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Abstract: By means of a fixed point theorem of coincidence degree theory, sufficient conditions are
established for the existence of a positive almost periodic solution to a kind of delayed predator–prey
model with Hassell-Varley type functional response. The method used in this paper offers a possible
means to study the existence of positive almost periodic solutions to the models in biological
populations. Finally, an example as well as numerical simulations are given to illustrate the feasibility
and effectiveness of our results.
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1. Introduction

It is well-known that the theoretical study of predator–prey systems in mathematical ecology
has a long history starting with the pioneering work of Lotka and Volterra [1,2]. The principles of the
Lotka-Volterra model, conservation of mass and decomposition of the rates of change in birth and
death processes have remained valid until today, and many theoretical ecologists still adhere to them.
This general approach has been applied to many biological systems, in particular with functional
response. In population dynamics, a functional response of the predator to the prey density refers to
the change in the density of prey attached per unit of time per predator as the prey density changes.
During the last 10 years, there has been extensive investigation of the dynamics of predator–prey
models with the different functional responses in the literature, (see [3–13]] and references therein).

In 1969, Hassell and Varleys [14] introduced a general predator–prey system, in which the
functional response is dependent on the predator density in different ways. It is called a Hassell-Varley
type functional response, which takes the following form:

Ṅ1 = rN1

[
1− N1

K

]
− cN1 N2

mNθ
2+N1

,

Ṅ2 = N2

[
−d + f N1

mNθ
2+N1

]
,

(0 < θ < 1) (1)

where θ is called the Hassell-Varley constant. In the typical predator–prey interaction where predators
do not form groups, one can assume that θ = 1, producing the so-called ratio-dependent predator–prey
system. For terrestrial predators that form a fixed number of tight groups, it is often reasonable to
assume θ = 1/2. For aquatic predators that form a fixed number of tights groups, θ = 1/3 may be more
appropriate. A unified mechanistic approach was provided by Cosner [16] where the Hassell-Varley
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functional response was derived. Hsu [16] studied System (1) and presented a systematic global
qualitative analysis of it. In [17], Wang considered the following periodic predator–prey model with
Hassell-Varley type functional response and time-varying delay:

Ṅ1(t) = N1(t)
[

a(t)− b(t)N1(t− δ(t))− c(t)N2(t)
mNθ

2 (t)+N1(t)

]
,

Ṅ2(t) = N2(t)
[
−d(t) + r(t)N1(t)

mNθ
2 (t)+N1(t)

]
,

(0 < θ < 1) (2)

where a, b, c, d, r and δ are nonnegative periodic functions with period T and m is a nonnegative
constant. By using Mawhin’s continuation theorem of coincidence degree theory, they obtained
sufficient conditions for the existence of positive periodic solutions of System (2).

In real world phenomena, the environment varies due to various factors such as the seasonal
effects of weather, food supplies, mating habits and harvesting, etc. So, it is usual to assume
the periodicity of parameters in the systems. However, in applications, if the various constituent
components of the temporally nonuniform environment has incommensurable (nonintegral multiples,
see Example 1) periods, then one has to consider the environment to be almost periodic since there
is no a priori reason to expect the existence of periodic solutions. Hence, if we consider the effects of
environmental factors, almost periodicity is sometimes more realistic and more general than periodicity.
In recent years, the almost periodic solution of the continuous models in biological populations has
been studied extensively (see [18–25] and the references cited therein).

Example 1. Let us consider the following simple population model:

Ṅ(t) = N(t)
[
| sin(

√
2t)| − | sin(

√
3t)|N(t)

]
(3)

In Equation 3, | sin(
√

2t)| is
√

2π
2 -periodic function and | sin(

√
3t)| is

√
3π
3 -periodic function, which

imply that Equation (3) has incommensurable periods. Then, there is no a priori reason to expect the existence of
periodic solutions of Equation (3). Thus, it is important to study the existence of almost periodic solutions to
Equation (3).

