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Abstract- The order relation of fuzzy number is important in decision making and 

optimization modeling, and ranking fuzzy numbers is difficult in nature. Ranking 

trapezoidal intuitionistic fuzzy numbers (TrIFNs) is more difficult due to the fact that 

the TrIFNs are a generalization of the fuzzy numbers. The aim of this paper is to 

develop a new methodology for ranking TrIFNs. We define the value-index and 

ambiguity-index based on the value and ambiguity of the membership and 

non-membership functions, and then propose a difference-index based ranking method, 

which is applied to multiattribute decision making (MADM) problems. The proposed 

method is compared to show its advantages and applicability.  
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1. INTRODUCTION 

 

There is always existing uncertainty and imprecision in real-life decision making, 

the concept of the intuitionistic fuzzy (IF) set (IFS), introduced by Atanassov[1], is 

considered as a representation for these uncertain factors in real-life decision situations. 

Trapezoidal intuitionistic fuzzy numbers (TrIFNs) are special cases of IFSs defined on 

the set of real numbers, which may deal with more ill-known quantities, knowledge or 

experience. So TrIFNs play an important role in decision making and optimization 

modeling [2-4].  

 

Different ranking methods of fuzzy numbers maybe produce different ranking 

results, which can bring some difficulties for decision makers. In addition, ranking 

fuzzy numbers is difficult in nature, especially the ranking methods of IF and IFS. 

Nowadays, there are some researches on the field. Nayagam et al. [5] described a type 

of special IFNs and introduced a scoring method of the special IFNs, which is a 

generalization of the scoring method for ranking fuzzy numbers. Zhang and Xu 

[6]propose a new method for ranking intuitionistic fuzzy values (IFVs) by using the 

similarity measure and the accuracy degree.Dymova et al. [7]proposed a new approach 

to estimate the strength of relations between real-valued and interval-valued IF values 

by the score and accuracy functions. Shu et al. (2006) developed an algorithm of the IF 

fault tree analysis for triangular IF numbers (TIFNs). Li [9] proposed a ratio ranking 

method of TIFNs based on the concept of value-index and ambiguity-index. Li et al. [10] 
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proposed a value and ambiguity based ranking method through defining the values and 

ambiguities of the membership and non-membership degrees for TIFNs.Wang and 

Zhang [2] defined the TrIFNs and gave a ranking method, which transformed the 

ranking of TrIFNs into the ranking of interval numbers.  

 

From the existing research results, we can see that there exists little investigation 

on the ranking of TrIFNs. In addition, the TrIFNs are a generalization of IF numbers, 

and which are commonly used in real decision problems with the lack of information or 

imprecision of the available information in real situations is more serious. So the 

research of ranking TrIFNs is very necessary. However, the ranking problem is more 

difficult than ranking fuzzy numbers due to additional non-membership 

functions[7-14].The possibility value and possibility ambiguity are the important 

mathematical characteristics of fuzzy numbers. Therefore, introducing the value-index 

and ambiguity-index based ranking method is developed for TrIFNs and used in 

MADM problems. Compared with the existing research, the proposed method has a 

natural appealing interpretation and possesses some good properties such as the 

linearity , as well as it is more easily to be handled and calculated. And the method can 

be extended to more general IFNs. So the proposed method is of a great importance for 

scientific researches and real applications. 

 

This paper is organized as follows. In Section 2, the concepts of TrIFNs and 

arithmetical operations as well as cut sets are introduced. Section 3 defines the concepts 

of value-index and ambiguity-index based on the value and ambiguity of the 

membership and non-membership functions. Hereby a difference-index based ranking 

method is developed. Section 4 formulates MADM problems with TrIFNs, which is 

solved by using the extended simple weighted average method according to the 

proposed ranking method. A numerical example and comparison analysis are given in 

Section 5. Section 6 contains the conclusion.  

