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Abstract:

 In this study, the non-local Euler-Bernoulli beam theory was employed in the nonlinear free and forced vibration analysis of a nanobeam resting on an elastic foundation of the Pasternak type. The analysis considered the effects of the small-scale of the nanobeam on the frequency. By utilizing Hamilton’s principle, the nonlinear equations of motion, including stretching of the neutral axis, are derived. Forcing and damping effects are considered in the analysis. The linear part of the problem is solved by using the first equation of the perturbation series to obtain the natural frequencies. The multiple scale method, a perturbation technique, is applied in order to obtain the approximate closed solution of the nonlinear governing equation. The effects of the various non-local parameters, Winkler and Pasternak parameters, as well as effects of the simple-simple and clamped-clamped boundary conditions on the vibrations, are determined and presented numerically and graphically. The non-local parameter alters the frequency of the nanobeam. Frequency-response curves are drawn.
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1. Introduction


Nanotechnology is the manipulation of matter on a supramolecular, molecular, and atomic scale. Many new devices and materials used in consumer products, electronics, biomaterials, medicine, energy production, etc., may be created with the help of nanotechnology. The exclusive properties of nanoscale materials are due to their very small size. The size effect of nano structures has an important role in their static and dynamic analysis. The classical continuum mechanics is not able to take into account the size effect in modeling of the material behavior at the nanoscale. Therefore, various size-dependent continuum theories, which are the non-local elasticity theory, strain gradient theory, the modified couple stress theory, the micropolar theory, and the surface elasticity theory, have been developed to include the small-scale effect. Among these theories, Eringen’s non-local elasticity theory [1,2] is a major subject among scientists. Peddison, et al. [3] were the first pioneers applying the non-local elasticity theory to nanostructures.



Vibration analysis of nanostructures is necessary for the ideal design of nanoelectromechanical systems (NEMS) and new nanodevices. The Winkler model is studied as a one-parameter model, namely Winkler-type elastic foundation, consists of a series of closely-spaced elastic springs, where as the Pasternak model studied as a two-parameter model, namely Pasternak-type elastic foundation, consists of a Winkler-type elastic spring and transverse shear deformation. In contrast, the nonlinear elastic foundation model studied as a three-parameter model, in which the layer is indicated by linear elastic springs, shear deformation, and cubic nonlinearity elastic springs. The work of Niknam and Aghdam [4] deals with the Eringen’s non-local elasticity theory for the evaluation of a closed-form solution of the buckling load and natural frequency of non-local functionally-graded (FG) beams on a nonlinear-type elastic foundation. Fallah and Aghdam [5] carried out post buckling and free vibration analysis of FG beams resting on an elastic foundation and subjecting axial force. Additionally, this author and its coauthors [6] investigated nonlinear free vibration and thermo-mechanical buckling analysis of a FG beam resting on a nonlinear type elastic foundation. Kanani, et al. [7] investigated the free and force vibration of a FG beam in the presence of large amplitude resting on a nonlinear elastic type foundation including shearing layer and cubic nonlinearity. Şimşek [8] developed a non-classical beam theory for the static and nonlinear vibration analysis of microbeams resting on a nonlinear elastic foundation on the base of the modified couple stress theory and Euler-Bernoulli beam theory.



Mustapha and Zhong [9] presented a mathematical model associated with single-walled carbon nanotube (SWCNT) vibration analysis. The SWCNT taken as a non-local Rayleigh beam is assumed to be axially loaded and embedded in a two parameter elastic medium. Mehdipour, et al. [10] employed continuum mechanics and elastic beam model. Their study aims to analyze the transverse vibration of a SWCNT having curved shape and embedded in a Pasternak elastic foundation. Work of Shen and Zhang [11] deals with the post-buckling nonlinear vibration and nonlinear bending of a SWCNT. The SWCNT modeled as a non-local beam including small-scale effect and resting on a two parameter elastic foundation in thermal environments. Arani, et al. [12] carried out a study related with the vibration behavior of single-walled boron nitride nanotubes in the presence of von Kármán geometric nonlinearity effects modeled with non-local piezoelasticity. Its nanotube surrounded by an elastic medium was assumed to be Winkler and Pasternak foundation model. Murmu and Pradhan [13] applied an existing method to a well-known Eringen non-local elasticity theory to analyze the stability response of SWCNT surrounded by Winkler- and Pasternak-type foundation models. Yas and Samadi [14] were presented buckling and free vibration analysis of nanocomposite Timeshenko beams reinforced by SWCNT resting on the two parameter medium.



Kazemi-Lari, et al. [15] considered the influence of viscoelastic foundation in the presence of interaction between surrounding viscoelastic medium and carbon nanotubes (CNTs) considering the action of a concentrated follower force. Surrounded medium is taken as the Kelvin–Voight, Maxwell, and standard linear solid types of viscoelastic foundation. Ghanvanloo, et al. [16] applied an existing method to a well-known classical Euler-Bernoulli beam model considering the instability and vibration response of CNT resting on a linear viscoelastic Winkler foundation. Refiei, et al. [17] applied an existing method to a well-known non-local Euler-Bernoulli beam theory to analyze the vibration characteristics of non-uniform SWCNT conveying fluid and also embedded in viscoelastic medium. It was concluded from their study that the nonlocal parameter, small-scale effect, may influence extremely the natural frequency and mode shape of the system. The main motivation for Arani and Amir’s [18] work is to develop an analytic model for the electro-thermal vibration of boron nitride nanotubes by using strain gradient theory, in which nanotubes coupled by visco-Pasternak medium. Wang and Li [19] carried out the study of the nonlinear free vibration of a nanotube in the presence of small-scale effect embedded in viscous matrix modeled with non-local elasticity theory and Hamilton principle. The work of Mahdawi, et al. [20] deals with the nonlinear free vibrational behavior of a double walled carbon nanotube (DWCNT) in the presence of compressive axial load. DWCNT was surrounded by a polymer matrix. The results of their study indicate that the surrounding medium may influence profoundly the vibrational behavior of the embedded CNT.



Most existing studies in the literature examine the vibrational behavior of nanostructures surrounded by an elastic medium. The natural frequency of a SWCNT conveying a viscous fluid and are also embedded in an elastic medium [21], free transverse vibration of an elastically-supported DWCNT embedded in an elastic matrix in the presence of initial axial force [22], axial vibration of SWCNT embedded in an elastic medium [23], vibration of nanotubes embedded in an elastic matrix [24], nonlinear free vibration of embedded DWCNT including the von Kármán geometric nonlinearity [25], nonlinear free vibration of clamped-clamped DWCNT surrounded by an elastic medium with consideration of the von Kármán geometric nonlinearity and the nonlinear van der Waals forces [26], forced vibration of an elastically-connected DWCNT carrying a moving nanoparticle [27], nonlinear vibration of embedded multiwalled carbon nanotubes (MWCNT) in thermal environments [28], vibration analysis of embedded MWCNT at an elevated temperature with considering the small-scale effect on the large amplitude [29], free transverse vibration of SWCNT embedded in elastic matrix under various boundary conditions [30], thermal vibration of SWCNT embedded in an elastic medium [31], thermal-mechanical vibration and buckling instability of a SWCNT conveying fluid and resting on an elastic medium [32], electro-thermo-mechanical vibration analysis of non-uniform and non-homogeneous boron nitride nanorod embedded in elastic medium [33], buckling behavior of SWCNT on a Winkler foundation under various boundary conditions [34], critical buckling temperature of SWCNT embedded in a one parameter elastic medium [35], and buckling analysis of SWCNT including the effect of temperature change and surrounding elastic medium [36] were studied with the aid of nonlocal elasticity theory. The surrounding elastic medium related with the above studies was described as the Winkler model with spring constant k.



