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Abstract: This manuscript focuses attention on new exact solutions of the system of equations for the
ion sound wave under the action of the ponderomotive force due to high-frequency field and for the
Langmuir wave. The extended trial equation method (ETEM), which is one of the analytical methods,
has been handled for finding exact solutions of the system of equations for the ion sound wave and
the Langmuir wave. By using this method, exact solutions including the rational function solution,
traveling wave solution, soliton solution, Jacobi elliptic function solution, hyperbolic function solution
and periodic wave solution of this system of equations have been obtained. In addition, by using
Mathematica Release 9, some graphical simulations were done to see the behavior of these solutions.

Keywords: the system of equations for the ion sound wave and the Langmuir wave; extended trial
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1. Introduction

The survey of new exact solutions for the ion sound wave and the Langmuir wave has a highly
important position among the scientists. Many authors have worked on the Langmuir solitons.
Degtyarev et al. have presented some properties of Langmuir solitons [1]. Then, they have examined
the Langmuir wave energy dissipation [2]. Some authors have obtained the numerical simulations of
Langmuir collapse [3–6]. Benilov has demonstrated the stability of solitons by using the Zakharov
equation which identifies the interaction between Langmuir and ion-sound waves [7]. Zakharov et al.
have exhibited the modeling of Langmuir turbulence [8]. Dyachenko et al. have calculated computer
simulations of Langmuir collapse [9]. Rubenchik et al. have studied strong Langmuir turbulence in
laser plasma [10]. Musher et al. have submitted weak Langmuir turbulence [11]. In addition, some
authors have focused on Langmuir waves [12–14]. Dodin et al. have tackled Langmuir wave evolution
in nonstationary plasma [15]. Zavlavsky et al. have considered spatial localization of Langmuir
waves [16]. In addition, Langmuir wave spectral energy densities have been derived from the electric
field and compared to the weak turbulence results by Ratcliffe et al. [17].

We consider the system of equations for the ion sound wave under the action of the ponderomotive
force due to high-frequency field and for the Langmuir wave [18]:

i
BE
Bt
`

1
2
B2E
Bx2 ´ nE “ 0,

B2n
Bt2 ´

B2n
Bx2 ´ 2

B2 |E|2

Bx2 “ 0,
(1)

where Ee´iwpt is the normalized electric field of the Langmuir oscillation and n is the normalized
density perturbation. The spatial variable x and the time variable t are also normalized
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appropriately [18]. The system of Equation (1) for the ion sound and Langmuir waves has been
submitted by Zakharov [19]. Recently, this system has been investigated by some authors [20–26].

In this study, the basic interest is to constitute new exact solutions of the system of equations
for the ion sound and Langmuir waves via extended trial equation method (ETEM). In Section 2,
we mention basic facts of ETEM [27–32]. In Section 3, we get new exact solutions of the system of
equations for the ion sound and Langmuir waves via ETEM.

2. Basic Facts of the ETEM

Step 1. For a common nonlinear partial differential equation (NLPDE),

P pu, ut, ux, uxx, . . .q “ 0 (2)

perform the wave transformation

u px1, x2, . . . , xN , tq “ u pηq , η “ λ

¨

˝

N
ÿ

j“1

xj ´ ct

˛

‚, (3)

where λ ‰ 0 and c ‰ 0. Replacing Equation (3) with Equation (2) reduces a nonlinear ordinary
differential equation (NLODE),

N
`

u, u1, u2 , . . .
˘

“ 0. (4)

Step 2. Fulfill transformation and trial equation as the following:

u “
δ
ÿ

i“0

τiΓi, (5)

where
`

Γ1
˘2
“ Λ pΓq “

φ pΓq
ψ pΓq

“
ξθΓθ ` . . .` ξ1Γ` ξ0

ζPΓP ` . . .` ζ1Γ` ζ0
. (6)

Taking into consideration Equations (5) and (6), we can reach

`

u1
˘2
“

φ pΓq
ψ pΓq

˜

δ
ÿ

i“0

iτiΓi´1

¸2

, (7)

u2 “
φ1 pΓqψ pΓq ´ φ pΓqψ1 pΓq

2ψ2 pΓq

˜

δ
ÿ

i“0

iτiΓi´1

¸

`
φ pΓq
ψ pΓq

˜

δ
ÿ

i“0

i pi´ 1q τiΓi´2

¸

, (8)

where φ pΓq and ψ pΓq are polynomials. Putting these terms into Equation (4) yields an equation of
polynomial Ω pΓq of Γ:

Ω pΓq “ σsΓs ` . . .` σ1Γ` σ0 “ 0. (9)

With regard to the balance principle, we can constitute a formula of θ, P and δ. We can gain some
values of θ, P and δ.