Motivated by the above reason and considering that a delay may occur in the functional response
of System (2), in this paper, we consider the following almost periodic predator–prey model with
Hassell-Varley type functional response and time-varying delays:

Ṅ1(t) = N1(t)
[

a(t)− b(t)N1(t− δ(t))− c(t)N2(t−τ(t))
mNθ

2 (t−τ(t))+N1(t)

]
,

Ṅ2(t) = N2(t)
[
−d(t) + r(t)N1(t−σ(t))

mNθ
2 (t)+N1(t−σ(t))

]
,

(0 < θ < 1) (4)

where a, b, c, d, r, δ, τ and σ are nonnegative almost periodic functions and m is a nonnegative constant.
It is well known that Mawhin’s continuation theorem of coincidence degree theory is an important

method to investigate the existence of positive periodic solutions to some kinds of non-linear
ecosystems (see [11–13,26–34]). However, it is difficult to use it to investigate the existence of positive
almost periodic solutions of non-linear ecosystems. Therefore, to the best of the author’s knowledge,
so far, there have been scarcely any papers concerning the existence of positive almost periodic
solutions to System (4) by using Mawhin’s continuation theorem. Motivated by the above reason, the
main purpose of this paper is to establish some new sufficient conditions based on the existence of
positive almost periodic solutions to System (4) by using Mawhin’s continuous theorem of coincidence
degree theory.
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Let R, Z and N+ denote the sets of real numbers, integers and positive integers, respectively.
Related to a continuous bounded function f , we use the following notations:

f− = inf
s∈R

f (s), f+ = sup
s∈R

f (s), | f |∞ = sup
s∈R
| f (s)|.

The organization of this paper is as follows. In Section 2, we make some preparations. In
Section 3, by using Mawhin’s continuation theorem of coincidence degree theory, we establish some
new sufficient conditions for the existence of at least one positive almost periodic solution to System (4).
Two illustrative examples and numerical simulations are given in Section 4.

2. Preliminaries

Definition 1. ([35,36]) x ∈ C(R,R) is called almost periodic, if for any ε > 0, it is possible to find a real
number l = l(ε) > 0, for any interval with length l(ε), there exists a number τ in this interval such that
|x(t + τ)− x(t)| < ε, ∀t ∈ R. τ is called to the ε-almost period of x, T(x, ε) denotes the set of ε-almost periods
for x and l is called to the length of the inclusion interval for T(x, ε). The collection of such functions is denoted
by AP(R).

Lemma 1. ([35,36]) If x ∈ AP(R), then x is bounded and uniformly continuous on R.

Lemma 2. ([35,36]) If x ∈ AP(R), then
∫ t

0 x(s)ds ∈ AP(R) if and only if
∫ t

0 x(s)ds is bounded on R.

Lemma 3. ([23]) Assume that x ∈ AP(R) ∩ C1(R). For arbitrary interval I = [a, b] with b− a = ω > 0,
let ξ ∈ [a, b] and I1 =

{
s ∈ [ξ, b] : ẋ(s) ≥ 0

}
, then ones have

x(t) ≤ x(ξ) +
∫

I1

ẋ(s)ds, ∀t ∈ [ξ, b].

Lemma 4. ([23]) If x ∈ AP(R), then for arbitrary interval I = [a, b] with b − a = ω > 0, there exist
ξ ∈ [a, b], ξ ∈ (−∞, a] and ξ̄ ∈ [b,+∞) such that

x(ξ) = x(ξ̄) and x(ξ) ≤ x(s), ∀s ∈ [ξ, ξ̄].

Lemma 5. ([23]) If x ∈ AP(R), then for arbitrary interval [a, b] with I = b − a = ω > 0, there exist
η ∈ [a, b], η ∈ (−∞, a] and η̄ ∈ [b,+∞) such that

x(η) = x(η̄) and x(η) ≥ x(s), ∀s ∈ [η, η̄].

Lemma 6. ([23]) If x ∈ AP(R), then for ∀n ∈ N+, there exists αn ∈ R such that x(αn) ∈ [x∗ − 1
n , x∗],

where x∗ = sups∈R x(s).