Another class of size-dependent continuum theories that deal with the electro-thermal transverse vibration behavior of double-walled boron nitride nanotubes which are surrounded by an elastic medium was presented with the aid of non-local piezoelasticity cylindirical shell theory [37]. Free vibrations of SWCNT embedded in non-homogenous elastic matrix were studied with the aid of the non-local continuum shell theory [38]. The nonlinear free vibration of embedded MWCNT was investigated by using the multiple elastic beam models and continuum mechanics [39]. Nonlinear thermal stability and vibration of pre/post buckled temperature and microstructure-dependent FG beams resting on an elastic medium was investigated on the base of the modified couple stress theory [40]. The method of multiple scales (a perturbation method) is an efficient technique to solve the nonlinear differential equations. Free vibration analysis of beams resting on elastic foundation [41,42] and nonlinear free vibration behavior of simply supported DWCNT with considering the geometric nonlinearity were presented by using multiple scale method [43]. Nonlinear vibration of tensioned nanobeam and nanobeam with different boundary condition was studied by using non-local elasticity theory [44,45].



Lots of the work presented in the literature includes the vibration behavior of a nanobeam embedded in an elastic medium, whereas investigations on the two-parameter medium are rather limited. We examine the literature presented in the above, and it can be seen clearly that an elastic medium surrounded by a Pasternak-type model is limited in literature. Most of the above work is mainly related with the amplitude–frequency response of the nanotube. However, damping and forcing effect included studies on the nonlinear vibration properties of nanosystems are also rather limited. In the present study, the non-linear free vibration of the nanobeam resting on a two-parameter medium is studied by the non-local continuum theory. The small scale and damping effects are taken into account and nonlinear vibration behaviors of the nanobeam are illustrated.




2. Governing Equations


2.1. Non-Local Effects


In the classical (local) continuum theory, the stress at a point Χ depends only on the strain at the same point, while the non-local elasticity theory proposed by Eringen [1,2], regards the stress at a point as a function of strains at all points in the continuum. Therefore, the nonlocal stress tensor σ at point Χ can be written as:


[image: there is no content]



(1)






[image: there is no content]



(2)




where [image: there is no content] is the classical macroscopic stress tensor at point [image: there is no content], [image: there is no content] is the non-local modulus, [image: there is no content] is the Euclidian distance and τ is a material constant, [image: there is no content] is the fourth order elasticity tensor, and [image: there is no content] and [image: there is no content] are the second order tensors representing stress and strain fields, respectively. A simplified equation of differential form is used as a non-local constitutive relation, the reason being is that solving of the integral constitutive Equation (2) is complicated.


[image: there is no content]



(3)




where [image: there is no content] is the Laplacian operator. Here, the non-dimensional non-local nanoscale parameter τ is defined as [image: there is no content], in which [image: there is no content] is constant appropriate to each material and [image: there is no content] is internal characteristic length and [image: there is no content] is external characteristic length. The constitutive equation of nonlocal elasticity for a beam takes the following form:


[image: there is no content]



(4)




where E is the elasticity modulus.




2.2. Nonlocal Euler-Bernoulli Beam


This study is carried out on the basis of the non-local Euler-Bernoulli beam model. Two types of boundary conditions, which are simple-simple and clamped-clamped, are considered in this work and shown in Figure 1. The nanobeam is resting on a two parameter elastic foundation with the spring constants kL and kp of the Winkler elastic medium and Pasternak elastic medium, respectively. The equation of motion is obtained by using Hamilton’s principle. For the Euler-Bernoulli beam model, the displacement field is given as:


[image: there is no content]



(5)




where [image: there is no content] are the axial and transverse displacements, respectively. The axial force and resultant bending moment for the beam model are:


[image: there is no content]



(6)




where A is the area of the cross-section for the nanobeam. Taking into account the large amplitude nonlinear vibration, the von Kármán nonlinear strain (i.e., [image: there is no content]) should be considered and strain-displacement relationship is given by:


[image: there is no content]



(7)




where [image: there is no content] is the nonlinear extensional strain and [image: there is no content] is the bending strain. Then the von Kármán nonlinear strain (i.e., [image: there is no content]) can be expressed as:


[image: there is no content]



(8)






Figure 1. Boundary conditions for different beam supports. (a) Simple-Simple case and (b) Clamped-Clamped case.
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The force–strain and the moment–strain relations of the nonlocal beam theory can be obtained from Equations (4)–(8):


[image: there is no content]



(9)
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(10)




where I is the moment of inertia. The kinetic energy T can be written as:


[image: there is no content]



(11)




where ρA is the mass per unit length. The strain energy U can be written as:


[image: there is no content]



(12)







In addition, the virtual work by the external load from the elastic medium of the Pasternak type is given by:


[image: there is no content]



(13)




where [image: there is no content] is the load exerted by the Pasternak-type elastic medium. The stiffness and the shear modulus parameters of the deformable medium are represented by [image: there is no content] and [image: there is no content]. Hamilton’s principle can be represented analytically by the following formula:


[image: there is no content]



(14)







Inserting Equations (11)–(13) into Equation (14) and integrating by parts, and collecting the coefficients of [image: there is no content] and [image: there is no content], the following equation of motion are obtained:


[image: there is no content]



(15)
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(16)







Substituting Equation (16) into Equation (10), one obtains the expressions of the non-local force N and non-local moment M as follows:


[image: there is no content]



(17)
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(18)







The longitudinal inertia [image: there is no content] can be neglected based on the discussion about the nonlinear vibration of continuous systems [46,47], then the axial normal force N can be represented as:


[image: there is no content]



(19)







The nonlinear vibration equation of motion for the nanobeam resting on the Pasternak-type elastic foundation can be obtained by substituting Equations (17)–(19) into Equations (15) and (16) as follows:


[image: there is no content]



(20)







The following non-dimensional quantities aims to study problem under general form are considered:


[image: there is no content]



(21)







In the non-dimensional form considering the Equations (20) and (21) can be expressed as:


[image: there is no content]



(22)







The non-dimensional form of boundary conditions can be expressed as;


[image: there is no content]



(23)







