for solving higher-order ODEs directly have been developed by many scholars such as [5,6,7,8,9]. However, these researchers only applied their methods to solve single initial value problems of ODEs.



The aim of this paper is to develop a new numerical method for solving single second-order ODEs and systems of second-order ODEs directly.




2. Derivation of the Method


In this section, a one-step hybrid block method with three off-step points, [image: there is no content] and [image: there is no content], for solving Equation (1) is derived. Let the power series of the form


yj(x)=∑i=0v+m−1ai(x−xnh)i, j=1,…,m.



(2)




be the approximate solution to Equation (1) for [image: there is no content] where [image: there is no content][image: there is no content] are the real coefficients to be determined, [image: there is no content] is the number of collocation points, [image: there is no content] is the number of interpolation points and [image: there is no content] is a constant step size of the partition of interval [image: there is no content] which is given by [image: there is no content].



Differentiating Equation (2) twice gives:


  y″j(x)=fj(x,yj,y′j) =∑i=2v+m−1i(i−1)aih2(x−xnh)i−2, j=1,…,m.



(3)







Interpolating Equation (2) at [image: there is no content], [image: there is no content] and collocating Equation (3) at all points in the selected interval, i.e., [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], gives the following equations which can be written in matrix form:


(12542581251662532312564156251359252712581625243312572915625002h20000002h265h21225h2425h26125h2002h2125h24825h23225h296125h2002h2185h210825h210825h2486125h2002h26h212h220h230h2)(a0a1a2a3a4a5a6)=(yjn+25yjn+35fjnfjn+15fjn+25fjn+35fjn+1), j=1,…,m.



(4)







Employing the Gaussian elimination method on Equation (4) gives the coefficient ai 's, for [image: there is no content]. These values are then substituted into Equation (2) to give the implicit continuous hybrid method of the form:


yj(x)=∑i=25,35αji(x)  yjn+i+∑i=15,25,35βji(x)  fjn+i+∑i=01βji(x)  fjn+i, j=1,…,m..



(5)







Differentiating Equation (5) once yields:


y′j(x)=∑i=25,35ddxαji(x)  yjn+i+∑i=15,25,35ddxβji(x)  fjn+i+∑i=01ddxβji(x)  fjn+i,j=1,…,m.



(6)




where


αjn+35=(5(x−xn)h−2)










αjn+25=(3−5(x−xn)h)










βj0=(x−xn)22−61(x−xn)336h+205(x−xn)472h2−55(x−xn)524h3+25(x−xn)636h4−301h(x−xn)4500+11h23750










βj15=25(x−xn)38h−775(x−xn)496h2+125(x−xn)516h3−125(x−xn)648h4−25h(x−xn)96+83h22000










βj25=575(x−xn)472h2−25(x−xn)312h−75(x−xn)58h3+125(x−xn)636h4−43h(x−xn)300+17h2250










βj35=25(x−xn)336h−425(x−xn)4144h2+25(x−xn)56h3−125(x−xn)672h4−109h(x−xn)3600+23h23000










βj1=55(x−xn)4288h2−(x−xn)324h−5(x−xn)516h3+25(x−xn)6144h4+11h(x−xn)12000−h210000











Equation (5) is evaluated at non-interpolating points, i.e., xn, [image: there is no content] and xn+1, while its first derivative is evaluated at all points, and this yields the following equation in matrix form:


Aj  YjL=Bj  Rj1+Cj  Rj2+Dj  Rj3 j=1,…,m



(7)




where


Aj=(0−32000001−210000002−31000005h−5h0000005h−5h0100005h−5h0010005h−5h0001005h−5h00001), YjL=(yn+15yn+25yn+35yn+1y′n+15y′n+25y′n+35y′n+1), Bj=(−1000000−100000000), R1=(ynyn′)










C=(11h23750−h27500−21h22500−301h45007h1800−h50019h9000−53h1000), Rj2=(fjn) Dj=(83h2200017h225023h23000−h21000023h2600049h2150011h23000−h23000083h22000−113h21500151h21000337h230000−25h96−43h300−109h360011h12000−69h800−371h1800−41h3600−h720031h2400−77h900−31120017h36000−31h240031h60043h720−7h1200025h96−883h1800797h12004283h36000), Rj3=(fjn+15fjn+25fjn+35fjn+1)











Multiplying Equation (7) by Aj−1 gives the hybrid block method as shown below.


