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Abstract- This paper aims to construct a general formulation for the shifted Jacobi 

operational matrices of integration and product. The main aim is to generalize the Jacobi 

integral and product operational matrices to the solving system of Fredholm and 

Volterra equations. These matrices together with the collocation method are applied to 

reduce the solution of these problems to the solution of a system of algebraic equations. 

The method is applied to solve system of linear and nonlinear Fredholm and Volterra 

equations. Illustrative examples are included to demonstrate the validity and efficiency 

of the presented method. Also, several theorems, which are related to the convergence 

of the proposed method, will be presented. 
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1. INTRODUCTION 

 

Finding the analytical solutions of functional equations has been devoted of 

attention of mathematicians’ interest in recent years. Several methods are proposed to 

achieve this purpose, such as [1-18]. Mathematical modeling for many problems in 

different fields, such as engineering, chemistry, physics and biology, leads to integral 

equations or system of integral equations. Several methods have been proposed to solve 

these problems. For example, Variational iteration method [19], differential transform 

method [20], Nystrom method [21], Haar functions method [22], Homotopy 

perturbation method [23], Chebyshev wavelet method [24] and many others. Between 

of present methods, spectral methods have been used to solve different functional 

equations, because of their high accuracy and easy applying. Specific types of spectral 

methods that more applicable and widely used, are the Galerkin, collocation, and tau 

methods [25-29]. Saadatmandi and Dehghan introduced shifted Legendre operational 

matrix for fractional differential equations [30], Doha derived a new explicit formula for 

shifted Chebyshev polynomials for fractional differential equations [31], Bhrawy used a 

quadrature shifted Legendre tau method for fractional differential equations [32]. 

Recently, Doha introduced shifted Chebyshev operational matrix and applied it with 

spectral methods for solving problems to initial and boundary conditions [33]. 

The importance of Sturm-Liouville problems for spectral methods lies in the fact 

that the spectral approximation of the solution of a functional equation is usually 

regarded as a finite expansion of eigenfunctions of a suitable Sturm-Liouville problem. 
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The Jacobi polynomials
( , )
( )( 0, , 1)

i
P x i play important roles in 

mathematical analysis and its applications [34]. It is proven that Jacobi polynomials are 

precisely the only polynomials arising as eigenfunctions of a singular Sturm-Liouville 

problem [35 - 36]. This class of polynomials comprises all the polynomial solution to 

singular Sturm-Liouville problems on [ 1,1]  . Chebyshev, Legendre, and ultraspherical 

polynomials are particular cases of the Jacobi polynomials. 

In this paper, the shifted Jacobi operational matrices of integration and product is 

introduced, which is based on Jacobi collocation method for solving numerically the 

systems of the linear and nonlinear Fredholm and Volterra integral equations on the 

interval [0,1] , to find the approximate solution ( )
N
u x . The each of equation of the 

systems resulted are collocated at ( 1)N  nodes of the shifted Jacobi- Gauss 

interpolation on(0,1) . These equations generate ( 1)n N  linear or nonlinear algebraic 

equations. The nonlinear systems resulted can be solved using Newton iterative method. 

The remainder of this paper is organized as follows: The Jacobi polynomials and 

their integral and product operational matrices to integral equations are obtained in 

Section 2. Section 3 is devoted to applying the Jacobi operational matrices for solving 

system of integral equations. In Section 4, the proposed method is applied to several 

examples. A conclusion is presented in Section 5. 

 

2. JACOBI POLYNOMIALS AND THEIR OPERATIONAL MATRICES 

 

2.1. Properties of shifted Jacobi polynomials 

        The Jacobi polynomials, associated with the real parameters ( , 1)  are a 

sequence of polynomials 
( , )
( ),( 0,1,2,...)

i
P t i , each of degree i , are orthogonal with 

Jacobi weighted function, ( ) (1 ) ( 1)w x x x  over [ 1,1]I , and  

1
( , ) ( , )

1

( ) ( ) ( ) ,
n m n nm
P t P t w t dt h  

where 
nm

 is Kroneker function and 
12 ( 1) ( 1)

(2 1) ! ( 1)n

n n
h

n n n
. 