The multiple scale method will be able to employ to the partial differential equations and boundary conditions to obtain the approximate solution for the problem [46,47]. Then, the introduction of the forcing and damping term in Equation (22) can also be seen as the nonlinear exact solution:


[image: there is no content]



(24)







In order to include stretching and damping effects at order ε, deflection [image: there is no content] is transformed [image: there is no content] to obtain a weak nonlinear system. The following transformation is performed for the damping and forcing terms based on the multiple scale method:


[image: there is no content]



(25)
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(26)







Substituting Equations (25) and (26) into Equation (24) and performing some necessary simplifications, the simplified equations takes the following form:


[image: there is no content]



(27)







The non-dimensional form of boundary conditions can be expressed as:


[image: there is no content]



(28)







A straight forward asymptotic expansion can be introduced, which is why there is no quadratic non-linearity:


[image: there is no content]



(29)




where ε is a small parameter to denote the deflections. Hence, a weakly non-linear system can be investigated by this procedure. New independent variables are introduced and the fast and slow time scales are written as:


[image: there is no content]



(30)







Denoting [image: there is no content] the ordinary time derivatives can be transformed into partial derivatives as:


[image: there is no content]



(31)







Inserting Equations (29) and (31) into Equation (27), we can get the following relation for the equation of motion and boundary conditions at different orders:



Order (ε0)


[image: there is no content]



(32)







Order (ε ):


[image: there is no content]



(33)







Fundamental frequencies are obtained by solving the first order of expansions, whereas the solvability condition is obtained by solving the second order of expansion. The first order of perturbation is linear, as given in Equation (12); the solution may be represented by:


[image: there is no content]



(34)




where cc represents the complex conjugate of the preceding terms. Substituting Equation (34) into Equation (32), one obtains:


[image: there is no content]



(35)







The following shape function for any beam segment can be considered for the solution of the equations:


[image: there is no content]



(36)







The boundary conditions are applied and the frequency equations can be obtained. Using the functions in Equation (36) will give the dispersion relation shown below:


[image: there is no content]



(37)
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(38)




and substituting Equation (38) into Equation (33), we eliminate the terms producing secularities. Here [image: there is no content] stands for the solution related with non-secular terms. One obtains:


(1+Kpγ2)φiv+(γ2ω2−KLγ2−Kp)φ″+(KL−ω2)φ=−2iωA′Y(x¯)+2iωγ2A′Y″(x¯)+32A2A¯(∫01Y′2(x¯)dx¯)Y″(x¯)−32γ2A2A¯(∫01Y′2(x¯)dx¯)Yiv(x¯)+12FeiσT1−4iμωAY(x¯)



(39)




where cc represents the complex conjugate of preceding terms and NST represents the non-secular terms. Excitation frequency is assumed to close to one of the natural frequencies of the system; that is:


[image: there is no content]



(40)




where σ is a detuning parameter of order 1, the solvability condition for Equations (39) and (40) is obtained as follows:


[image: there is no content]



(41)




where [image: there is no content].



Taking into account the real amplitude a and phase θ, the complex amplitude A in Equation (41) can be written as the following form:


[image: there is no content]



(42)







Then amplitude and phase modulation equations are:


[image: there is no content]



(43)




where [image: there is no content]. In the steady-state case, Equation (43) will be solved in the following section and variation of nonlinear amplitude will be discussed.





3. Numerical Results


Numerical examples for the simple-simple and clamped-clamped end condition beam frequencies are presented in this section. The linear fundamental frequencies for both types of boundary conditions will be evaluated, and the nonlinear frequencies for free, undamped vibrations will also be evaluated. In the case of the μ = f = σ = 0, one obtains:


[image: there is no content]



(44)




from Equation (44). The steady-state real amplitude is represented by [image: there is no content]. The frequency of non-linear is:


[image: there is no content]



(45)




where [image: there is no content] is the nonlinear correction terms.



At the steady state, [image: there is no content] become zero. The detuning parameter of frequency is as follows:


[image: there is no content]



(46)







The linear frequencies and nonlinear correction terms with different small scale effect (nonlocal parameter) γ, the Winkler parameter (KL) and the Pasternak parameter (Kp) are given in Table 1 and Table 2 for the first five frequencies for simple-simple (S-S) and clamped-clamped (C-C) supported case, respectively. The similar conclusions are derived from these tables for the effect of non-local parameter and the stiffness coefficients of the Winkler and Pasternak foundation on the natural frequencies. It can be seen in Table 1 and Table 2 that non-dimensional natural non-local frequency of the nanobeam is smaller than the classical (local) natural frequency. Note that the non-local parameter γ = 0 corresponds to the classical nanobeams without the non-local effect. This is attributed to the effect of small scale effect. It is evident that an increase in the nonlocal parameter leads to the decrease in the natural frequency although correction term increases with nonlocal parameter. This situation can be interpreted that the non-local effect reduces the stiffness of the material and, hence, the comparative lower natural frequencies. The effect of the coefficients of the two parameter foundation on the frequency value of nanobeam is also seen in Table 1 and Table 2 that show the linear frequency with the Winkler parameter and the Pasternak parameter (Kp). In these tables, the dimensionless parameter of Winkler KL = 10, 100, 200 and of Pasternak Kp = 0, 5, 25, 50 are taken. It can be deduced from Table 1 and Table 2 that the linear frequencies increase when the Winkler and the Pasternak parameters increase with regardless of the type of boundary condition. Furthermore, for the considered values of the foundation parameters, the effect of both foundation parameters on the linear frequency is more prominent for C-C end condition.



Table 1. The first five frequencies and correction term due to nonlinear terms for different γ, KL, and Kp values for simple-simple support conditions.