For x ∈ AP(R), we denote by

x̄ = m(x) = lim
T→∞

1
T

∫ T

0
x(s)ds,

a(x, v) = lim
T→∞

1
T

∫ T

0
x(s)e−ivs ds,

Λ(x) =
{

v ∈ R : lim
T→∞

1
T

∫ T

0
x(s)e−ivsds 6= 0

}
the mean value and the set of Fourier exponents of x, respectively.
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Lemma 7. ([23]) Assume that x ∈ AP(R) and x̄ > 0, then for ∀t0 ∈ R and ε0 ∈ (0, x̄), there exists a positive
constant T0 = T0(ε0) independent of t0 such that

1
T

∫ t0+T

t0

x(s)ds ∈ [x̄− ε0, x̄ + ε0] , ∀T ≥ T0.

Let ε0 = x̄
2 in the above lemma, we obtain

Lemma 8. Assume that x ∈ AP(R) and x̄ > 0, then for ∀t0 ∈ R, there exists a positive constant T0

independent of t0 such that
1
T

∫ t0+T

t0

x(s)ds ∈
[

x̄
2

,
3x̄
2

]
, ∀T ≥ T0.

In the following we recall the famous Mawhin’s coincidence degree theorem.
Let X and Y be real Banach spaces, L : DomL ⊆ X→ Y be a linear mapping and N : X→ Y be

a continuous mapping. The mapping L is called a Fredholm mapping of index zero if the following
conditions hold:

• ImL is closed in Y;
• dimKerL = codimImL < +∞.

If L is a Fredholm mapping of index zero and there exist continuous projectors P : X → X
and Q : Y→ Y such that ImP = KerL, KerQ = ImL = Im(I − Q). It follows that L|DomL∩KerP :
(I − P)X→ ImL is invertible and its inverse is denoted by KP. If Ω is an open bounded subset of X,
the mapping N will be called L-compact on Ω̄ if the following conditions are satisfied:

• QN(Ω̄) is bounded;
• KP(I −Q)N : Ω̄→ X is compact.

Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ→ KerL.

Mawhin’s Continuous Theorem. ([37]) Let Ω ⊆ X be an open bounded set, L be a Fredholm mapping of
index zero and N be L-compact on Ω̄. If all the following conditions hold:

(a) Lx 6= λNx, ∀x ∈ ∂Ω ∩DomL, λ ∈ (0, 1);
(b) QNx 6= 0, ∀x ∈ ∂Ω ∩KerL;
(c) deg{JQN, Ω ∩KerL, 0} 6= 0, where J : ImQ→ KerL is an isomorphism.

Then, Lx = Nx has a solution to Ω̄ ∩DomL.

Under the invariant transformation (N1, N2)
T = (eu, ev)T , System (4) reduces to u̇(t) = a(t)− b(t)eu(t−δ(t)) − c(t)ev(t−τ(t))

meθv(t−τ(t))+eu(t)

v̇(t) = −d(t) + r(t)eu(t−σ(t))

meθv(t)+eu(t−σ(t))

(5)

Set X = Y = V1
⊕

V2, where

V1 =

{
z = (u, v)T ∈ AP(R,R2) : mod(u) ⊆ mod(Lu),

mod(v) ⊆ mod(Lv), ∀v ∈ Λ(u) ∪Λ(v), |v| ≥ θ0

}
,

V2 =
{

z = (u, v)T ≡ (k1, k2)
T , k1, k2 ∈ R

}
,
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where

Lu = Lu(t, ϕ) = a(t)− b(t)eϕ1(−δ(0)) − c(t)eϕ2(0−τ(0))

meθϕ2(−τ(0)) + eϕ1(0)
,

Lv = Lv(t, ϕ) = −d(t) +
r(t)eϕ1(−σ(0))

meθϕ2(0) + eϕ1(−σ(0))
,

ϕ = (ϕ1, ϕ2)
T ∈ C([−l, 0],R2), l = max{τ+, δ+, σ+}, θ0 is a given positive constant. Define the norm

‖z‖X = max
{

sup
s∈R
|u(s)|, sup

s∈R
|v(s)|

}
, ∀z = (u, v)T ∈ X = Y.

Similar to the proof given in [23], it follows that

Lemma 9. ([23]) X and Y are Banach spaces endowed with ‖ · ‖X.

Lemma 10. ([23]) Let L : X→ Y, Lz = L(u, v)T = (u̇, v̇)T , then L is a Fredholm mapping of index zero.