I  YjL=B¯j  Rj1+C¯j  Rj2+D¯j  Rj3



(8)






I=(1000000001000000001000000001000000001000000001000000001000000001), B¯j=(1h512h513h51h01010101), C¯j=(58h25625134h2250093h22500h218637h900073h112569h1000h72), D¯j=(173h212000−h215037h218000−7h26000047h2750−4h2375h2225−h23750459h240009h250021h22000−9h22000025h962025h2144h296209h1200−113h180017h900−19h1800041h15013h225h225−h225099h40039h2009h100−3h200025h48−25h7225h3617h144)












3. Properties of the Method


3.1. Zero Stability


The one-step hybrid block method (8) is said to be zero-stable if and only if the first characteristic function Π(x) has roots such that [image: there is no content] and if [image: there is no content]; then the multiplicity of [image: there is no content] does not exceed two. The characteristic function of the new derived method is given as below:


[image: there is no content]








the solution of which is [image: there is no content]. Hence, our method is zero-stable.




3.2. Order of the Method


According to [9] the order of the new method in Equation (8) is obtained by using the Taylor series and it is found that the developed method has an order of [image: there is no content] with an error constant vector of:



	[1.732063 × 10−7, 4.104127 × 10−7, 6.582857 × 10−7, −1.587302 × 10−6, 1.537778 × 10−6, 8.533333 × 10−7,



	1.680000 × 10−6, −1.666667 × 10−5]T









3.3. Consistency


The hybrid block method is said to be consistent if it has an order more than or equal to one. Therefore, our method is consistent.




3.4. Convergence


Zero stability and consistency are sufficient conditions for a linear multistep method to be convergent [10]. Since the new hybrid block method is zero-stable and consistent, it can be concluded that the method is convergent.




3.5. Region of Absolute Stability


In this section, the locus boundary method is adopted to determine the region of absolute stability. The linear multistep numerical method is said to be absolutely stable if for all given h, the roots of the characteristic function [image: there is no content] satisfies [image: there is no content]. The test equation [image: there is no content] is substituted in Equation (8) where [image: there is no content] and [image: there is no content]. Substituting [image: there is no content] and equating the imaginary part yields:


[image: there is no content]











This gives the stability interval of (0, 1222826).





4. Implementation of the Method


The initial starting value at each block is obtained by using the Taylor method. Then, the calculations are corrected using Equation (8). For the next block, the same techniques are repeated to compute the approximation values of yjn+15, yjn+25, yjn+35, yjn+1, j = 1,…, m simultaneously until the end of the integrated interval. During the calculations of the iteration, the final values of yjn+1 are taken as the initial values for the next iteration.




5. Numerical Experiments


In this section, the performance of the developed one-step hybrid block method is examined using the following three systems of second-order initial value problems. Table 1 and Table 2, Table 3 and Table 4, and Table 5 and Table 6 show the comparison of the numerical results of the new method with exact solution for solving problems 1–3 respectively. While, in Table 7, the results of the developed method are more accurate than that of [11] which was executed by six-step block method for solving Problem 4.

	Problem 1: 

	
[image: there is no content]



[image: there is no content]



Exact solution: y1 = cos x, y2 = πx







	Problem 2: 

	
[image: there is no content]



[image: there is no content]



Exact solution: y1 = cos x, y2 = ex cos x







	Problem 3: 

	
[image: there is no content]



[image: there is no content]



Exact solution: y1 = cos x, y2 = sin x







	Problem 4: 

	
[image: there is no content].



Exact solution [image: there is no content]








Table 1. Exact solution and computed solution of the new method for solving y1 in Problem 1.


	x
	Exact Solution of y1
	Computed Solution of y1
	Error in y1





	0.2
	[image: there is no content]
	[image: there is no content]
	3.333371 × 10−8



	0.4
	[image: there is no content]
	[image: there is no content]
	7.276522 × 10−7



	0.6
	[image: there is no content]
	[image: there is no content]
	3.095178 × 10−6



	0.8
	[image: there is no content]
	[image: there is no content]
	8.011117 × 10−6



	1.0
	[image: there is no content]
	[image: there is no content]
	1.608530 × 10−5








Table 2. Exact solution and computed solution of the new method for solving y2 in Problem 1.