These polynomials can be generated with the following recurrence formula; 
2 2

( , ) ( , )

1

( , )

2

( 2 1) ( 2 )( 2 2)
( ) ( )

2 ( )( 2 2)
( 1)( 1)( 2 )

( ), 2,3,...,
( )( 2 2)

i i

i

i t i i
P t P t

i i i
i i i

P t i
i i i

 

where, 

( , )

0
( ) 1,P t   and   

( , )

1

2
( ) .

2 2
P t t  
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In order to use these polynomials on the interval [0,1] , shifted Jacobi polynomials are 

defined by introducing the change of variable 2 1t x . Let the shifted Jacobi 

polynomials
( , )
(2 1)

i
P x be denoted by 

( , )
( )

i
R x , then 

( , )
( )

i
R x  can be generated 

from following formula; 
2 2

( , ) ( , )

1

( , )

2

( 2 1) (2 1)( 2 )( 2 2)
( ) ( )

2 ( )( 2 2)
( 1)( 1)( 2 )

( ), 2, 3,...,
( )( 2 2)

i i

i

i x i i
R x R t

i i i
i i i

R t i
i i i

 (1) 

where, 

( , )

0
( ) 1,R x   and   

( , )

1

2
( ) (2 1) .

2 2
R x x  

Remark. Of this polynomials, the most commonly used are the shifted Gegenbauer 

polynomials, 
,
( ),

S i
C x  the shifted Chebyshev polynomials of the first kind, 

,
( ),

S i
T x  the 

shifted Legendre polynomials, 
,
( ),

S i
P x  the shifted Chebyshev polynomials of the second 

kind, 
,
( ).

S i
U x These orthogonal polynomials are related to the shifted Jacobi 

polynomials by the following relations. 

1 1 1 1
( , ) ( , )
2 2 2 2

, ,

1 1
( , )(0, 0) 2 2

, ,

1 1
! ( ) ! ( )

2 2( ) ( ), ( ) ( ),
1 1

( ) ( )
2 2

1
( 1)! ( )

2( ) ( ), ( ) ( ).
3

( )
2

S i i S i i

S i i S i i

i i
C x R x T x R x

i i

i
P x R x U x R x

i

 

The analytic form of the shifted Jacobi polynomials, 
( , )
( )

i
R x , is given by 

( , )

0

( 1) ( 1) ( 1)
( ) ,

( 1) ( 1)( )! !

i k ki

i
k

i i k x
R x

k i i k k
                          (2)                       

Some properties of the shifted Jacobi polynomials are as follows, 

( , )

( , )

( , ) ( , )

(1) (0) ( 1) ,

(2) (1) ( 1) ,

( 1)
(3) ( ) ( ).

( 1)

i

i

i

i

i
i i

n n ii

i
R

i

i
R

i

n id
R x R x

ndx

 

The orthogonality condition of shifted Jacobi polynomials is 
1

( , ) ( , ) ( , )

0

( ) ( ) ( ) ,
j k k jk
R x R x W x dx                                    (3)   
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where 
( , )
( )W x , shifted weighted function, is as follows,  

( , )
( ) (1 ) ,W x x x and    

1
.

2
k

k

h
 

Lemma 1. The shifted Jacobi polynomial 
( , )
( )

n
R x  can be obtained in the form of: 

( , ) ( )

0

( ) ,
n

n i

n i
i

R x p x  

where ( )n

i
p  are 

( ) ( 1) .n n i

i

n i n
p

i n i
 

Proof. ( )n

i
p can be obtained as, 

 

 

 

Now, using properties (1) and (3) in above, the lemma can be proved.   

Lemma 2. For 0m , one has 
1

( , ) ( , ) ( )

00

( ) ( ) ( 1, 1),
j

m j

j l
l

x R x W x dx p B m l  

where ( , )B s t  is the Beta function and is defined as 

1
1 1

0

( ) ( )
( , ) (1 ) .

( )
s t s t

B s t v v dv
s t

 

Proof. Using Lemma 1 and 
( , )
( ) (1 )W x x x one has 

 
1 1

( , ) ( , ) ( )

00 0
1

( )

0 0

( )

0

( ) ( ) (1 )

(1 )

( 1, 1).

j
m j m l

j l
l

j
j m l

l
l
j

j

l
l

x R x W x dx p x x x x dx

p x x dx

p B m l

 

 

2.2. The approximation of functions 

       Let (0,1) , and for r  (  is the set of all non-negative integers), the 

weighted Sobolov space ( , )( )
r

W
H  is defined in the usual way and is denoted inner 

product, semi-norm and norm by ( , )
,

( , )
r W

u v , ( , )
,r W
v and ( , )

,r W
v , respectively. In 

particular, ( , ) ( , )

2 0( ) ( )
W W
L H , ( , ) ( , )

0,
( , ) ( , )

W W
u v u v  and ( , ) ( , )

0,W W
v v , 

( , )( )

0

1
( ) | .