	
KL

	
KP

	
γ

	
ω1

	
ω2

	
ω3

	
ω4

	
ω5

	
λ






	
10

	
0

	
0

	
10.3638

	
39.6049

	
88.8827

	
157.945

	
246.76

	
1.76231




	
0.1

	
9.93271

	
33.5769

	
64.7187

	
98.38

	
132.544

	
1.83879




	
0.2

	
8.93522

	
24.7849

	
41.7484

	
58.4659

	
74.9066

	
2.04407




	
0.3

	
7.84771

	
18.7699

	
29.7864

	
40.611

	
51.3169

	
2.32733




	
0.4

	
6.91145

	
14.9337

	
22.9928

	
30.9739

	
38.9105

	
2.6426




	
0.5

	
6.17194

	
12.3849

	
18.7082

	
25.021

	
31.3244

	
2.95923




	
5

	
0

	
12.5203

	
42.0231

	
91.347

	
160.425

	
249.248

	
1.45877




	
0.1

	
12.1658

	
36.3978

	
68.0635

	
102.314

	
137.119

	
1.50127




	
0.2

	
11.366

	
28.49

	
46.7661

	
64.8678

	
82.7327

	
1.60692




	
0.3

	
10.5325

	
23.4457

	
36.4878

	
49.3844

	
62.1862

	
1.73408




	
0.4

	
9.85475

	
20.5039

	
31.1898

	
41.8205

	
52.4188

	
1.85334




	
0.5

	
9.35098

	
18.7291

	
28.1803

	
37.6247

	
47.0629

	
1.95319




	
25

	
0

	
18.8189

	
50.552

	
100.602

	
169.984

	
258.958

	
0.97052




	
0.1

	
18.5849

	
45.9823

	
80.0573

	
116.732

	
154.067

	
0.98274




	
0.2

	
18.0715

	
40.0156

	
62.9571

	
85.826

	
108.533

	
1.01066




	
0.3

	
17.5592

	
36.596

	
55.7485

	
74.8137

	
93.8186

	
1.04015




	
0.4

	
17.1612

	
34.7847

	
52.4341

	
70.0516

	
87.65

	
1.06427




	
0.5

	
16.877

	
33.769

	
50.7016

	
67.6306

	
84.556

	
1.08219




	
50

	
0

	
24.513

	
59.5186

	
111.092

	
181.225

	
270.606

	
0.74508




	
0.1

	
24.3339

	
55.6896

	
92.8969

	
132.568

	
172.931

	
0.75057




	
0.2

	
23.9441

	
50.8745

	
78.64

	
106.367

	
133.97

	
0.76279




	
0.3

	
23.5599

	
48.231

	
72.9969

	
97.6982

	
122.354

	
0.77522




	
0.4

	
23.2647

	
46.8715

	
70.4982

	
94.1014

	
117.69

	
0.78506




	
0.5

	
23.0559

	
46.1227

	
69.2193

	
92.3132

	
115.405

	
0.79217




	
100

	
0

	
0

	
14.0502

	
40.7252

	
89.3876

	
158.23

	
246.943

	
1.29992




	
0.1

	
13.7353

	
34.8914

	
65.4103

	
98.8364

	
132.883

	
1.32973




	
0.2

	
13.0322

	
26.5385

	
42.8127

	
59.2306

	
75.505

	
1.40147




	
0.3

	
12.312

	
21.0311

	
31.2607

	
41.7044

	
52.1864

	
1.48345




	
0.4

	
11.7375

	
17.6923

	
24.8731

	
32.3942

	
40.0503

	
1.55606




	
0.5

	
11.3178

	
15.6008

	
20.9761

	
26.7591

	
38.7995

	
1.61376




	
5

	
0

	
15.7085

	
43.0806

	
91.8383

	
160.706

	
249.428

	
1.1627




	
0.1

	
15.4275

	
37.6139

	
68.7215

	
102.753

	
137.447

	
1.18387




	
0.2

	
14.8049

	
30.028

	
47.7186

	
65.5579

	
83.2749

	
1.23366




	
0.3

	
14.1751

	
25.2923

	
37.701

	
50.2874

	
62.9056

	
1.28847




	
0.4

	
13.679

	
22.5922

	
32.6007

	
42.883

	
53.2703

	
1.3352




	
0.5

	
13.3207

	
20.9947

	
29.7343

	
38.8023

	
48.0095

	
1.37111




	
25

	
0

	
21.0748

	
51.4345

	
101.048

	
170.249

	
259.132

	
0.86664




	
0.1

	
20.8662

	
46.9507

	
80.6175

	
117.117

	
154.358

	
0.8753




	
0.2

	
20.4102

	
41.1248

	
63.6678

	
86.3487

	
108.947

	
0.89486




	
0.3

	
19.9581

	
37.8057

	
56.5499

	
75.4128

	
94.297

	
0.91513




	
0.4

	
19.6089

	
36.0552

	
53.2854

	
70.6911

	
88.162

	
0.93142




	
0.5

	
19.3606

	
35.0763

	
51.5815

	
68.2927

	
85.0865

	
0.94337




	
50

	
0

	
26.2848

	
60.2699

	
111.496

	
181.473

	
270.772

	
0.69486




	
0.1

	
26.1178

	
56.4919

	
93.3801

	
132.907

	
173.191

	
0.6993




	
0.2

	
25.755

	
51.7514

	
79.2102

	
106.789

	
134.306

	
0.70915




	
0.3

	
25.3982

	
49.1551

	
73.6108

	
98.1577

	
122.721

	
0.71911




	
0.4

	
25.1247

	
47.8219

	
71.1336

	
94.5784

	
118.072

	
0.72694




	
0.5

	
24.9314

	
47.0883

	
69.8664

	
92.7994

	
115.794

	
0.73258




	
200

	
0

	
0

	
17.2456

	
41.935

	
89.9452

	
158.546

	
247.145

	
1.05906




	
0.1

	
16.99

	
36.2961

	
66.1703

	
99.341

	
133.259

	
1.075




	
0.2

	
16.4267

	
28.36

	
43.9651

	
60.0688

	
76.1643

	
1.11186




	
0.3

	
15.8615

	
23.2875

	
32.8212

	
42.8865

	
53.1359

	
1.15148




	
0.4

	
15.4197

	
20.3228

	
26.808

	
33.9026

	
41.2799

	
1.18447




	
0.5

	
15.1027

	
18.5307

	
23.2378

	
28.5666

	
34.223

	
1.20933




	
5

	
0

	
18.6214

	
44.226

	
92.3811

	
161.016

	
249.628

	
0.98082




	
0.1

	
18.385

	
38.9205

	
69.4453

	
103.239

	
137.81

	
0.99343




	
0.2

	
17.8658

	
31.6494

	
48.7551

	
66.3162

	
83.8731

	
1.0223




	
0.3

	
17.3475

	
27.1974

	
39.0046

	
51.2721

	
63.6955

	
1.05284




	
0.4

	
16.9445

	
24.7064

	
34.0999

	
44.0335

	
54.2008

	
1.07788




	
0.5

	
16.6566

	
23.2546

	
31.3708

	
40.0702

	
49.0399

	
1.09651




	
25

	
0

	
23.327

	
52.3976

	
101.542

	
170.542

	
259.324

	
0.78296




	
0.1

	
23.1387

	
48.0039

	
81.2353

	
117.544

	
154.682

	
0.78934




	
0.2

	
22.7284

	
42.3232

	
64.4484

	
86.9259

	
109.405

	
0.80359




	
0.3

	
22.3232

	
39.1059

	
57.4273

	
76.073

	
94.8257

	
0.81817




	
0.4

	
22.0115

	
37.4163

	
54.2156

	
71.3949

	
88.7273

	
0.82976




	
0.5

	
21.7907

	
36.4739

	
52.5419

	
69.021

	
85.6722

	
0.83817




	
50

	
0

	
28.1228

	
61.0939

	
111.944

	
181.748

	
270.957

	
0.64944




	
0.1

	
27.9667

	
57.3701

	
93.914

	
133.283

	
173.479

	
0.65307




	
0.2

	
27.6282

	
52.7087

	
79.8389

	
107.256

	
134.677

	
0.66107




	
0.3

	
27.2959

	
50.162

	
74.287

	
98.6658

	
123.128

	
0.66912




	
0.4

	
27.0416

	
48.8563

	
71.8331

	
95.1056

	
118.495

	
0.67541




	
0.5

	
26.8621

	
48.1384

	
70.5784

	
93.3367

	
116.225

	
0.67992










Table 2. The first five frequencies and correction term due to nonlinear terms for different γ, KL, and Kp values for clamped-clamped support conditions.