	x
	Exact solution of y2
	Computed solution of y2
	Error in y2





	0.2
	0.62831853071795862
	0.62831853071222155
	5.737077 × 10−12



	0.4
	1.25663706143591720
	1.25663706109624340
	3.396738 × 10−10



	0.6
	1.88495559215387590
	1.88495558867424440
	3.479631 × 10−9



	0.8
	2.51327412287183450
	2.51327410626325070
	1.660858 × 10−8



	1.0
	3.14159265358979270
	3.14159260122723750
	5.236256 × 10−8








Table 3. Exact solution and computed solution of the new method for solving y1 in Problem 2.


	x
	Exact Solution of y1
	Computed Solution of y1
	Error in y1





	0.2
	0.980066577841241630
	0.980066574492776010
	3.348466 × 10−9



	0.4
	0.921060994002884990
	0.921060961237438300
	3.276545 × 10−8



	0.6
	0.825335614909678110
	0.825335481688297850
	1.332214 × 10−7



	0.8
	[image: there is no content]
	0.696706354719187630
	3.546280 × 10−7



	1.0
	0.540302305868139210
	0.540301570350463110
	7.355177 × 10−7








Table 4. Exact solution and computed solution of the new method for solving y2 in Problem 2.


	x
	Exact Solution of y2
	Computed Solution of y2
	Error in y2





	0.2
	1.197056021355891400
	1.197056651769760100
	6.304139 × 10−7



	0.4
	1.374061538887522100
	1.374064060556476500
	2.521669 × 10−6



	0.6
	1.503859540558786200
	1.503864970151431300
	5.429593 × 10−6



	0.8
	1.550549296807422400
	1.550558149588110000
	8.852781 × 10−8



	1.0
	1.468693939915884900
	1.468705886868917300
	1.194695 × 10−8








Table 5. Exact solution and computed solution of the new method for solving y1 in Problem 3.


	x
	Exact Solution of y1
	Computed Solution of y1
	Error in y1





	0.2
	0.980066577841241630
	0.980066577799155510
	4.208611e−11



	0.4
	[image: there is no content]
	0.921060993708316070
	2.945689e−10



	0.6
	0.825335614909678110
	0.825335614150025320
	7.596528e−10



	0.8
	0.696706709347165050
	0.696706708168561060
	1.178604e−9



	1.0
	0.540302305868139210
	0.540302304687844350
	1.180295e−9








Table 6. Exact solution and computed solution of the new method for solving y2 in Problem 3.


	x
	Exact Solution of y2
	Computed Solution of y2
	Error in y2





	0.2
	0.198669330795061240
	0.198669331113754400
	3.186932 × 10−10



	0.4
	0.389418342308650690
	0.389418343391428780
	1.082778 × 10−9



	0.6
	0.564642473395035590
	0.564642475168185330
	1.773150 × 10−9



	0.8
	0.717356090899523120
	0.717356092762203360
	1.862680 × 10−9



	1.0
	0.841470984807896840
	0.841470985889528840
	1.081632 × 10−9








Table 7. Comparison of the new method with [11] for solving Problem 4.


	x
	Exact Solution
	Computed Solution
	Error in New Method P = 5
	Error in [11] P = 7





	0.1
	1.0500417292784914
	1.0500417292785045
	1.310063 × 10−16
	1.445510 × 10−14



	0.2
	1.1003353477310756
	1.1003353477311153
	3.974598 × 10−14
	3.779332 × 10−13



	0.3
	1.1511404359364668
	1.1511404359364565
	1.021405 × 10−14
	3.428134 × 10−11



	0.4
	1.2027325540540821
	1.2027325540537517
	3.304024 × 10−13
	6.987109 × 10−8



	1.0
	1.2554128118829952
	1.2554128118817025
	1.292744 × 10−12
	2.017066 × 10−7









The numerical results confirm that the proposed method produces better accuracy if compared with the existing methods. This is also clear in the graph below (Figure 1).


Figure 1. Comparison between errors in the new method with error in [11] for solving Problem 4.



[image: Mca 21 00012 g001 1024]







6. Conclusions


In this article, a one-step block method with three off-step points is derived via the interpolation collocation approach. The developed method is consistent, zero-stable, convergent, with a region of absolute stability and order five. The numerical results generated when the new developed method was applied to three systems of second-order initial value problems above have shown the high accuracy of the new method.
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