Lemma 11. ([23]) Define N : X→ Y, P : X→ X and Q : Y→ Y by

Nz = N

(
u
v

)
=

 a(t)− b(t)eu(t−δ(t)) − c(t)ev(t−τ(t))

meθv(t−τ(t))+eu(t)

−d(t) + r(t)eu(t−σ(t))

meθv(t)+eu(t−σ(t))

 ,

Pz = P

(
u
v

)
=

(
m(u)
m(v)

)
= Qz, ∀z =

(
u
v

)
∈ X = Y.

Then N is L-compact on Ω̄(Ω is an open and bounded subset of X).

3. Results

Let

ρ1 = ln
6ā
b̄

+
3āω

2
, $1 =

1
θ

ln
3r̄eρ1

md̄
+

3r̄ω

2
, µ(s) = a(s)− c(s)e(1−θ)$1

m
, ∀s ∈ R,

where ω is defined as that in Equation (8).

Theorem 1. Assume that

(H1) ā > 0, b̄ > 0, µ̄ > 0 and r̄ > d̄ > 0,

then System (4) has at least one positive almost periodic solution.

Proof . It is easy to see that if System (5) has one almost periodic solution (u, v)T , then
(N1, N2)

T = (eu, ev)T is a positive almost periodic solution to System (4). Therefore, to complete
the proof, it can be given that System (5) has one almost periodic solution.

In order to use the Mawhin’s continuous theorem, we set the Banach spaces X and Y as those in
Lemma 9 and L, N, P, Q the same as those defined in Lemmas 10 and 11, respectively. We must still
find an appropriate open and bounded subset Ω ⊆ X.

Corresponding to the operator equation Lz = λz, λ ∈ (0, 1), we have
u̇(t) = λ

[
a(t)− b(t)eu(t−δ(t)) − c(t)ev(t−τ(t))

meθv(t−τ(t))+eu(t)

]
v̇(t) = λ

[
−d(t) + r(t)eu(t−σ(t))

meθv(t)+eu(t−σ(t))

] (6)
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Suppose that z = (u, v)T ∈ DomL ⊆ X is a solution of System (6) for some λ ∈ (0, 1), where
DomL = {z = (u, v)T ∈ X : u, v ∈ C1(R), u̇, v̇ ∈ C(R)}. By Lemma 6, there exist two sequences
{αn : n ∈ N+} and {βn : n ∈ N+} such that

u(αn) ∈
[

u∗ − 1
n

, u∗
]

, v(βn) ∈
[

v∗ − 1
n

, v∗
]

, n ∈ N+ (7)

where u∗ = sups∈R u(s), v∗ = sups∈R v(s).
From (H1) and Lemma 8, for ∀t0 ∈ R, there exists a constant ω > 2δ+ independent of t0 such that

1
T

∫ t0+T

t0

a(s)ds ∈
[

ā
2

,
3ā
2

]
,

1
T

∫ t0+T

t0

b(s)ds ∈
[

b̄
2

,
3b̄
2

]
, ∀T ≥ ω

2
(8)

For ∀n0 ∈ N+, we consider [αn0 − ω, αn0 ] and [βn0 − ω, βn0 ], where ω is defined as that in
Equation (8). By Lemma 4, there exist ξ ∈ [αn0 − ω, αn0 ], ξ ∈ (−∞, αn0 − ω] and ξ̄ ∈ [αn0 ,+∞)

such that

u(ξ) = u(ξ̄) and u(ξ) ≤ u(s), ∀s ∈ [ξ, ξ̄] (9)

Integrating the first equation of System (6) from ξ to ξ̄ leads to

∫ ξ̄

ξ

[
a(s)− b(s)eu(s−δ(s)) − c(s)ev(s−τ(s))

meθv(s−τ(s)) + eu(s)

]
ds = 0,

which yields that

∫ ξ̄

ξ+δ+
b(s)eu(s−δ(s)) ds ≤

∫ ξ̄

ξ
b(s)eu(s−δ(s)) ds ≤

∫ ξ̄

ξ
a(s)ds (10)

By the integral mean value theorem, in Equations (8) and (9), there exists
s0 ∈ [ξ + δ+, ξ̄] (s0 − δ(s0) ∈ [ξ, ξ̄]) such that