	
KL

	
KP

	
γ

	
ω1

	
ω2

	
ω3

	
ω4

	
ω5

	
λ






	
10

	
0

	
0

	
22.5957

	
61.7538

	
120.945

	
199.884

	
298.572

	
1.87211




	
0.1

	
21.3446

	
51.0811

	
85.7747

	
121.389

	
156.772

	
2.05167




	
0.2

	
18.5608

	
36.5609

	
54.6156

	
71.6824

	
88.5434

	
2.42999




	
0.3

	
15.6759

	
27.1862

	
38.9625

	
49.7775

	
60.8526

	
2.90516




	
0.4

	
13.2865

	
21.375

	
30.1288

	
37.9597

	
46.2584

	
3.87926




	
0.5

	
11.4372

	
17.5601

	
24.537

	
30.6482

	
37.2987

	
6.69827




	
5

	
0

	
23.9143

	
63.5888

	
122.972

	
202.019

	
300.775

	
1.65438




	
0.1

	
23.0822

	
53.8346

	
89.2907

	
125.642

	
161.759

	
1.82242




	
0.2

	
21.2855

	
41.035

	
60.6274

	
79.1969

	
97.5636

	
2.17425




	
0.3

	
19.5297

	
33.3506

	
47.3877

	
60.3333

	
73.6037

	
2.51772




	
0.4

	
18.1866

	
29.0183

	
40.6783

	
51.1438

	
62.2405

	
2.80017




	
0.5

	
17.2362

	
26.4531

	
36.892

	
46.048

	
56.0107

	
3.02728




	
25

	
0

	
28.5299

	
70.4196

	
130.757

	
210.337

	
309.426

	
1.18673




	
0.1

	
28.9764

	
63.6572

	
102.155

	
141.384

	
180.334

	
1.34457




	
0.2

	
29.7794

	
55.4292

	
80.2951

	
103.958

	
127.411

	
1.66884




	
0.3

	
30.3974

	
51.0386

	
71.8034

	
91.0459

	
110.794

	
1.96823




	
0.4

	
30.7834

	
48.8132

	
68.137

	
85.5259

	
103.971

	
2.18714




	
0.5

	
31.0191

	
47.5964

	
66.3087

	
82.7336

	
100.604

	
2.33713




	
50

	
0

	
33.3266

	
78.0638

	
139.862

	
220.285

	
319.907

	
0.92027




	
0.1

	
34.9378

	
74.1135

	
116.255

	
158.885

	
201.157

	
1.0774




	
0.2

	
37.7969

	
69.3394

	
99.5596

	
128.361

	
156.931

	
1.37241




	
0.3

	
40.0275

	
66.8639

	
93.7733

	
118.747

	
144.388

	
1.62261




	
0.4

	
41.4571

	
65.6397

	
91.529

	
114.841

	
139.572

	
1.79539




	
0.5

	
42.3505

	
64.9805

	
90.5076

	
112.918

	
137.3

	
1.90954




	
100

	
0

	
0

	
24.5064

	
62.4783

	
121.316

	
200.109

	
298.723

	
1.50573




	
0.1

	
23.3579

	
51.9546

	
86.2978

	
121.759

	
157.059

	
1.63646




	
0.2

	
20.8447

	
37.7717

	
55.4334

	
72.3074

	
89.0502

	
1.91101




	
0.3

	
18.323

	
28.7939

	
40.1008

	
50.6734

	
61.5876

	
2.3019




	
0.4

	
16.3258

	
23.3857

	
31.5871

	
39.1272

	
47.2212

	
3.26741




	
0.5

	
14.8597

	
19.9588

	
26.3071

	
32.0829

	
38.4863

	
6.27336




	
5

	
0

	
25.7273

	
64.2926

	
123.337

	
202.242

	
300.924

	
1.37867




	
0.1

	
24.9557

	
54.6641

	
89.7933

	
126

	
162.037

	
1.50948




	
0.2

	
23.304

	
42.1173

	
61.3651

	
79.763

	
98.0238

	
1.7793




	
0.3

	
21.712

	
34.6737

	
48.328

	
61.0746

	
74.2126

	
2.04099




	
0.4

	
20.5123

	
30.5297

	
41.7699

	
52.0162

	
62.9594

	
2.26079




	
0.5

	
19.6745

	
28.1028

	
38.0923

	
47.0151

	
56.8084

	
2.44452




	
25

	
0

	
30.0659

	
71.0558

	
131.101

	
210.551

	
309.571

	
1.06129




	
0.1

	
30.4898

	
64.3603

	
102.595

	
141.702

	
180.583

	
1.1989




	
0.2

	
31.254

	
56.2352

	
80.8536

	
104.39

	
127.764

	
1.48043




	
0.3

	
31.8434

	
51.9128

	
72.4274

	
91.5388

	
111.2

	
1.73861




	
0.4

	
32.2121

	
49.7265

	
68.7942

	
86.0504

	
104.403

	
1.92589




	
0.5

	
32.4374

	
48.5326

	
66.9839

	
83.2758

	
101.05

	
2.05326




	
50

	
0

	
34.6506

	
78.6381

	
140.183

	
220.489

	
320.047

	
0.85284




	
0.1

	
36.2029

	
74.7182

	
116.641

	
159.168

	
201.381

	
0.99659




	
0.2

	
38.9693

	
69.9854

	
100.011

	
128.711

	
157.218

	
1.26757




	
0.3

	
41.1364

	
67.5336

	
94.252

	
119.126

	
144.699

	
1.49748




	
0.4

	
42.5288

	
66.3217

	
92.0193

	
115.232

	
139.894

	
1.65584




	
0.5

	
43.4

	
65.6694

	
91.0034

	
113.315

	
137.627

	
1.76014




	
200

	
0

	
0

	
26.4682

	
63.2735

	
121.728

	
200.359

	
298.89

	
1.76017




	
0.1

	
25.4085

	
52.9083

	
86.8752

	
122.169

	
157.377

	
1.97028




	
0.2

	
23.1193

	
39.073

	
56.3282

	
72.9956

	
89.6099

	
2.41183




	
0.3

	
20.8742

	
30.481

	
41.3289

	
51.6507

	
62.3942

	
2.83125




	
0.4

	
19.145

	
25.4341

	
33.1323

	
40.3849

	
48.2685

	
3.14686




	
0.5

	
17.9112

	
22.3239

	
28.1437

	
33.6052

	
39.7643

	
3.36847




	
5

	
0

	
27.6024

	
65.0657

	
123.742

	
202.489

	
301.09

	
1.59829




	
0.1

	
26.8847

	
55.5713

	
90.3484

	
126.396

	
162.345

	
1.79521




	
0.2

	
25.3589

	
43.2882

	
62.1746

	
80.3875

	
98.5325

	
2.20304




	
0.3

	
23.9042

	
36.0869

	
49.3517

	
61.8879

	
74.8833

	
2.58175




	
0.4

	
22.82

	
32.1257

	
42.9502

	
52.9687

	
63.7486

	
2.86038




	
0.5

	
22.07

	
29.829

	
39.383

	
48.0668

	
57.6819

	
3.05255




	
25

	
0

	
31.6853

	
71.756

	
131.482

	
210.788

	
309.732

	
1.19923




	
0.1

	
32.0879

	
65.1325

	
103.081

	
142.054

	
180.86

	
1.37629




	
0.2

	
32.8149

	
57.1174

	
81.4697

	
104.868

	
128.155

	
1.71325




	
0.3

	
33.3767

	
52.8672

	
73.1145

	
92.0834

	
111.649

	
2.0006




	
0.4

	
33.7286

	
50.7221

	
69.5172

	
86.6295

	
104.881

	
2.20012




	
0.5

	
33.9439

	
49.5521

	
67.7262

	
83.874

	
101.544

	
2.33272




	
50

	
0

	
36.0647

	
79.2714

	
140.539

	
220.716

	
320.203

	
0.94342




	
0.1

	
37.5586

	
75.3844

	
117.069

	
159.482

	