!

i
n

i n xi

d
p R x

i dx
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( , )( , )
,

( ) | is integrable and ,r

r WW
H f f v  

( , ) ( , )

22

,
0

,
k k

r
k

xr W W
k

v v  

( , ) ( , ),
.r

xr W W
v  

A function ( , )( ) ( )r

W
u x H  can be expanded in 

( , , ) ( , ) ( , ) ( , )

0 1
span ( ), ( ),..., ( )

N

N
R x R x R xP  as the below formula, 

( , )

0

( ) ( ),
j j

j

u x c R x                                              (4) 

where the coefficients 
j
c are given by 

1
( , ) ( , )

0

1
( ) ( ) ( ) , 0,1,2,... .

j j

j

c R x u x W x dx j                    (5) 

By noting in practice, only the first ( 1)N terms shifted polynomials are considered, 

then one has 

 

( , )

0

( ) ( ) ( ) ( ) ,
N

T

N j j
j

u x u x c R x x C                                  (6) 

where 
( , ) ( , ) ( , )

0 1 0 1
[ , ,..., ] , ( ) [ ( ), ( ),..., ( )] .T T

N N
C c c c x R x R x R x         (7)  

Since 
( , , )N
P  is a finite dimensional vector space, ( )u x has a unique best approximation 

from 
( , , )N
P , say 

( , , )
( )

N

N
u x P , that is 

( , ) ( , )

( , , )
, ( ) ( ) ( ) .

N

N W W
y u x u x u x yP  

In [37] is shown that for any ( , )( ) ( )r

W
u x H , r and 0 r , a positive 

constant C  independent of any function, N ,  and  exist that 

( , ) ( , )
2

, ,
( ) ( ) ( ( )) .

r

N W r W
u x u x c N N u                      (8) 

Let ( )u x  is 1N  times continuously differentiable. The following Theorem can 

present an upper bound for estimating the error. 

Theorem 1. Let 
0

( ) : [ ,1]u x x is 1N  times continuously differentiable for 

0
0x , and 

( , , ) ( , ) ( , ) ( , )

0 1
span ( ), ( ),..., ( )

N

N
R x R x R xP . If ( ) ( )T

N
u x x A  is 

the best approximation to ( )u x  from 
( , , )N
P  then the error bound is presented as 

follows: 
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( , )

1

( ) ( ) ( 1, 1),
( 1)!

N

N W

M S
u x u x B

N
 

where 
0

( 1)

[ ,1]
max ( )N

x x
M u x and  

0 0
max ,1S x x . 

Proof. Let consider the Taylor expansion 

 
( ) 0

0 0 0 0

( )
( ) ( ) ( )( ) ... ( )

!

N
N x x

y x u x u x x x u x
N

. Therefore 

1

0( 1)

0
( ) ( ) ( ) , ( ,1),

( 1)!

N

N

N

x x
u x u x u x

N
 

Since ( )T x A  is the best approximation to ( )u x  from
( , , )N
P , and 

( , , )
( )

N
y x P one 

has 

( , ) ( , )

12
2 2 ( , )2( 1)

02
0

( ) ( ) ( ) ( ) ( ) ( ) .
(( 1)!)

W W

N

N

M
u x u x u x y x x x W x dx

N
 

Since 
( , )
( )W x  is always positive in (0,1) , by choosing 

0 0
max ,1S x x  one has 

( , )

12 2( 1) 2 2( 1)
2 ( , )

2 2
0

( ) ( ) ( ) ( 1, 1).
(( 1)!) (( 1)!)

W

N N

N

M S M S
u x u x W x dx B

N N
 

This error bound shows approximation of polynomials converges to ( )u x  as N .  

 

2.3. The Jacobi integral operational matrix 

      In this subsection, Jacobi operational matrix of the integration is derived. Let 

0

( ) ( ),
x

t dt P x                                                       (9) 

where matrix P  is called the Jacobi operational matrix of the integration. 