Step 3. Letting the coefficients of Ω pΓq all be zero will construct an algebraic equations system:

σi “ 0, i “ 0, . . . s. (10)

Solving this equation system (10), we will find the values of ξ0, . . . , ξθ ; ζ0, . . . , ζP and τ0, . . . , τδ.
Step 4. Reduce Equation (6) to basic integral form,

˘ pη ´ η0q “

ż

dΓ
a

Λ pΓq
“

ż

d

ψ pΓq
φ pΓq

dΓ. (11)
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Performing a complete discrimination system for polynomials to distinguish the roots of φ pΓq ,
we solve the infinite integral Equation (11) and classify the exact solutions of Equation (2) via
Mathematica [33].

3. ETEM for the System of Equations for the Ion Sound and Langmuir Waves

In this section, we seek the exact solutions of the system of equations for the ion sound and
Langmuir waves by using ETEM.

In an effort to find traveling wave solutions of the Equation (1), we get the transformation by use
of the wave variables

E px, tq “ eiθu pξq , n px, tq “ v pξq , θ “ kx`mt, ξ “ px` rt, (12)

where k, m, p and r are arbitrary constants.
Substituting Equations (13)–(15) into Equation (1),

iEt “ ´meiθu` ireiθu1, (13)

Exx “ ´k2eiθu` 2ipkeiθu1 ` p2eiθu2 , (14)

ntt “ r2v2 , nxx “ p2v2 ,
´

|E|2
¯

xx
“ p2

´

u2
¯

2

. (15)

We obtain the following system:

i pr` pkq u1 pξq “ 0, (16)

p2u2 ´

´

2m` k2
¯

u´ 2uv “ 0, (17)
´

r2 ´ p2
¯

v2 ´ 2p2
´

u2
¯

2

“ 0. (18)

By setting the integration constant to zero, we integrate function v with respect to ξ, we find

v pξq “
2p2

r2 ´ p2 u2 pξq . (19)

Putting Equation (19) into Equation (17) and by using Equation (16), we gain

p2
´

k2 ´ 1
¯

u2 ´

´

k2 ´ 1
¯´

2m` k2
¯

u´ 4u3 “ 0, (20)

where the prime remarks the derivative with respect to ξ.
Substituting Equations (5) and (8) into Equation (20) and using the balance principle, the formula

is found as
θ “ 2δ` P `2. (21)

In order to gain exact solutions of Equation (1), if we take P“ 0, δ “ 1 and θ “ 4 in Equation (21), then

`

v1
˘2
“

τ2
1
`

ξ0 ` Γξ1 ` Γ2ξ2 ` Γ3ξ3 ` Γ4ξ4
˘

ζ0
,v2 “

τ1
`

ξ1 ` 2Γξ2 ` 3Γ2ξ3 ` 4Γ3ξ4
˘

2ζ0
, (22)

where ξ4 ‰ 0, ζ0 ‰ 0. Solving the algebraic equation system (10) provides

ξ0 “ ξ0, ξ2 “ ξ2, ξ3 “ ξ3, ξ4 “ ξ4, ξ1 “ ´
ξ3

3 ´ 4ξ2ξ3ξ4

8ξ2
4

, ζ0 “
p2 `k2 ´ 1

˘

ξ2
3

32ξ4τ2
0

,

τ0 “ τ0, τ1 “
4ξ4τ0

ξ3
, m “ ´

k2

2
`

2
`

´3ξ2
3 ` 8ξ2ξ4

˘

τ2
0

`

k2 ´ 1
˘

ξ2
3

.
(23)
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Setting these results into Equations (6) and (11), we have

˘ pη ´ η0q “ A
ż

dΓ
c

ξ0

ξ4
`

ξ1

ξ4
Γ`

ξ2

ξ4
Γ2 `

ξ3

ξ4
Γ3 ` Γ4

, (24)

where A “

d

p2 `k2 ´ 1
˘

ξ2
3

32ξ4τ2
0

.

Integrating Equation (24), we find the solutions of Equation (1) as the following:

˘ pη ´ η0q “ ´
A

Γ´ α1
, (25)

˘ pη ´ η0q “
2A

α1 ´ α2

d

Γ´ α2

Γ´ α1
, α2 ą α1, (26)

˘ pη ´ η0q “
A

α1 ´ α2
ln
ˇ

ˇ

ˇ

ˇ

Γ´ α1

Γ´ α2

ˇ

ˇ

ˇ

ˇ

, α1 ą α2, (27)

˘pη ´ η0q “
2A

a

pα1 ´ α2q pα1 ´ α3q
ln

ˇ

ˇ

ˇ

ˇ

ˇ

a

pΓ´ α2q pα1 ´ α3q ´
a

pΓ´ α3q pα1 ´ α2q
a

pΓ´ α2q pα1 ´ α3q `
a

pΓ´ α3q pα1 ´ α2q

ˇ

ˇ

ˇ

ˇ

ˇ

, α1 ą α2 ą α3, (28)