 

2. TRIFNS AND CUT SETS 

 

2.1. The definition and operations of TrIFNs  

A TrIFN 1 2( , , , ); ,a aa a a a a w u   is a special IFS on a real number set R , 

whose membership function and non-membership function are given as follows:  

1 1

1 2

2 2

( ) / ( ) ( )

                ( )
( )

( ) / ( ) ( )

0                    ( , )

a

a

a

a

x a w a a a x a

w a x a
x

a x w a a a x a

x a x a



   


 
 

   
  

                      (1) 

and  



 

 

A Difference-Index Based Ranking Method of Trapezoidal Intuitionistic Fuzzy   27 

 

 

1 1 1

1 2

2 2 2

[ ( )] / ( ) ( )

                           ( )
( )

[ ( )] / ( ) ( )

1                               ( , )

a

a

a

a

a x u x a a a a x a

u a x a
x

x a u a x a a a x a

x a x a



     


 
 

     
  

                 (2) 

respectively, depicted as in Fig. 1. aw  and au  respectively represent the maximum 

membership degree and minimum non-membership degree so that they satisfy the 

conditions: 0 1aw  , 0 1au   and 0 1a aw u   . ( ) 1 ( ) ( )a a ax x x      is an IF 

index of an element x  in a .  

 

 
Figure 1. A TrIFN 

1 2( , , , ); ,a aa a a a a w u   

 

A TrIFN 1 2( , , , ); ,a aa a a a a w u   may express an approximate range of a closed 

interval 1 2[ , ]a a , which is approximately equal to 1 2[ , ]a a . Namely, the ill-known 

quantity “approximate 1 2[ , ]a a ” is expressed using any value between a  and a  with 

different membership and non-membership degrees. Where ( ) ( ) 1a ax x    for any 

Rx  if 1aw   and 0au  . Hence, the TrIFN 1 2( , , , ); ,a aa a a a a w u   degenerates to 

1 2( , , , );1,0a a a a a  , which is just about a trapezoid fuzzy number [15]. On the other 

hand, if b c  then ( , , , ); ,
A A

A a b c d w u   degenerates to ( , , ); ,
A A

A a b d w u  , 

which is a TIFN.  

For any TrIFNs 1 2( , , , ); ,a aa a a a a w u   and 1 2( , , , ); ,
b b

b b b b b w u  , we 

stipulate the arithmetical operations as follows:  
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where the symbols “  ” and “ ” are the min and max operators, respectively.  

 

2.2 Cut sets of TrIFNs  

A  -cut set of a TrIFN a  is a crisp subset of R , which can be expressed as 

{ | ( ) }aa x x    , where 0 aw  . A  -cut set of a TrIFN a  is a crisp subset of 

R , which can be expressed as { | ( ) }aa x x    , where 1au   . And it directly 

follows from membership and non-membership functions of a TrIFN that a  and a  

are closed intervals, denoted by [ ( ), ( )]a aa L R    and [ ( ), ( )]a aa L R   , which can 

be calculated as follows:  
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3. A DIFFERENCE-INDEX BASED RANKING METHOD 

 

3.1. Value and ambiguity of a TrIFN 

The values of the membership and non-membership functions for a TrIFN 

1 2( , , , ); ,a aa a a a a w u   are defined as follows:  
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respectively, where ( )f   is a non-negative and non-decreasing function on the interval 

[0, ]aw  with (0) 0f   and ( )=1af w ; ( )g   is a non-negative and non-increasing 

function on the interval [ ,1]au  with ( )=1ag u  and (1) 0g  . Obviously, ( )f   and 

( )g   can be considered as weighting functions, and have various specific forms in 

actual applications, which can be chosen according to the real-life situations. Here,  

( ) / af w    ( [0, ]aw  )                      (13) 

and  

( ) (1 ) /(1 )ag u      ( [ ,1]au  ).                   (14) 

The function ( )f   gives different weights to elements at different  -cuts so 

that it can lessen the contribution of the lower  -cuts, since these cuts arising from 

values of ( )a x  have a considerable amount of uncertainty. Therefore, ( )V a  and ( )V a  

synthetically reflects the information on membership and non-membership degrees.  

According to Eqs. (9), (11) and (13), the value of the membership function of a 

TrIFN a  is calculated as follows:  



 

 

A Difference-Index Based Ranking Method of Trapezoidal Intuitionistic Fuzzy   29 

 

 

 

1 2

0

32

1 21 2
02

( ) ( )
( ) [ ] d

2 2

( 2 2 )( )( )
[ ] |

4 6( ) 12

a

a

w
a a

a a a

w a

a a

w a a w a a
V a

w w w

a a a a wa a a aa a

w w



    




   
 

    
  



.         