1
ξ̄ − ξ

∫ ξ̄

ξ+δ+
b(s)eu(s−δ(s)) ds =

ξ̄ − ξ − δ+

ξ̄ − ξ

1
ξ̄ − ξ − δ+

∫ ξ̄

ξ+δ+
b(s)dseu(s0−δ(s0))

≥
ξ̄ − ξ − δ+

ξ̄ − ξ

b̄
2

eu(ξ)

≥
[

1− δ+

ω

]
b̄
2

eu(ξ)

≥ b̄
4

eu(ξ),

which implies from Equation (10) that

b̄
4

eu(ξ) ≤ 1
ξ̄ − ξ

∫ ξ̄

ξ
a(s)ds ≤ 3

2
ā,

which implies that

u(ξ) ≤ ln
6ā
b̄

(11)
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Let I = [ξ, αn0 ] and I1 = {s ∈ I : u̇(s) ≥ 0}. It follows from the first equation of System 6 that

∫
I1

u̇(s)ds =
∫

I1

λ

[
a(s)− b(s)eu(s−δ(s)) − c(s)ev(s−τ(s))

meθv(s−τ(s)) + eu(s)

]
ds

≤
∫

I1

a(s)ds ≤
∫ αn0

αn0−ω
a(s)ds

≤ 3āω

2
(12)

By Lemma 3, it follows from Equations (11) and (12) that

u(t) ≤ u(ξ) +
∫

I1

u̇(s)ds ≤ ln
6ā
b̄

+
3āω

2
:= ρ1, ∀t ∈ [ξ, αn0 ],

which implies that
u(αn0) ≤ ρ1.

In view of Equation (7), letting n0 → +∞ in the above inequality leads to

u∗ = lim
n0→+∞

u(αn0) ≤ ρ1 (13)

Similarly, in view of Lemma 4, there exist ζ ∈ [βn0 −ω, βn0 ], ζ ∈ (−∞, βn0 −ω] and ζ̄ ∈ [βn0 ,+∞)

such that

v(ζ) = v(ζ̄) and v(ζ) ≤ v(s), ∀s ∈ [ζ, ζ̄] (14)

Multiplying both sides of the second equation of System (6) by eθv(t) and integrating it from ζ to ζ̄

leads to ∫ ζ̄

ζ

[
− d(s)eθv(s) +

r(s)eu(s−σ(s))+θv(s)

meθv(s) + eu(s−σ(s))

]
ds = 0,

which yields from Equation (8) that

∫ ζ̄

ζ
d(s)eθv(s) ds =

∫ ζ̄

ζ

r(s)eu(s−σ(s))+θv(s)

meθv(s) + eu(s−σ(s))
ds ≤

∫ ζ̄

ζ

r(s)eρ1

m
ds ≤ 3r̄eρ1

2m
(ζ̄ − ζ) (15)

From Equations (8) and (14), we get from Equation (15) that

v(ζ) ≤ 1
θ

ln
3r̄eρ1

md̄
(16)

Let J = [ζ, βn0 ] and J1 = {s ∈ J : v̇(s) ≥ 0}. It follows from the second equation of System (6) that

∫
J1

v̇(s)ds =
∫

J1

λ

[
− d(s) +

r(s)eu(s−σ(s))

meθv(s) + eu(s−σ(s))

]
ds

≤
∫

J1

r(s)eu(s−σ(s))

meθv(s) + eu(s−σ(s))
ds ≤

∫ βn0

βn0−ω
r(s)ds

≤ 3r̄ω

2
(17)

By Lemma 3, it follows from Equations (16) and (17) that

v(t) ≤ v(ζ) +
∫

J1

v̇(s)ds ≤ 1
θ

ln
3r̄eρ1

md̄
+

3r̄ω

2
:= $1, ∀t ∈ [ζ, βn0 ],
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which implies that
v(βn0) ≤ $1.

In view of Equation (7), letting n0 → +∞ in the above inequality leads to

v∗ = lim
n0→+∞

v(βn0) ≤ $1 (18)

From (H1) and Lemma 8, for ∀t0 ∈ R, there exists a constant ω0 > ω independent of t0 such that

1
T

∫ t0+T

t0

µ(s)ds ∈
[

µ̄

2
,

3µ̄

2

]
, ∀T ≥ ω0 (19)

Let

l = max
{

ω0,
4b+eρ1 δ+

µ̄

}
.