˘ pη ´ η0q “
2A

a

pα1 ´ α3q pα2 ´ α4q
F pϕ, lq , α1 ą α2 ą α3 ą α4, (29)

where

F pϕ, lq “

ϕ
ż

0

dψ
b

1´ l2sin2ψ
, ϕ “ arcsin

d

pΓ´ α1q pα2 ´ α4q

pΓ´ α2q pα1 ´ α4q
, l2 “

pα2 ´ α3q pα1 ´ α4q

pα1 ´ α3q pα2 ´ α4q
. (30)

In addition, α1, α2, α3 and α4 are the roots of the polynomial equation

Γ4 `
ξ3

ξ4
Γ3 `

ξ2

ξ4
Γ2 `

ξ1

ξ4
Γ`

ξ0

ξ4
“ 0. (31)

Substituting the solutions Equations (25)–(29) into Equation (5) and by using Equation (12), the
solutions of Equation (1) are obtained rational function solutions,

E1 px, tq “ eipkx`mtq
ˆ

˘
A1

px` rt

˙

,

n1 px, tq “
ˆ

2p2

r2 ´ p2

˙ˆ

˘
A1

px` rt

˙2
,

(32)

E2 px, tq “ eipkx`mtq

˜

4A2 pα2 ´ α1q τ1

4A2 ´ rpα1 ´ α2q ppx` rtqs2

¸

,

n2 px, tq “
ˆ

2p2

r2 ´ p2

˙

˜

4A2 pα2 ´ α1q τ1

4A2 ´ rpα1 ´ α2q ppx` rtqs2

¸2

,

(33)

traveling wave solutions

E3 px, tq “ eipkx`mtq
ˆ

pα2 ´ α1q τ1

2

"

1˘ coth
„

pα1 ´ α2q

A
ppx` rtq

*˙

,

n3 px, tq “
ˆ

2p2

r2 ´ p2

˙ˆ

pα2 ´ α1q τ1

2

"

1˘ coth
„

pα1 ´ α2q

A
ppx` rtq

*˙2
,

(34)
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soliton solutions
E4 px, tq “ eipkx`mtq A2

pD` cosh rB ppx` rtqsq
,

n4 px, tq “
ˆ

2p2

r2 ´ p2

˙ˆ

A2

D` cosh rB ppx` rtqs

˙2
,

(35)

and Jacobi elliptic function solutions

E5 px, tq “ eipkx`mtq A3
`

M` Nsn2 pϕ, lq
˘ ,

n5 px, tq “
ˆ

2p2

r2 ´ p2

˙ˆ

A3

M` Nsn2 pϕ, lq

˙2
,

(36)

where A1 “ τ1 A, A2 “

ˆ

2τ1 pα1 ´ α2q pα1 ´ α3q

α3 ´ α2

˙

, B “

a

pα1 ´ α2q pα1 ´ α3q

A
, D “

2α1 ´ α2 ´ α3

α3 ´ α2
,

A3 “ p2τ1 pα1 ´ α3q pα4 ´ α2qq , M “ α4 ´ α2, N “ α1 ´ α4, l2 “
pα2 ´ α3q pα1 ´ α4q

pα1 ´ α3q pα2 ´ α4q
,

ϕ “
˘
a

pα1 ´ α3q pα2 ´ α4q

2A
ppx` rtq . Here, A2 is the amplitude of the soliton, and B is the inverse

width of the solitons. Thus, the solitons exist for τ1 ă 0.

Remark 1. When the modulus l Ñ 1, then by using Equation (12), the Solution (36) can be converted into the
hyperbolic function solutions

E6 px, tq “ eipkx`mtq A3
˜

M` Ntanh2

«

a

pα1 ´ α3q pα2 ´ α4q

2A
ppx` rtq

ff¸ ,

n6 px, tq “
ˆ

2p2

r2 ´ p2

˙

¨

˚

˚

˚

˚

˝

A3

M` Ntanh2

«

a

pα1 ´ α3q pα2 ´ α4q

2A
ppx` rtq

ff

˛

‹

‹

‹

‹

‚

2

,

(37)

where α3 “ α4.

Remark 2. When the modulus l Ñ 0, then by using Equation (12), the Solution (36) can be reduced to the
periodic wave solutions

E7 px, tq “ eipkx`mtq A3
˜

M` N sin2

«

a

pα1 ´ α3q pα2 ´ α4q

2A
ppx` rtq

ff¸ ,

n7 px, tq “
ˆ

2p2

r2 ´ p2

˙

¨

˚

˚

˚

˚

˝

A3

M` N sin2

«

a

pα1 ´ α3q pα2 ´ α4q

2A
ppx` rtq

ff

˛

‹

‹

‹

‹

‚

2

,

(38)

where α2 “ α3.