(15) 

In a similar way, according to Eqs. (10), (12) and (14), the value of the 

non-membership function can be obtained as follows: 

1 2( 2 2 )(1 )
( )

12

aa a a a u
V a

   
 .                    (16) 

It is directly derived from the condition 0 1a aw u    that 0 ( ) ( )V a V a   , 

which may be concisely expressed as an interval [ ( ), ( )]V a V a  . Thus, ( )V a  and ( )V a  

have some useful properties, which are summarized as in Theorems 1 and 2, 

respectively.  

Theorem 1. Assume that 1 2( , , , ); ,a aa a a a a w u   and 1 2( , , , ); ,
b b

b b b b b w u   are two 

TrIFNs with 
a b

w w  and 
a b

u u . Then, ( ) ( ) ( )V a b V a V b     .  

Proof. According to Eq. (3) with 
a b

w w  and
a b

u u , we have 

1 1 2 2( , , , ); ,a aa b a b a b a b a b w u       . Using Eq. (15), we obtain  
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Thus, Theorem 1 has been proven. 

 In the same way to Theorem 1, we can prove Theorem 2 as follows. . 

Theorem 2. Assume that  1 2( , , , ); ,a aa a a a a w u   and 1 2( , , , ); ,
b b

b b b b b w u   are 

two TrIFNs with 
a b

w w  and 
a b

u u . Then, ( ) ( ) ( )V a b V a V b     .  

The ambiguities of the membership and non-membership functions for a TrIFN 

a  are defined as follows:  

0
( ) ( ( ) ( )) ( )d

aw

a aA a R L f                       (17) 

and  
1

( ) ( ( ) ( )) ( )d
a

a a
u

A a R L g                        (18) 

( ) ( )a aR L   and ( ) ( )a aR L   are just about the lengths of the intervals a  

and a , respectively. Thus, ( )A a  and ( )A a  may be regarded as the “global 

spreads” of the membership and the non-membership functions. Obviously, ( )A a  and 

( )A a  basically measure how much there is uncertainty in a . obviously, ( ) 0A a   

and ( ) 0A a  .  

According to Eqs. (9), (13) and (17), the ambiguity of the membership function 

of a TrIFN a  is calculated as follows: 
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Likewise, according to Eqs. (10), (14) and (18), the ambiguity of the 

non-membership function of a TrIFN a  is calculated as follows:  
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It is noted that 0 1a aw u   . Hence, ( ) ( )A a A a  . Thus, the ambiguities of 

the membership and non-membership functions of a TrIFN a  can be expressed as an 

interval [ ( ), ( )]A a A a  . ( )A a  and ( )A a  have some useful properties, which are 

summarized as in Theorems 3 and 4, respectively.  

Theorem 3. Assume that 1 2( , , , ); ,a aa a a a a w u   and 1 2( , , , ); ,
b b

b b b b b w u   are two 

TrIFNs with 
a b

w w  and 
a b

u u . Then, ( ) ( ) ( )A a b A a A b     .  

Proof. According to Eq. (3) with 
a b

w w  and 
a b

u u , we have 

1 1 2 2( , , , ); ,a aa b a b a b a b a b w u       . Using Eq. (19), we obtain  
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Thus, Theorem 3 has been proven.  

In the same way to Theorem 3, we can prove Theorem 4 as follows.  

Theorem 4. Assume that 1 2( , , , ); ,a aa a a a a w u   and 1 2( , , , ); ,
b b

b b b b b w u   are two 

TrIFNs with 
a b

w w  and 
a b

u u . Then, ( ) ( ) ( )A a b A a A b     .  

 

3.2. The difference-index based ranking method 

In this subsection, we propose a new ranking method based on the 

difference-index of the value-index to the ambiguity-index for a TrIFN. 

A value-index and an ambiguity-index for a TrIFN a  are defined as follows:  

( , ) ( ) ( ( ) ( ))V a V a V a V a                          (21) 

and  

( , ) ( ) ( ( ) ( ))A a A a A a A a                         (22) 

respectively, where [0,1]  is a weight which represents the decision maker’s 

preference information. [0,1/ 2)  shows that decision maker prefers to uncertainty or 

negative feeling; (1 / 2,1]  shows that the decision maker prefers to certainty or 

positive feeling; 1 / 2   shows that the decision maker is indifferent between positive 

feeling and negative feeling. Therefore, the value-index and the ambiguity-index may 

reflect the decision maker’s subjectivity attitude to the TrIFN.  