Theorem 3. Let P  is ( 1) ( 1)N N operational matrix of integral. Then the 

elements of this matrix are obtained as 

( ) ( )

0 0

1 1
( 2, 1), , 0,1,... .

1

ji
i j

ij m n
m nj

P p p B m n i j N
m

 

Proof. Using Eq. (9) and orthogonality property of Jacobi polynomials one has, 

( , )

1

0

( ( ) , ( )) ,
x

T

W
P t dt x  

where ( , )

0

( ( ) , ( ))
x

T

W
t dt x and 

1
 are two( 1) ( 1)N N matrices defined as 

follows, 
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( , ) ( , )

( , ) ( , )

0 0 , 0

( ( ) , ( )) ( ( ) , ( )) ,

N
x x

T

i jW W

i j

t dt x R t dt R x  

1

0

1
diag .

N

j j

 

Set 

( , )

1
( , ) ( , ) ( , ) ( , ) ( , )

0 0 0

( ( ) , ( )) ( ) ( ) ( ) .
x x

ij i j i jW
R t dt R x R t dt R x W x dx  

( , )

0

( )
x

i
R t dt and

( , )
( )

j
R x by using Lemma 1 can be obtained as 

1
( , ) ( )

00

( ) ,
1

x mi
i

i m
m

x
R t dt p

m
 

( , ) ( )

0

( ) , , 0,1,..., .
j

j n

j n
n

R x p x i j N  

Therefore, 
ij

by using Lemma 2 can be obtained as follows, 

1
( ) ( ) 1

0 0 0

( ) ( )

0 0

1
(1 )

1

1
( 2, 1).

1

ji
i j m n

ij m n
m n

ji
i j

m n
m n

p p x x x x dx
m

p p B m n
m

 

So, the elements of matrix P  is obtained as 

( ) ( )

0 0

1 1
( 2, 1), , 0,1,... .

1

ji
i j

ij m n
m nj

P p p B m n i j N
m

 

Now the following theorem can present an upper bound for estimating the error of 

integral operator. The error vector E  is defined as, 

0 1

0

( ) ( ) [ , ,..., ],
x

N
E t dt P x E E E  

where 

( , ) ( , )

00

( ) ( ), 0,1,..., .
x N

k k kj j
j

E R t dt P R x k N  

Theorem 4. If ( , )

( , ) ( , )

00

( ) ( ) ( )
x N

r

k k kj j W
j

E R t dt P R x H , then an error bound 

of integral operator of vector  can be expressed by 

( , )

2 ( ) ( )

,
0 0

( ( )) ( 3, 1).
k k

r k k

k i jW
i j

E c N N B i j r r  
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Proof. By using inequality (8), Lemma 1, and setting 
( , )

0

( ) ( )
x

k
u x R t dt one has 

( , )

( , )

( , )

( , )

2

( , )

,
0

2

( ) 1

0

2

( ) 1

0

1
( , )( ) 1 ( ) 1

0 00

( ) ( ) 2

0 0

( )

1

1

!

( 2)

( )( ) ( )

(1 )

r r

r r

r r

x
r

kr W

W

k
r k i

i
i W

k
k i r

i
i W

k k
r rk i r k j r

i j
i i

k k
k k i j r

i j
i j

u D R t dt

D p x
i

i
p x

i r

x x W x dx

x x
1

0

( ) ( )

0 0

( 3, 1),

r

k k
k k

i j
i j

dx

B i j r r

 

where ( ) ( )!

( 2)
k k

i i

i
p

i r
and the theorem can be proved.   

 

2.4 The product operational matrix 

      The following property of the product of two Jacobi function vector will also be 

applied to solve the Volterra integral equations. 

( ) ( ) ( )Tx x Y Y x                                                  (10) 

where Y is a ( 1) ( 1)N N product operational matrix and it`s elements are 

determined in terms of the vector Y `s elements. Using Eq.(11) and by the orthogonality 

property of Jacobi polynomials the elements 
ij
Y can be calculated as follows, 

1
( , )

0 0
1

( , ) ( , ) ( , ) ( , )

0 0

1
( ( )) ( ( )) ( ( )) ( )

1
( ) ( ) ( ) ( )

1
,

N

ij k i j k
kj

N

k i j k
kj

k ijk

j

Y Y x x x W x dx

Y R x R x R x W x dx

Y h

 

where 

1
( , ) ( , ) ( , ) ( , )

0

( ) ( ) ( ) ( ) .
ijk i j k
h R x R x R x W x dx  
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3. APPLICATIONS OF THE OPERATIONAL MATRICES OF INTEGRATION 

AND PRODUCT 

       In this section, the presented operational matrices are applied to solve the system 

of linear and nonlinear Fredholm and Volterra integral equations. 