Remark 3. The exact solutions of Equation (1) were found via ETEM, and have been calculated by using
Mathematica 9. As far as we know, the solutions of Equation (1) obtained in this study are new and are not
observable in former literature.
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4. Conclusions

In this paper, we obtain exact solutions of the system of equations for the ion sound and Langmuir
waves by using ETEM. Then, for suitable parametric choices, we plot two and three dimensional
graphics of some exact solutions of this system of equations by using Mathematica Release 9. This
method supplies us to make complicated and tedious algebraic calculations. That is to say, the
availability of computer programs such as Mathematica accelerates the tedious algebraic calculations.

The above results show that ETEM has been efficient for the analytical solutions of the system of
equations for the ion sound and Langmuir waves. In addition, this method is a powerful mathematical
tool in the way of finding new exact solutions. Thus, we can point out that ETEM has a key role in
obtaining analytical solutions of NLPDEs. The graphical demonstrations such as Figures 1–6 clearly
indicate effectiveness of the recommended method. We suggest that this method can also be applied
to other NLPDEs.
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Figure 1. Graph of imaginary values of ( )3 ,E x t in Equation (34) is indicated at

0 1 3 4 11, 2,m kτ τ ξ ξ α= = = = = = = 2 3, 4,r pα = = = 35 0, 1 1tx− < < − < <  and the second graph 
shows imaginary values of ( )3 ,E x t in Equation (34) for 1.35 0, tx =− < <  
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Figure 1. Graph of imaginary values of E3 px, tq in Equation (34) is indicated at m “ τ0 “ 1,
τ1 “ k “ ξ3 “ ξ4 “ α1 “ 2, α2 “ r “ 3, p “ 4, ´35 ă x ă 0, ´1 ă t ă 1 and the second
graph shows imaginary values of E3 px, tq in Equation (34) for ´35 ă x ă 0, t “ 1.Math. Comput. Appl. 2016, 21, 11 7 of 10 
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0 1 3 4 11, 2,m kτ τ ξ ξ α= = = = = = = 2 3, 4,r pα = = = 25 0, 1 1tx− < < − < <  and the second graph 
remarks on real values of ( )3 ,E x t in Equation (34) for 1.25 0, tx =− < <  
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Figure 4. Graph of imaginary values of ( )5 ,E x t in Equation (36) is indicated at 0 1 1 1, 1,pτ τ α= = = = −
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25 20 15 10 5

6

4

2

2

4

6

4 2 2 4

40

30

20

10

30 20 10 10 20 30

30

20

10

10

20

30

 

Figure 2. Graph of real values of E3 px, tq in Equation (34) is denoted at m “ τ0 “ 1,
τ1 “ k “ ξ3 “ ξ4 “ α1 “ 2, α2 “ r “ 3, p “ 4, ´25 ă x ă 0, ´1 ă t ă 1 and the
second graph remarks on real values of E3 px, tq in Equation (34) for ´25 ă x ă 0, t “ 1.
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Figure 3. Graph of n3 px, tq in Equation (34) is drawn at τ0 “ 1, τ1 “ k “ ξ3 “ ξ4 “ α1 “ 2,
α2 “ r “ 3, p “ 4, ´5 ă x ă 5, ´1 ă t ă 1 and the second graph shows n3 px, tq in Equation (34) for
´5 ă x ă 5, t “ 1.
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Figure 4. Graph of imaginary values of E5 px, tq in Equation (36) is indicated at τ0 “ τ1 “ α1 “ 1,
p “ ´ 1, k “ r “ ξ4 “ α2 “ 2, m “ α3 “ 3, ξ3 “ α4 “ 4, ´35 ă x ă 35, ´1 ă t ă 1 and the second
graph illustrates imaginary values of E5 px, tq in Equation (36) for ´35 ă x ă 35, t “ 1.Math. Comput. Appl. 2016, 21, 11 8 of 10 
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Figure 5. Graph of real values of E5 px, tq in Equation (36) is denoted at τ0 “ τ1 “ α1 “ 1, p “ ´ 1,
k “ r “ ξ4 “ α2 “ 2, m “ α3 “ 3, ξ3 “ α4 “ 4, ´25 ă x ă 25, ´1 ă t ă 1, and the second graph
remarks on real values of E5 px, tq in Equation (36) for ´25 ă x ă 25, t “ 1.
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Figure 6. Graph of n5 px, tq in Equation (36) is drawn at τ0 “ τ1 “ α1 “ 1, p “ ´1, k “ r “ ξ4 “ α2 “ 2,
α3 “ 3, ξ3 “ α4 “ 4, ´15 ă x ă 15, ´1 ă t ă 1, and the second graph illustrates n5 px, tq in
Equation (36) for ´15 ă x ă 15, t “ 1.
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