Remark 1. It is easily seen that the value-index ( , )V a   should be maximized whereas 

the ambiguity-index ( , )A a   should be minimized. Furthermore, ( , )V a   and ( , )A a   
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have some useful properties, which are summarized as in Theorems 5-7, respectively.  

Theorem 5. ( , )V a   and ( , )A a   are continuous non-decreasing and non-increasing 

functions of the parameter [0,1] , respectively.  

Proof. It is known that ( , )V a   and ( , )A a   are linear functions of [0,1] . Hence, 

they are continuous functions of [0,1] . According to Eqs. (21) and (22), partial 

derivatives of ( , )V a   and ( , )A a   with respect to [0,1]  can be calculated as 

follows: 

d ( , )
( ) ( )

d

V a
V a V a  




 , 

d ( , )
( ) ( )

d

A a
A a A a 




    

Noted that ( ) ( )V a V a   and ( ) ( )A a A a  . Therefore, 
d ( , )

0
d

V a





 and 

d ( , )
0

d

A a





. Hence, ( , )V a   and ( , )A a   are non-decreasing and non-increasing 

functions of the parameter [0,1] , respectively.  

Theorem 6. Assume that 1 2( , , , ); ,a aa a a a a w u   and 1 2( , , , ); ,
b b

b b b b b w u   are two 

TrIFNs with 
a b

w w  and 
a b

u u . Then, ( , ) ( , ) ( , )V a b V a V b     , where [0,1] .  

Proof. Using Eq. (21), we have ( , ) ( ) [ ( ) ( )]V a b V a b V a b V a b          . 

Combining with Theorems 1 and 2, we obtain 

( , ) ( ( ) ( )) [( ( ) ( )) ( ( ) ( ))]

                 [ ( ) ( ( ) ( ))] [ ( ) ( ( ) ( ))]

                 ( , ) ( , )

V a b V a V b V a V b V a V b

V a V a V a V b V b V b

V a V b

     

     

 

 

 

      

     

 

  

Thus, Theorem 6 has been proven. 

Theorem 7. Assume that 1 2( , , , ); ,a aa a a a a w u   and 1 2( , , , ); ,
b b

b b b b b w u   are two 

TrIFNs with 
a b

w w  and 
a b

u u . Then, ( , ) ( , ) ( , )A a b A a A b     , where [0,1] .  

In the same way to Theorem 6, combining with Theorems 3 and 4, Theorem 7 

can be easily proved. 

A difference-index of a TrIFN a  is defined as follows:  

           ( , ) ( , ) ( , )a V a A a                              (23) 

Theorem 8. Assume that 1 2( , , , ); ,a aa a a a a w u   and 1 2( , , , ); ,
b b

b b b b b w u   are two 

TrIFNs with 
a b

w w  and 
a b

u u . Then, ( , ) ( , ) ( , )a b a b        , where [0,1] .  

Proof. According to Theorems 7 and 8, it is derived from Eq. (23) that  

( , ) ( , ) ( , ) ( ( , ) ( , )) ( ( , ) ( , ))

                 ( ( , ) ( , )) ( ( , ) ( , )) ( , ) ( , ).

a b V a b A a b V a V b A a A b

V a A a V b A b A b

         

       

      

     
  

Thus, Theorem 8 has been proven. 

Theorem 8 shows that the difference-index ( , )A   is a linear function of any 

TrIFNs. Furthermore, it is can be seen that the larger the difference-index the bigger the 

TrIFN. Thus, we propose the difference-index based ranking method of TrIFNs as 

follows.  
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Definition 1. Assume that [0,1] . For any TrIFNs 1 2( , , , ); ,a aa a a a a w u   and 

1 2( , , , ); ,
b b

b b b b b w u  , we stipulate:  

(1) ( , ) ( , )a b     if and only if a  is bigger than b , denoted by a b ;  

(2) ( , ) ( , )a b     if and only if a  is equal to b , denoted by a b ;  

(3) ( , ) ( , )a b     if and only if a b  or a b .  