 

3.1. The system of Fredholm integral equations 

      A system of Fredholm integral equations can be presented as follows; 
1

1 2
1 0

( ) ( ) ( , ) ( ( ), ( ),..., ( )) , 0 1, 1,2,..., ,
m

i i ij ij n
j

u x f x k x t G u t u t u t dt x i n       (11) 

where 2( , ) [0,1] [0,1]
ij
k x t L , 

i
f  are known functions, and 

ij
G are linear or nonlinear 

functions in terms of unknown functions 
1 2
( ), ( ),...,u x u x and ( )

n
u x . To solve system 

(11), the functions ( )
i
u x , ( )

ij
G t and ( , )

ij
k x t can be approximated as follows, 

( , )

0

( ) ( ) ( ) , ( ) ( ) , ( , ) ( ) ( ),

1,2,..., , 1,2,..., ,

N
i T T T

i j j i ij ij ij ij
j

u x c R x x C G t t Y k x t x K t

i n j m
  (12) 

where 
ij
K and 

ij
Y  are ( 1) ( 1)N N  known matrices and ( 1) 1N unknown 

vectors respectively and  
( , ) ( , ) ( , )

0 1 0 1
[ , ,..., ] , ( ) [ ( ), ( ),..., ( )] .i i i T T

i N N
C c c c x R x R x R x  

With substituting approximations (13) in system (12) one has 
1

1 0
1

1 0

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) , 1,2,..., ,

m
T T T

i i ij ij
j

m
T T

i ij ij
j

m
T

i ij ij
j

x C f x x K t t Y dt

f x x K t t dt Y

f x x K DY i n

                             (13) 

where D  is the following ( 1) ( 1)N N  known matrix, 

1

0

( ) ( ) .TD t t dt  

The system (13) have ( 1)n N  unknown coefficients i

j
c . For collocating, ( 1)N  

roots of Jacobi polynomials 
( , )

( 1)
( )

N
R x  are applied and the equations are collocated at 

them. Unknown coefficients are determined with solving the resulted system of linear or 

nonlinear algebraic equations. 

 

3.2. System of Volterra integral equations 

       A system of Volterra integral equations of the first kind can be presented as 

follows, 
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1 2
1 0

( ) ( , ) ( ( ), ( ),..., ( )) , 0 1, 1,2,..., .
xm

i ij ij n
j

f x k x t G u t u t u t dt x i n     (14) 

By using the approximate relations (12) one has 

1 0

1 0

1 0

1

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ), 1,2,..., ,

xm
T T

i ij ij
j

xm
T T

ij ij
j

xm
T

ij ij
j

m
T

ij ij
j

f x x K t t Y dt

x K t t Y dt

x K Y t dt

x K Y P x i n

                        (15) 

where 
ij
Y  and P  are product and integral operational matrices, respectively. 

Also, a system of Volterra integral equations of the second kind can be presented as 

1 2
1 0

( ) ( ) ( , ) ( ( ), ( ),..., ( )) , 0 1, 1,2,..., .
xm

i i ij ij n
j

u x f x k x t G u t u t u t dt x i n     (16) 

In the same way, the system of following equations is resulted. 

1

( ) ( ) ( ) ( ), 1,2,..., ,
m

T T

i i ij ij
j

x C f x x K Y P x i n              (17) 

By using the first ( 1)N  roots of Jacobi polynomials 
( , )

( 1)
( )

N
R x  and collocated system 

(17), unknown coefficients i

j
c  are determined. 

 

4. ILLUSTRATIVE EXAMPLES 

 

         In this section, the presented method is applied to solve some examples.  

Comparison between the results of present method with the corresponding analytic 

solutions is given. For this purpose, the maximum of absolute error is computed. 