On the other hand, for ∀n0 ∈ Z, by Lemma 5, there exist η ∈ [n0ω, n0ω + ω], η ∈ (−∞, n0ω] and
η̄ ∈ [n0ω + ω,+∞) such that

u(η) = u(η̄) and u(η) ≥ u(s), ∀s ∈ [η, η̄] (20)

Integrating the first equation of System (6) from η to η̄ leads to

∫ η̄

η

[
a(s)− b(s)eu(s−δ(s)) − c(s)ev(s−τ(s))

meθv(s−τ(s)) + eu(s)

]
ds = 0,

which yields from Equation (19) that

1
η̄ − η

∫ η̄

η
b(s)eu(s−δ(s)) ds =

1
η̄ − η

∫ η̄

η

[
a(s)− c(s)ev(s−τ(s))

meθv(s−τ(s)) + eu(s)

]
ds

≥ 1
η̄ − η

∫ η̄

η

[
a(s)− c(s)e(1−θ)$1

m

]
ds

=
1

η̄ − η

∫ η̄

η
µ(s)ds ≥ µ̄

2
(21)

By Equation (20), we have that

1
η̄ − η

∫ η̄

η
b(s)eu(s−δ(s)) ds ≤ b+

η̄ − η

∫ η̄

η
eu(s−δ(s)) ds

=
b+

η̄ − η

[ ∫ η̄

η+δ+
eu(s−δ(s)) ds +

∫ η+δ+

η
eu(s−δ(s)) ds

]
≤ b+

η̄ − η

[
eu(η)(η̄ − η − δ+) + eρ1 δ+

]
≤ b+eu(η) +

b+eρ1 δ+

l

≤ b+eu(η) +
µ̄

4
.

It follows from (21) that

u(η) ≥ ln
µ̄

4b+
(22)
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Further, we obtain from the first equation of System (6) that

∫ n0l+l

n0l
|u̇(s)|ds =

∫ n0l+l

n0l
λ

∣∣∣∣a(s)− b(s)eu(s−δ(s)) − c(s)ev(s−τ(s))

meθv(s−τ(s)) + eu(s)

∣∣∣∣ds

≤
[

a+ + b+eρ1 +
c(s)e(1−θ)$1

m

]
l (23)

It follows from Equations (22) and (23) that

u(t) ≥ u(η)−
∫ n0l+l

n0l
|u̇(s)|ds

≥ ln
µ̄

4b+
−
[

a+ + b+eρ1 +
c(s)e(1−θ)$1

m

]
l

:= ρ2, ∀t ∈ [n0l, n0l + l] (24)

Obviously, ρ2 is a constant independent of n0. So it follows from Equation (24) that

u∗ = inf
s∈R

u(s) = inf
n0∈Z

{
min

s∈[n0l,n0l+l]
u(s)

}
≥ inf

n0∈Z
{ρ2} = ρ2 (25)

In view of (H1), there must exist small enough ε0 > 0 such that r̄− ε0 > d̄ + ε0. By Lemma 7, for
∀t0 ∈ R, there must exist T0 = T0(ε0) > l such that

1
T

∫ t0+T

t0

r(s)ds ∈ [r̄− ε0, r̄ + ε0] ,
1
T

∫ t0+T

t0

d(s)ds ∈
[
d̄− ε0, d̄ + ε0

]
, ∀T ≥ T0.