The proposed ranking method satisfies five properties proposed by Wang and 

Kerre [16], which serve as the reasonable properties for the ordering of fuzzy quantities. 

In addition, it is a kind of two-index approaches, which aggregates both the value-index 

and ambiguity-index. Especially, this method satisfies the linearity.  

Theorem 9. The difference-index based ranking method of TrIFNs has the following 

properties.  

(P1) For a TrIFN a , then a a ;  

(P2) For any TrIFNs a  and b , if a b  and b a , then a b ; 

(P3) For any TrIFNs a , b  and c , if a b  and b c , then a c ;  

(P4) Assume that 1F  and 2F  are two arbitrary finite subsets of TrFNs. For any 

TrIFNs 1 2a F F  and 
1 2b F F , then a b  on 1F  if and only if b a  on 2F ;  

(P5) For any TrIFNs 1 2( , , , ); ,a aa a a a a w u  , 1 2( , , , ); ,
b b

b b b b b w u   and 

1 2( , , , ); ,c cc c c c c w u   with 
a b

w w  and 
a b

u u , if a b , then a c b c   .  

Proof. Using Definition 1 and Eq. (23), Theorem 9 can be proven in a similar way to 

that Wang and Kerre (2001) (omitted).  

 

4. AN EXTENDED MADM METHOD USING THE DIFFERENCE-INDEX 

BASED RANKING METHOD 

 

In this section, we will extend the simple weighted average method to solve the 

MADM problems with TrIFNs. Suppose that there exists an alternative set 

1 2{ , , , }mA A A A , which consists of m  non-inferior alternatives from which the most 

preferred alternative has to be selected. Each alternative is assessed on n  attributes. 

Denote the set of all attributes by 1 2{ , , , }nX X X X . Assume that ratings of alternatives 

on attributes are expressed with TrIFNs. Namely, the rating of each alternative iA A  

( 1, 2, ,i m ) on every attribute jX X  ( 1, 2, ,j n ) is given as a TrIFN 

1 2( , , , ); ,
ij ijij ij ij ij ij a aa a a a a w u  . Thus, an MADM problem with TrIFNs can be expressed 

concisely in the matrix format as ( )ij m na  . Due to the fact that attributes may have 

different importance degree. Assume that the relative weight of the attribute jX  is j  

( 1, 2, ,j n ), which should satisfy the normalization conditions: [0,1]j   and 

1

1
n

j
j

 . Let T

1 2( , , , )n    be the relative weight vector of all attributes. The 

extended simple weighted average method for the MADM problems with TrIFNs can be 

summarized as follows:  

(a) Normalize the TrIFN decision matrix. In order to eliminate the effect of different 

physical dimensions on the final decision making results, the normalized TrIFN 
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decision matrix can be calculated using the following formulae: 

 
1 2

( , , , ); ,
ij ij

ij ij ij ij

ij a a

j j j j

a a aa
r w u

a a a a   
    ( 1, 2, ,i m ; j B )              (24) 

and  

2 1

( , , , ); ,
ij ij

j j j j

ij a a

ijij ij ij

a a a a
r w u

a a a a

   

    ( 1, 2, ,i m ; j C )             (25) 

respectively, where B  and C  are the sets of benefit attributes and cost attributes, and 

max{ | 1,2, , }j ija a i m    and min{ | 1,2, , }j ija a i m

  ( 1, 2, , )j n . For 

convenience, all 
ijr  ( 1, 2, ,i m ; 1, 2, ,j n ) are uniformly denoted by 

1 2( , , , ); ,
ij ijijij ij ij ij r rr r r r r w u  , where 

ij ijr aw w  and 
ij ijr au u .  

(b) Construct the weighted normalized TrIFN decision matrix. Using Eq. (7), the 

weighted normalized TrIFN decision matrix can be calculated as ( )ij m nu  , where 

1 2( , , , ); ,
ij ijijij j ij j j ij j ij j ij r ru r r r r r w u         ( 1, 2, ,i m ; 1, 2, ,j n )     (26) 

(c) Calculate the weighted comprehensive values of alternatives. Using Eq. (3), 

the weighted comprehensive values of alternatives iA  ( 1, 2, ,i m ) are calculated as 

follows: 

1 2
1 1

1 1 1 1 1

( , , , );min{ },max{ }
ij ij

n n n n n

iji ij j j ij j ij j ij r r
j n j n

j j j j j

S u r r r r w u
   

    

            ( 1, 2, ,i m )   

(27) 

respectively. Obviously, 
iS  ( 1, 2, ,i m ) are TrIFNs.  