201.629

	
1.11319




	
0.2

	
40.2319

	
70.6962

	
100.509

	
129.099

	
157.536

	
1.40332




	
0.3

	
42.3344

	
68.2699

	
94.781

	
119.545

	
145.044

	
1.63477




	
0.4

	
43.6886

	
67.0713

	
92.5611

	
115.665

	
140.251

	
1.79052




	
0.5

	
44.5372

	
66.4264

	
91.5512

	
113.756

	
137.99

	
1.89222










Studies related to the nonlocal beams resting on the Pasternak type elastic foundation in the existing literature are rather limited for the analysis of fundamental and nonlinear frequency. However, the study of Yokoyama [48] includes the first few values of the classical EB beam resting on a Pasternak-type foundation. Also, the study of Mustapha and Zhong [9] includes the non-uniform SWCNT depended on a non-local Rayleigh beam resting on Pasternak-type foundation. A comparison study is performed to check the reliability of the present method. For this purposes, linear frequency of a local EB beam embedded Pasternak foundation for the S-S case are compared with those of the work of Mustapha and Zhong [9] and the work of Yokoyama [48]. It can be seen from the Table 3 that they only studied the first second values of the non-dimensional natural frequencies of a local EB beam embedded on a Pasternak foundation, which takes the value of 25 and 36. However, in this paper extensive natural frequency analyses were performed for the first five frequencies. It is obvious from Table 3 that there is good harmony between the three results.



Table 3. Non-dimensional natural frequencies of a local EB beam embedded on a Pasternak foundation (γ = 0) for the simple-simple support conditions.



	
Mode

	
Non-Dimensional Natural Frequencies




	
KL = 25 and Kp = 25

	
KL = 36 and Kp = 36




	
Present

	
Ref. [9]

	
Ref. [48]

	
Present

	
Ref. [9]

	
Ref. [48]






	
1

	
19.2133

	
19.2178

	
19.21

	
22.1069

	
22.1112

	
------




	
2

	
50.7002

	
50.7804

	
50.71

	
54.916

	
55.1873

	
------




	
3

	
100.677

	
------

	
------

	
105.47

	
------

	
------




	
4

	
170.028

	
------

	
------

	
175.093

	
------

	
------




	
5

	
258.987

	
------

	
------

	
264.196

	
------

	
------










The effect of the non-local parameter on the natural frequency is examined and scrutinized in Figure 2 that plots the variation of the natural frequency (ω) with the non-local parameter (γ) for the S-S and CC nanobeam, respectively. It can be deduced from Figure 2 that the natural frequency decreases when the non-local parameter increases. Regardless of the type of boundary condition, it is observed that the non-local parameter has an influence on the natural frequency.


Figure 2. Variation of the natural frequency with the dimensionless nonlocal parameter for KL = 10, Kp = 5. (a) S-S nanobeam and (b) C-C nanobeam (___ω1, _ _ω2, _._ ω3, - - ω4, _ . .ω5).



[image: Mca 21 00003 g002 1024]






Variation of the nonlinear frequency with amplitude is shown for the first five modes of vibration in Figure 3, the frequencies are calculated taking into account the non-local parameter (γ = 0.3). It can be seen from Figure 3 that the nonlinear frequencies increase with an increase in the mode number.


Figure 3. Nonlinear frequency versus amplitude curves of nanobeam for different modes for the KL = 100, Kp = 5 and γ = 0.3. (a) simple-simple; (b) clamped-clamped (___ω1, _ _ω2, _._ ω3, ●●● ω4, +++ω5).



[image: Mca 21 00003 g003 1024]






In Figure 4, Figure 5 and Figure 6, the nonlinear frequency versus amplitude curves of nanobeam are shown for the first mode and S-S and C-C boundary condition. One can observe a hardening behavior. The frequency response bending to the left side is called the softening nonlinearity, but to the right side is called the hardening nonlinearity. So, the behaviors in Figure 4, Figure 5 and Figure 6 are of hardening type, i.e., the nonlinear frequency increases as the vibration amplitude increases. Figure 4 shows the effect of the Winkler parameter KL on the nonlinear frequency versus amplitude curves with γ = 0.3 and Kp = 5. It can be seen in Figure 4 that the nonlinear frequency of nanobeam increases with the increment of the KL values. The Winkler parameter KL has a significant effect on the nonlinear frequency value. In Figure 5 and Figure 6, γ = 0.3 is fixed and Kp is increased. The nonlinear frequencies increase in both figures. From Figure 5 and Figure 6, it is noted that the Pasternak parameter Kp has a pronounced effect on the nonlinear frequency amplitude curves of nanobeam. It can be readily observed that the value of nonlinear natural frequency have a direct relation with the Winkler and Pasternak parameter value. The C-C nanobeam has the highest natural frequency and nonlinear frequencies since the end condition is the strongest for the C-C nanobeam.


Figure 4. Nonlinear frequency versus amplitude curves of nanobeam for the first mode and γ = 0.3. (a) simple-simple; (b) clamped-clamped (Kp = 5, ___ KL = 10, _ _ KL = 100, _._ KL = 200).



[image: Mca 21 00003 g004 1024]





Figure 5. Nonlinear frequency versus amplitude curves of nanobeam for the first mode KL = 10 and γ = 0.3. (a) simple-simple; (b) clamped-clamped (___ Kp = 0, _ _ Kp = 5, _._ Kp = 25, ●●● Kp = 50).