From Lemma 5, there also exist ς ∈ [n0T0, n0T0 + T0], ς ∈ (−∞, n0T0] and ς̄ ∈ [n0T0 + T0,+∞)

such that

v(ς) = v(ς̄) and v(ς) ≥ v(s), ∀s ∈ [ς, ς̄] (26)

Integrating the second equation of System (6) from ς to ς̄ leads to

∫ ς̄

ς

[
− d(s) +

r(s)eu(s−σ(s))

meθv(s) + eu(s−σ(s))

]
ds = 0,

which yields from (26) that

d̄ + ε0 ≥
1

ς̄− ς

∫ ς̄

ς
d(s)ds

=
1

ς̄− ς

∫ ς̄

ς

r(s)eu(s−σ(s))

meθv(s) + eu(s−σ(s))
ds

≥ eρ2

meθv(ς) + eρ2

1
ς̄− ς

∫ ς̄

ς
r(s)ds

≥ eρ2(r̄− ε0)

2meθv(ς) + 2eρ2

which implies that

v(ς) ≥ 1
θ

ln
(r̄− d̄− 2ε0)eρ2

3m(d̄ + ε0)
(27)
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Further, we obtain from the second equation of System (6) that

∫ n0T0+T0

n0T0

|v̇(s)|ds =
∫ n0T0+T0

n0T0

λ

∣∣∣∣− d(s) +
r(s)eu(s−σ(s))

meθv(s) + eu(s−σ(s))

∣∣∣∣ds

≤ (d+ + r+)T0 (28)

It follows from Equations (27) and (28) that

v(t) ≥ v(ς)−
∫ n0T0+T0

n0T0

|v̇(s)|ds

≥ 1
θ

ln
(r̄− d̄− 2ε0)eρ2

3m(d̄ + ε0)
− (d+ + r+)T0

:= $2, ∀t ∈ [n0T0, n0T0 + T0] (29)

Obviously, $2 is a constant independent of n0. So it follows from Equation (29) that

v∗ = inf
s∈R

v(s) = inf
n0∈Z

{
min

s∈[n0T0,n0T0+T0]
v(s)

}
≥ inf

n0∈Z
{$2} = $2 (30)

Set C = |ρ1|+ |ρ2|+ |$1|+ |$2|+ 1. Clearly, C is independent of λ ∈ (0, 1). Let Ω = {z ∈ X :
‖z‖X < C}. Therefore, Ω satisfies condition (a) of Mawhin’s continuous theorem.

Now we show that condition (b) of Mawhin’s continuous theorem holds, i.e., we prove that
QNz 6= 0 for all z = (u, v)T ∈ ∂Ω ∩ KerL = ∂Ω ∩R2. If it is not true, then there exists at least one
constant vector z0 = (u0, v0)

T ∈ ∂Ω such that 0 = m
[

a(t)− b(t)eu0 − c(t)ev0

meθv0+eu0

]
,

0 = m
[
−d(t) + r(t)eu0

meθv0+eu0

]
.

Similar to the argument as that in Equations (13), (18), (25) and (30), it follows that

ρ2 < u0 < ρ1, $2 < v0 < $1.

Then z0 ∈ Ω ∩ R2. This contradicts the fact that z0 ∈ ∂Ω. This proves that condition (b) of
Mawhin’s continuous theorem holds.

Finally, we will show that condition (c) of Mawhin’s continuous theorem is satisfied. Let us
consider the homotopy

H(ι, z) = ιQNz + (1− ι)Φz, (ι, z) ∈ [0, 1]×R2,

where

Φz = Φ

(
u
v

)
=

(
ā− b̄eu

−d̄ + r̄eu

meθv+eu

)
.

From the above discussion it is easy to verify that H(ι, z) 6= 0 on ∂Ω ∩KerL, ∀ι ∈ [0, 1]. Further,
Φz = 0 has a solution:

(u∗, v∗)T =

(
ln

ā
b̄

,
1
θ

ln
(r̄− d̄)eu∗

md̄

)T

∈ Ω.

A direct computation yields

deg
(
Φ, Ω ∩KerL, 0

)
= sign

∣∣∣∣∣∣
−b̄eu∗ 0

r̄eu∗ (meθv∗+eu∗ )−r̄e2u∗

(meθv∗+eu∗ )2 − mθr̄eu∗ eθv∗

(meθv∗+eu∗ )2

∣∣∣∣∣∣ = 1.
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By the invariance property of homotopy, we have

deg
(

JQN, Ω ∩KerL, 0
)
= deg

(
QN, Ω ∩KerL, 0

)
= deg

(
Φ, Ω ∩KerL, 0

)
= 1,

where deg(·, ·, ·) is the Brouwer degree and J is the identity mapping since ImQ = KerL. Obviously,
all the conditions of Mawhin’s continuous theorem are satisfied. Therefore, System (5) has at least one
almost periodic solution, that is, System (4) has at least one positive almost periodic solution. This
completes the proof.