 

Example 1. The following system of linear Volterra integral equations of the second 

kind is considered, 

 

2 2 2

1 1 1 2 3

0 0 0

2 2 2 3

2 2 1 2 3

0 0 0

2 2 3

3 3 1 2

0 0

(2 3) ( ) ( ) ( 2 ) ( ) ( ) ( ) 2 ( ) ,

(1 3 ) ( ) ( ) ( 1) ( ) ( 1) ( ) (2 ) ( ) ,

(3 6) ( ) ( ) ( ) ( ) ( ) ( ) (2

x x x

x x x

x x

x u x f x x t u t dt t x u t dt t u t dt

x u x f x t x u t dt tx x u t dt t x u t dt

x u x f x t x u t dt tx t x u t dt tx 2

3

0

) ( ) ,
x

t u t dt

(18) 
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The exact solutions are 
1
( ) 5 8u x x , 2

2
( ) 2 5u x x  and 2

3
( ) 1u x x x . By 

the applying the technique described in pervious section with 4N , solutions and 

kernels are approximated as: 

 
2

1 1 2 2 3 3 1
( ) ( ) , ( ) ( ) , ( ) ( ) , 2 ( ) ( ),T T T Tu x x C u x x C u x x C x t x K t  

2

2 3 4
( ) ( ), 2 ( ) ( ), ( 1) ( ) ( ),T T Tt x x K t t x K t t x x K t  

2 2 3

5 6 7
( 1) ( ) ( ), 2 ( ) ( ), ( ) ( ),T T Ttx x x K t t x x K t t x x K t  

2 3 2

8 9
( ) ( ) ( ), 2 ( ) ( ).T Ttx t x x K t tx t x K t  

The system (18) by using above equations is rewritten as, 

2

1 1 1 2 2 3 3
2

2 4 1 5 2 6 3
2

3 7 1 8 2 9 3

(2 3) ( ) ( ) ( ) 0,

(1 3 ) ( ) ( ) ( ) 0,

(3 6) ( ) ( ) ( ) 0,

T T

T T

T T

x x C x K C K C K C P x

x x C x K C K C K C P x

x x C x K C K C K C P x

              (19) 

where 
1
,C

2
C  and 

3
C  are the operational matrices of product corresponding to unknown 

vectors 
1
,C

2
C  and 

3
C . Now using the roots of 

( , )

5
( )R x  and collocating the system 

(19), reduces the problem to solve a system of algebraic equations. Unknown 

coefficients are obtained for some values of parameters  and . Maximum absolute 

error for 4N  and different values of  and has been listed in Table 1. 

 

 

Table 1.  Maximum absolute error for 4N  and different values of  and  for 

Example 1. 

  
1

Error( )u  
2

Error( )u  
3

Error( )u  

0  0  194.3318 10  195.2481 10  193.9353 10  
1 / 2  1 / 2  197.7181 10  

181.3351 10  196.8203 10  

1 / 2  1 / 2  181.1087 10  182.0769 10  
192.2193 10  

1 / 2  1 / 2  196.0000 10  183.7000 10  195.0000 10  

1 / 10  1 / 10  194.6320 10  181.9372 10  192.2075 10  

1 / 4  1 / 4  194.4035 10  
181.2295 10  

192.3332 10  

1  1  191.0000 10  
193.2610 10  191.7659 10  

1 / 2  2  182.2000 10  
182.9000 10  

192.9096 10  
1 / 2  3 / 2  183.1000 10  

184.0000 10  
196.0000 10  

 

 

Table 1 shows that a good approximation can be achieved for the exact solutions by 

using a few terms of shifted Jacobi polynomials for various values of parameters  and 

. 
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Example 2. Consider the following system of linear Fredholm integral equation of 

second kind, 
1 1

1 2 1 1 2

0 0
1 1

1 2 2 1 2

0 0

2 ( ) 3 ( ) ( ) ( ) ( ) ( ) ,

3 ( ) 4 ( ) ( ) (2 1) ( ) ( ) ( ) ,

u x u x f x x t u t dt xt u t dt

u x u x f x xt u t dt x t u t dt

                  (20) 

The exact solutions are 
1
( ) xu x e  and 

2

1
( )

2
u x

x
. With 15N , solutions and 

kernels are approximated as: 

1 1 2 2 1 2
( ) ( ) , ( ) ( ) , ( ) ( ), ( ) ( ),T T T Tu x x C u x x C x t x K t xt x K t  

1

3 4

0

2 1 ( ) ( ), ( ) ( ), ( ) ( ) .T T Txt x K t x t x K t D t t dt  

The system (20) by using above equations is rewritten as, 

1 2 1 1 2 2 1

1 2 3 1 4 2 2

2 ( ) 3 ( ) ( ) ( ) ( ) 0,

3 ( ) 4 ( ) ( ) ( ) ( ) 0.