(d) Rank alternatives. For a given weight [0,1] , using Eq. (23), we compute 

( , )iS   for each alternative. The ranking order of the alternatives iA  ( 1, 2, ,i m ) is 

generated according to the non-increasing order of the difference-indexes ( , )iS  . The 

best alternative is the one with the largest difference-index, i.e., 

max{ ( , ) | 1,2, , }iS i m  .  

 

5. APPLICATION AND COMPARISON ANALYSIS  

 

In this section, an example for a multiattribute decision making problem of 

alternatives is used with the proposed method, and compared to show its advantages and 

applicability. Due to information of compared examples are expressed with TIFN, and 

TIFN is a special form of TrIFN, so we use TIFN in the numerical example. 

 

5.1. A personnel selection problem and analysis process 

The proposed decision method is illustrated with a personnel selection problem, 

which is adapted from [9] and [10]. Suppose that a software company desires to hire a 

system analyst. After preliminary screening, three candidates (i.e., alternatives) 1A , 2A  

and 3A  remain for further evaluation. The decision making committee assesses the 

three candidates based on five attributes, including emotional steadiness ( 1X ), oral 

communication skill ( 2X ), personality ( 3X ), past experience ( 4X ) and self-confidence 
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( 5X ). The ratings of the candidates with respect to attributes are given in Tab.1, where 

<(5.7,7.7,9.3);0.7,0.2> in the Table 1 is an TIFN which indicates that the mark of the 

candidate 1 1A  with respect to the attribute 1X  is about 7.7 with the maximum 

satisfaction degree is 0.7, while the minimum non-satisfaction degree is 0.2. In other 

words, the hesitation degree is 0.1. Other TIFNs in Table 1 are explained similarly. 

Since the five attributes are benefit attributes, according to Eqs. (24) and (26), the 

weighted normalized TIFN decision matrix is obtained as in Table 2. 

 

Table 1. The TIFN decision matrix 

Candidates 
Attributes 

1X  2X  3X  4X  5X  

1A  
<(5.7,7.7,9.3); 

0.7,0.2> 

<(5,7,9); 

0.6,0.3> 

<(5.7,7.7,9); 

0.8,0.1> 

<(8.33,9.67,10); 

0.6,0.4> 

<(3,5,7); 

0.6,0.3> 

2A  
<(6.5,8.6,10); 

0.4,0.5> 

<(8,9,10); 

0.6,0.3> 

<(8.3,9.7,10); 

0.7,0.2> 

<(8,9,10); 

0.6,0.3> 

<(7,9,10); 

0.6,0.2> 

3A  
<(6.5,8.2,9.3); 

0.8,0.1> 

<(7,9,10); 

0.7,0.2> 

<(0,9,10); 

0.5,0.2> 

<(6,8,9); 

0.6,0.2> 

<(6.3,8.3,9.7); 

0.7,0.2> 

 

Table 2. The weighted normalized TIFN decision matrix 

Candi

dates 

Attributes 

1X  
2X  

3X  
4X  

5X  

1A  
<(0.083,0.111,0134); 

0.7,0.2> 

<(0.15,0.21,0.27)

;0.6,0.3> 

<(0.068,0.092,0.108);

0.8,0.1> 

<(0.249,0.291,0.3);

0.6,0.4> 

<(0.042,0.07,0.098); 

0.6,0.3> 

2A  
<(0.091,0.12,0.14); 

0.4,0.5> 

<(0.24,0.27,0.3); 

0.6,0.3> 

<(0.1,0.116,0.12); 

0.7,0.2> 

<(0.24,0.27,0.3); 

0.6,0.3> 

<(0.098,0.126,0.14); 

0.6,0.2> 

3A  
<(0.091,0.115,0.13); 

0.8,0.1> 

<(0.21,0.27,0.3); 

0.7,0.2> 

<(0.084,0.108,0.12); 

0.5,0.2> 

<(0.18,0.24,0.27); 

0.6,0.2> 

<(0.088,0.116,0.136);

0.7,0.2> 

 

Combining with Eq. (27), the weighted comprehensive values of the candidates iA  

( 1, 2,3i  ) can be obtained as follows: 
1 (0.592,0.774,0.910);0.6,0.4S   , 

2 (0.769,0.903,1);0.4,0.5S   ,  
3 (0.653,0.849,0.956);0.5,0.2S   .  