Corollary 1. Assume that (H1) holds. Suppose further that a, b, c, d, r, δ, τ and σ of System (4) are
continuous nonnegative periodic functions with different periods, then System (4) has at least one positive almost
periodic solution.

Remark 1. By Corollary 1, it is easy to prove the existence of at least one positive almost periodic solution of
Equation (3) in Example 1, although there is no a priori reason to expect that a positive periodic solution to
Equation (3) exists.

Corollary 2. Assume that (H1) holds. Suppose further that a, b, c, d, r, δ, τ and σ of System (4) are continuous
nonnegative ω-periodic functions, then System (4) has at least one positive ω-periodic solution.

Remark 2. For the periodic case, Mawhin’s Continuous Theorem can be applied to the study of the
discrete predator–prey model [38]. For the almost periodic case, by the Fourier series theory of almost
periodic sequence [39], Mawhin’s Continuous Theorem could be also applied to the study of the discrete
predator–prey model.

4. Two Examples and Numerical Simulations

Example 2. Consider the following delayed predator–prey model with Hassell-Varley type functional response:
Ṅ1(t) = N1(t)

[
2− (10 + cos2(

√
3t))N1(t)− e−17 N2(t−1)

10N0.5
2 (t−1)+N1(t)

]
Ṅ2(t) = N2(t)

[
−(1 + 0.1| sin(

√
3t)|) + (1+| sin(

√
2t)|)N1(t−2)

10N0.5
2 (t)+N1(t−2)

] (31)

Then System (31) has at least one positive almost periodic solution.

Proof . Corresponding to System (4), we have a = 2, b(s) = 10 + cos2(
√

3t), c = e−17, m = 10, θ = 0.5,
d = 1 + 0.1| sin(

√
3t)| and r(s) = 1 + | sin(

√
2t)|, ∀t ∈ R. Then b̄ = 10.5 and r̄ = 1 + 2

π . Choosing
ω = 4 so that Equation (8) holds, that is, for ∀t0 ∈ R,

1
T

∫ t0+T

t0

a(s)ds ∈ [1, 3],
1
T

∫ t0+T

t0

b(s)ds ∈ [5.25, 15.75], ∀T ≥ 4.

By an easy calculation, we obtain that

ρ1 ≈ 12, $1 < 34, µ = 2− 0.1 > 1.9,

which implies that (H1) holds. By Theorem 1, System (31) gives at least one positive almost periodic
solution (see Figures 1 and 2). This completes the proof.
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Figure 1. State variable N1 of System (31).
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Figure 2. State variable N2 of System (31).

Example 3. Consider the following delayed almost periodic predator–prey model with Hassell-Varley type
functional response:

Ṅ1(t) = N1(t)
[

2−
(

10 + cos2(
√

2t)+cos2(
√

3t)
2

)
N1(t)− e−17 N2(t−1)

10N0.5
2 (t−1)+N1(t)

]
Ṅ2(t) = N2(t)

[
−
(

1 + | sin
√

2t|+| sin
√

3t|
20

)
+ (1+| sin(

√
2t)|)N1(t−2)

10N0.5
2 (t)+N1(t−2)

] (32)

In System (32), | sin
√

2t|+ | sin
√

3t| and cos2(
√

2t) + cos2(
√

3t) are almost periodic functions, which
are not periodic functions. Similar to the argument as given in Example 2, it is easy to prove that System (32)
gives at least one positive almost periodic solution (see Figures 3 and 4).
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Figure 3. State variable N1 of System (32).
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Figure 4. State variable N2 of System (32).

5. Conclusions

By using a fixed point theorem of coincidence degree theory, some criterions for the existence
of positive almost periodic solution to a kind of delayed predator–prey model with Hassell-Varley
type functional response are obtained. Theorem 1 provides sufficient conditions for the existence of a
positive almost periodic solution to System (4). The results obtained in this paper are unprecedented,
being different from the results obtained in [33,34]. Therefore, the method used in this paper provides
a possible means to study the existence of positive almost periodic solutions to the models for
biological populations.
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