T T T T

T T T T

x C x C x K DC x K DC f x

x C x C x K DC x K DC f x
             (21) 

Now using the roots of 
( , )

16
( )R x  and collocating the system (21), reduces the problem 

to solve a system of linear algebraic equations. Solving the system (21), the unknown 

coefficients will be obtained. Table 2 displays the maximum absolute errors for various 

 and  with 15N . 

 

 

Table 2.  Maximum absolute error for 15N  and different values of  and  for 

Example 2. 

  
1

Error( )u  
2

Error( )u  

0  0  195.0000 10  123.9674 10  

1 / 2  1 / 2  156.9086 10  129.3060 10  
1 / 2  1 / 2  158.9852 10  

111.5421 10  
1 / 2  1 / 2  153.9721 10  111.0900 10  

1 / 4  1 / 4  152.4026 10  126.2759 10  

1 / 10  1 / 10  165.1630 10  
123.2245 10  

1  1  142.5056 10  111.7895 10  

2  2  131.1916 10  114.7403 10  

3 / 2  4  121.1211 10  104.6047 10  
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Example 3. Consider the following system of linear Fredholm integral equation of 

second kind, 

2

1 1

1 1 1 2

0 0
1 1

2 2 1 2

0 0

( ) ( ) cos( ) ( ) c sin( ) ( ) ,

( ) ( ) ( ) ( ) ( ) .xt

u x f x t x u t dt x t u t dt

u x f x e u t dt x t u t dt

                   (22) 

The exact solutions are 
1
( )u x x  and 

2
( ) cos( )u x x . With 15N , solutions and 

kernels are approximated as: 

1 1 2 2 1 2
( ) ( ) , ( ) ( ) , cos( ) ( ) ( ), sin( ) ( ) ( ),T T T Tu x x C u x x C t x x K t x t x K t

1
2

3 4

0

exp( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) .T T Txt x K t x t x K t D t t dt  

The system (22) by using above equations is rewritten as, 

1 1 1 2 2 1

2 3 1 4 2 2

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0.

T T T

T T T

x C x K DC x K DC f x

x C x K DC x K DC f x
                      (23) 

Now using the roots of 
( , )

16
( )R x  and collocating the system (23), reduces the problem 

to solve a system of linear algebraic equations. Solving the system (23), the unknown 

coefficients will be obtained. Table 3 displays the maximum absolute errors for various 

 and  with 15N . 

 

Table 3.  Maximum absolute error for 15N  and different values of  and  for 

Example 3. 

  
1

Error( )u  
2

Error( )u  

0  0  191.6312 10  192.9000 10  
1 / 2  1 / 2  191.9606 10  197.5000 10  

1 / 2  1 / 2  207.2797 10  
181.1800 10  

1 / 2  1 / 2  191.5170 10  
194.1000 10  

1 / 4  1 / 4  191.0582 10  194.0000 10  
1 / 10  1 / 10  207.9882 10  

192.2000 10  

1  1  194.7951 10  
181.1800 10  

2  2  199.2145 10  
185.8800 10  

3 / 2  4  172.9567 10  177.6829 10  
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Example 4. In this example, the following nonlinear Volterra integral equation of first 

kind is considered, 

1 1 2 1

0

2 1 2 2

0

( ( ) ( ) ( ) ( )) ( ),

( ( ) ( ) ( ) ( )) ( ).

x

x

u t x t u t u t dt f x

u t x t u t u t dt f x

                                  (24) 

The exact solutions are 
1
( ) xu x x e  and 

1
( ) xu x x e . With 15N , solutions 

and kernels are approximated as: 

1 1 2 2 1 2
( ) ( ) , ( ) ( ) , 1 ( ) ( ), ( ) ( ),T T T Tu x x C u x x C x K t x t x K t

1 2 1 2
( ) ( ) ( ),Tu x u x C C x  

The system (24) by using above equations is rewritten as, 

1 1 2 1

1 2 2 2

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

T

T

x KC K E P x f x

x KC K E P x f x
                                (25) 

where 
1
,C  

2
C and E are the operational matrices of product corresponding with the 

vectors 
1
,C  

2
C and 

2 1

TE C C , respectively. Now using the roots of 
( , )

11
( )R x  and 

collocating the each equation of system (25), reduces the problem to solve a system of 

nonlinear algebraic equations. Solving the system (25) by Newton iterative method, the 

unknown coefficients will be obtained. Table 4 displays the maximum absolute errors 

for various  and  with 10N . 