[image: Mca 21 00003 g005 1024]





Figure 6. Nonlinear frequency versus amplitude curves of nanobeam for the first mode KL = 200 and γ = 0.3. (a) simple-simple; (b) clamped-clamped (___ Kp = 0, _ _ Kp = 5, _._ Kp = 25, ●●● Kp = 50).



[image: Mca 21 00003 g006 1024]






Frequency response curves are presented in Figure 7, Figure 8, Figure 9 and Figure 10. The detuning parameter σ shows the nearness of the external excitation frequency to the natural frequency of system. Several figures are drawn using Equation (46) assuming f = 1 and damping coefficient μ = 0.1. Increasing the forcing term increase amplitudes when σ < 0 and decreases the amplitudes when σ > 0 at different values. The maximum amplitudes happen when σ > 0. In Figure 7, the influence of the mode number on the hardening nonlinear properties is shown both types of boundary condition. Five different mode numbers are considered and compared. It can be seen that for the first mode or fundamental mode, the resonant amplitude is larger and the corresponding width is broader. Figure 8 presents the frequency response curves of S-S and C-C case for the first mode in order to discuss the influence of the Winkler parameter KL. It can be observed that, for S-S and C-C end condition, the amplitude decreases with the Winkler parameter increasing. Figure 9 and Figure 10 present the frequency response curves of S-S and C-C case for the first mode in order to discuss the influence of the Pasternak parameter Kp. It can be seen that for the fundamental mode, the amplitude decreases with the Pasternak parameter increasing. Both observations denote that the Winkler and Pasternak parameter has significant influences on the primary resonance of the nanobeam.


Figure 7. Frequency-response curves for nanobeam with different modes for KL = 100, Kp = 5 and γ = 0.3. (a) simple-simple; and (b) clamped-clamped (___ω1, _ _ω2, _._ ω3, ●●● ω4, +++ω5).



[image: Mca 21 00003 g007 1024]





Figure 8. Effects of Winkler parameter on frequency-response curves for the first mode and γ = 0.3. (a) simple-simple; (b) clamped-clamped (Kp = 5: ___ KL = 10, _ _ KL = 100, _._ KL = 200).



[image: Mca 21 00003 g008 1024]





Figure 9. Effects of the Pasternak parameter on frequency-response curves for the first mode and γ = 0.3. (a) simple-simple; (b) clamped-clamped (KL = 10: ___ Kp = 0, _ _ Kp = 5, _._ Kp = 25, ●●● Kp = 50).



[image: Mca 21 00003 g009 1024]





Figure 10. Effects of the Pasternak parameter on frequency-response curves for the first mode, KL = 200 and γ = 0.3. (a) simple-simple; (b) clamped-clamped (___ Kp = 0, _ _ Kp = 5, _._ Kp = 25, ●●● Kp = 50).
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4. Conclusions


In the present study, the free and force vibration of a nanobeam resting on an elastic foundation of the Pasternak type is investigated based on the non-local Euler Bernoulli beam theory. The non-linear equations of motion, including stretching of the neutral axis, are derived. The governing equations and boundary conditions are derived by using Hamilton’s principle. The multiple scale method is used to solve the governing differential equation of the nanobeam. The effect of different parameters, such as Winkler modulus, Pasternak shear modulus, and the non-local factor on frequencies is investigated for the nanobeam with simple-simple and clamped-clamped boundary conditions. The extensive numerical data is given in tabular form for various values of the parameters so that these results can be used as a reference for future studies. Results revealed that increasing the non-local parameters lead to decreasing the linear and nonlinear frequencies and to increasing the correction terms. Furthermore, increasing the Winkler and Pasternak parameters increase the values of both linear and nonlinear frequencies. Observed non-linearity is of the hardening type because of the stretching of the neutral axis.
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	Double walled carbon nanotube



	MWCNT
	Multi walled carbon nanotube







References


	1. 
Eringen, A.C. On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]

	2. 
Eringen, A.C. Nonlocal Continuum Field Theories; Springer-Verlag: New York, NY, USA, 2002. [Google Scholar]

	3. 
Peddieson, J.; Buchanan, G.R.; McNitt, R.P. Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 2003, 41, 305–312. [Google Scholar] [CrossRef]

	4. 
Niknam, H.; Aghdam, M.M. A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos. Struct. 2015, 119, 452–462. [Google Scholar] [CrossRef]

	5. 
Fallah, A.; Aghdam, M.M. Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation. Eur. J. Mech. A Solids 2011, 30, 571–583. [Google Scholar] [CrossRef]

	6. 
Fallah, A.; Aghdam, M.M. Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Compos. B Eng. 2012, 43, 1523–1530. [Google Scholar] [CrossRef]

	7. 
Kanani, A.S.; Niknam, H.; Ohadi, A.R.; Aghdam, M.M. Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Compos. Struct. 2014, 115, 60–68. [Google Scholar] [CrossRef]

	8. 
Şimşek, M. Nonlinear static and free vibration analysis of microbeams based based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method. Compos. Struct. 2014, 112, 264–272. [Google Scholar] [CrossRef]

	9. 
Mustapha, K.B.; Zhong, Z.W. Free transverse vibration of an axially loaded non-prismatic single-walled carbon nanotube embedded in a two-parameter elastic medium. Comput. Mater. Sci. 2010, 50, 742–751. [Google Scholar] [CrossRef]

	10. 
Mehdipour, I.; Barari, A.; Kimiaeifar, A.; Domairry, G. Vibrational analysis of curved single-walled carbon nanotube on a Pasternak elastic foundation. Adv. Eng. Softw. 2012, 48, 1–5. [Google Scholar] [CrossRef]

	11. 
Shen, H.S.; Zhang, C.L. Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates. Comput. Mater. Sci. 2011, 50, 1022–1029. [Google Scholar] [CrossRef]

	12. 
Arani, A.G.; Atabakhshian, V.; Loghman, A.; Shajari, A.R.; Amir, S. Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method. Physica B 2012, 407, 2549–2555. [Google Scholar] [CrossRef]

	13. 
Murmu, T.; Pradhan, S.C. Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Physica E 2009, 41, 1232–1239. [Google Scholar] [CrossRef]

	14. 
Yas, M.H.; Samadi, N. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int. J. Press. Vessels Pip. 2012, 98, 119–128. [Google Scholar] [CrossRef]

	15. 
Kazemi-Lari, M.A.; Fazelzadeh, S.A.; Ghavanloo, E. Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation. Physica E 2012, 44, 1623–1630. [Google Scholar] [CrossRef]

	16. 
Ghanvanloo, E.; Daneshmand, F.; Rafiei, M. Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation. Physica E 2010, 42, 2218–2224. [Google Scholar] [CrossRef]

	17. 
Rafiei, M.; Mohebpour, S.R.; Daneshmand, F. Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium. Physica E 2012, 44, 1372–1379. [Google Scholar] [CrossRef]

	18. 
Arani, A.G.; Amir, S. Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory. Physica B 2013, 419, 1–6. [Google Scholar] [CrossRef]