 

Table 4.  Maximum absolute error for 10N  and different values of  and  for 

Example 4. 

  
1

Error( )u  
2

Error( )u  

0  0  83.8374 10  83.8374 10  

1 / 2  1 / 2  85.2040 10  
85.2040 10  

1 / 2  1 / 2  87.7868 10  87.7868 10  

1 / 2  1 / 2  81.6827 10  81.6827 10  

1 / 4  1 / 4  84.5072 10  81.6827 10  

1 / 10  1 / 10  83.5742 10  83.5742 10  

1  1  86.6291 10  
86.6291 10  

2  2  89.5316 10  
89.5316 10  

3 / 2  4  82.4651 10  
82.4651 10  

 

 

 

Example 5. Fifth example covers the system of nonlinear Volterra integral equation of 

second kind, 
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1 1 2 1

0

2 2

2 1 2 2

0 0

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

x

x x

f x u t u t dt u x

f x u t dt u t dt u x

                                  (26) 

The exact solutions are 
1
( ) cos( )u x x  and 

1
( ) sin( )u x x . Solutions and kernels are 

approximated as: 

1 1 2 2 1
( ) ( ) , ( ) ( ) , 1 ( ) ( ),T T Tu x x C u x x C x K t  

2 2

1 2 1 2 1 1 1 2 2 2
( ) ( ) ( ), ( ) ( ), ( ) ( ),T T Tu x u x C C x u x C C x u x C C x  

The system (26) by using above equations is rewritten as, 

1 1 1 1

2 1 2 3 2

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0,

T T

T T

x C x K E P x f x

x C x K E E P x f x
                                (27) 

where 
1
,E

2
E and 

3
E are the operational matrices of product corresponding with the 

vectors 
2 1
,TC C

1 1

TC C and 
2 2

TE C C , respectively. The maximum absolute errors for 

0  and 7,10,15N are listed in Table 5. Also, using the roots of 
( , )

16
( )R x  

and collocating the each equation of system (27), reduces the problem to solve a system 

of nonlinear algebraic equations. Solving the system (27) by Newton iterative method, 

the unknown coefficients will be obtained. Table 6 displays the maximum absolute 

errors for various  and  with 15N . 

 

Table 5.  Maximum absolute error for 7,10,15N  and 0  for Example 5. 

N  
1

Error( )u  
2

Error( )u  

7  81.2965 10  91.6179 10  

10  138.1745 10  146.2637 10  

15  192.1000 10  
192.0000 10  

 

Table 6.  Maximum absolute error for 15N  and different values of  and  for 

Example 5. 

  
1

Error( )u  
2

Error( )u  

1 / 2  1 / 2  116.7470 10  
101.5516 10  

1 / 2  1 / 2  124.3616 10  111.1754 10  

1 / 2  1 / 2  102.8278 10  
101.6280 10  

1  1  124.4401 10  
112.4305 10  

2  2  113.5172 10  118.2047 10  

4  4  81.5692 10  82.8878 10  

1 / 4  1 / 10  113.4748 10  
115.6251 10  
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5. CONCLUTION 

 

In this paper, the shifted Jacobi collocation method was employed to solve a 

class of systems of Fredholm and Volterra integral equations of first and second kinds. 

First, a general formulation for the Jacobi operational matrix of integral has been 

derived. This matrix is used to approximate numerical solution of system of linear and 

nonlinear Volterra integral equations. Proposed approach was based on the shifted 

Jacobi collocation method. The solutions obtained using the proposed method shows 

that this method is a powerful mathematical tool for solving the integral equations. 

Proving the convergence of the method, consistency and stability are ensured 

automatically. Moreover, only a small number of shifted Jacobi polynomials are needed 

to obtain a satisfactory result. 
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