	19. 
Wang, Y.Z.; Li, F.M. Nonlinear free vibration of nanotube with small scale effects embedded in viscous matrix. Mech. Res. Commun. 2014, 60, 45–51. [Google Scholar] [CrossRef]

	20. 
Mahdavi, M.H.; Jiang, L.Y.; Sun, X. Nonlinear vibration of a double-walled carbon nanotube embedded in a polymer matrix. Physica E 2011, 43, 1813–1819. [Google Scholar] [CrossRef]

	21. 
Lee, H.L.; Chang, W.J. Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium. Physica E 2009, 41, 529–532. [Google Scholar] [CrossRef]

	22. 
Kiani, K. Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subject to axial load using nonlocal shear deformable beam theories. Int. J. Mech. Sci. 2013, 68, 16–34. [Google Scholar] [CrossRef]

	23. 
Aydogdu, M. Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech. Res. Commun. 2012, 43, 34–40. [Google Scholar] [CrossRef]

	24. 
Wang, B.L.; Wang, K.F. Vibration analysis of embedded nanotubes using nonlocal continuum theory. Compos. B Eng. 2013, 47, 96–101. [Google Scholar] [CrossRef]

	25. 
Ke, L.L.; Xiang, Y.; Yang, J.; Kitipornchai, S. Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput. Mater. Sci. 2009, 47, 409–417. [Google Scholar] [CrossRef]

	26. 
Fang, B.; Zhen, Y.X.; Zhang, C.P.; Tang, Y. Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory. Appl. Math. Model. 2013, 37, 1096–1107. [Google Scholar] [CrossRef]

	27. 
Şimşek, M. Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput. Mater. Sci. 2011, 50, 2112–2123. [Google Scholar] [CrossRef]

	28. 
Ansari, R.; Ramezannezhad, H. Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects. Physica E 2011, 43, 1171–1178. [Google Scholar] [CrossRef]

	29. 
Ansari, R.; Ramezannezhad, H.; Gholami, R. Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment. Nonlinear Dyn. 2012, 67, 2241–2254. [Google Scholar] [CrossRef]

	30. 
Kiani, K. A meshless approach for free transverse vibration of embedded single walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect. Int. J. Mech. Sci. 2010, 52, 1343–1356. [Google Scholar] [CrossRef]

	31. 
Murmu, T.; Pradhan, S.C. Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput. Mater. Sci. 2009, 46, 854–859. [Google Scholar] [CrossRef]

	32. 
Chang, T.P. Thermal–mechanical vibration and instability of a fluid-conveying single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Appl. Math. Model. 2012, 36, 1964–1973. [Google Scholar] [CrossRef]

	33. 
Rahmati, A.H.; Mohammadimehr, M. Vibration analysis of non-uniform and non-homogeneous boron nitride nanorods embedded in elastic medium under combined loadings using DQM. Physica B 2014, 440, 88–98. [Google Scholar] [CrossRef]

	34. 
Pradhan, S.C.; Reddy, G.K. Buckling analysis of single walled carbon nanotube on Winkler foundation using on nonlocal elasticity theory and DTM. Comput. Mater. Sci. 2011, 50, 1052–1056. [Google Scholar] [CrossRef]

	35. 
Narender, S.; Gopalakrishnan, S. Critical buckling temperature of single walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics. Physica E 2011, 43, 1185–1191. [Google Scholar] [CrossRef]

	36. 
Murmu, T.; Pradhan, S.C. Thermal effects on the stability of embedded carbon nanotubes. Comput. Mater. Sci. 2010, 47, 721–726. [Google Scholar] [CrossRef]

	37. 
Arani, A.G.; Amir, S.; Shajari, A.R.; Mozdianfard, M.R.; Maraghi, Z.K.; Mohammadimehr, M. Electro-thermal nonlocal vibration analysis of embedded DWBNNTs. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2011, 224, 745–756. [Google Scholar] [CrossRef]

	38. 
Mikhasev, G. On localized modes of free vibrations of single walled carbon nanotubes embedded in nonhomogeneous elastic medium. ZAMM 2014, 94, 130–141. [Google Scholar] [CrossRef]

	39. 
Fu, Y.M.; Hong, J.W.; Wang, X.Q. Analysis of nonlinear vibration for embedded carbon nanotubes. J. Sound Vib. 2006, 296, 746–756. [Google Scholar] [CrossRef]

	40. 
Komijani, M.; Esfahani, S.E.; Reddy, J.N.; Liu, Y.P.; Eslami, M.R. Nonlinear thermal stability and vibration of pre/post-buckled temperature and microstructure dependent functionally graded beams resting on elastic foundation. Compos. Struct. 2014, 112, 292–307. [Google Scholar] [CrossRef]

	41. 
Ozturk, B.; Coskun, S.B.; Koc, M.Z.; Atay, M.T. Homotopy perturbation method for free vibration analysis of beams on elastic foundation. IOP Conf. Ser. Mater. Sci. Eng. 2010, 10, 012158. [Google Scholar] [CrossRef]

	42. 
Öz, H.R.; Pakdemirli, M.; Özkaya, E.; Yılmaz, M. Nonlinear vibrations of a slightly curved beam resting on a nonlinear elastic foundation. J. Sound Vib. 1998, 212, 295–309. [Google Scholar] [CrossRef]

	43. 
Yan, Y.; Wang, W.; Zhang, L. Applied multiscale method to analysis of nonlinear vibration for double walled carbon nanotubes. Appl. Math. Model. 2011, 35, 2279–2289. [Google Scholar] [CrossRef]

	44. 
Bağdatlı, S.M. Non-linear vibration of nanobeams with various boundary condition based on nonlocal elasticity theory. Compos. B Eng. 2015, 80, 43–52. [Google Scholar] [CrossRef]

	45. 
Bağdatlı, S.M. Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory. Struct. Eng. Mech. 2015, 55, 281–298. [Google Scholar] [CrossRef]

	46. 
Nayfeh, A.H. Introduction to Perturbation Techniques; John Wiley: New York, NY, USA, 1981. [Google Scholar]

	47. 
Nayfeh, A.H.; Mook, D.T. Nonlinear Oscillations; John Wiley: New York, NY, USA, 1979. [Google Scholar]

	48. 
Yokoyama, T. Vibrations and transient responses of Timoshenko beams resting on elastic foundations. Arch. Appl. Mech. 1987, 57, 81–90. [Google Scholar] [CrossRef]

































© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).







media/file4.png
=
e

(b)






nav.xhtml


  mca-21-00003


  
    		
      mca-21-00003
    


  




  





media/file1.png
250 - 300 -






media/file2.png
.
g
853
- .o.o.o 8






media/file7.png
(b)

(a)





media/file9.png
(b)

(a)





media/file10.png





media/file5.png





media/file3.png
(a)





media/file0.png
ko

kp ke

?,

]
£ 2.3 3 2 2 = N

L |

(a)

W

2 ////F//// S /////?///}//}///E//}M /

(b)






media/file8.png
(b)

(a)





media/file6.png