According to Eqs. (17), (18) and (21), the value-indexes of 
1S , 

2S  and 
3S  can 

be obtained as follows:  

1( , ) 0.2298V S   , 
2( , ) 0.1794 0.0449V S    , 

3( , ) 0.2085 0.1251V S    .  

In the same way, according to Eqs. (19), (20) and (22), the ambiguity-indexes of 

1S , 
2S  and 

3S  can be obtained as follows:  

1( , ) 0.0318A S   , 
2( , ) 0.0193 0.0039A S    , 

3( , ) 0.0404 0.0151A S    .  

According to Eq. (23), the difference-indexes of 
1S , 

2S  and 
3S  are obtained as 

follows:  

1( , ) 0.198S  , 
2( , ) 0.1601 0.0488S    , 

3( , ) 0.1681 0.1402S    ,  

respectively, depicted as in Fig. 2.  

 



 

 

A Difference-Index Based Ranking Method of Trapezoidal Intuitionistic Fuzzy   35 

 

 

 
Figure 2. The difference-indexes of 

1S , 
2S  and 

3S  

 

It is easy to see from Fig. 2 that 
1 3 2( , ) ( , ) ( , )S S S      for any given 

[0,0.2132) ,
3 1 2( , ) ( , ) ( , )S S S        for any given (0.2132,0.7766) and 

3 2 1( , ) ( , ) ( , )S S S        for any given (0.7772,1] . Hence, the ranking order of 

the three candidates is 1 3 2A A A  if [0,0.2132) . However, if (0.2132,0.7766) , 

the ranking order of the three candidates is 3 1 2A A A . If (0.7766,1] , the ranking 

order is 3 2 1A A A . Obviously, the ranking order of the three candidates is related to 

the attitude parameter [0,1] .  

 

5.2. Comparison analysis of the results obtained by the proposed method and other 

methods 

(1) Comparison with Li’s ranking method 

 

Li [9] proposed a ratio ranking method for TIFN based on the value-index to 

the ambiguity-index. According to Li’s method, the ranking order of the three 

candidates is generated as follows: 1 3 2A A A  if [0,0.1899) , 3 1 2A A A  if 

(0.1899,0.9667) , and 3 2 1A A A  if (0.9667,1] . Li’s method is related to the 

attitude parameter [0,1] , but it is not a linear function of a TIFN a  although both 

( , )V a   and ( , )A a   are linear on a . In other words, ( , ) ( , ) ( , )R a b R a R b     .  

 

(2) Comparison with Li and Nan’ ranking method  

 

Li and Nan [10]proposed a ranking method based on the value and ambiguity, 

which is essentially a lexicographical ranking method. According to Li and Nan’s 

method, the ranking order of a  and b  depends on the relative position of ( , )V a   

and ( , )V b  . When ( , )V a   and ( , )V b   are equal, the ranking order of a  and b  

depends on the relative position of ( , )A a   and ( , )A b  . Thus, for the above example, 

according to Li and Nan’s method, the ranking order of the three candidates is 

3 1 2A A A  for any given [0,0.793] .And if (0.793,1] ,
1 3 2( , ) ( , ) ( , )V S V S V S    , 

hereby the ranking order of the three candidates is 1 3 2A A A . Furthermore, due to the 

  0  1  

0.1681  

0.198  

0.1601  
 

0.2132 0.7766  

3( , )S   

1( , )S   

2( , )S   
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fact that the value-index 
1( ,0.2) 0.2298V S   is smaller than  

3( ,0.2) 0.2335V S  , 

according to Li and Nan’s method, 3 1A A  for 2.0  although the ambiguity-index 

1( ,0.2) 0.0318A S 
 
is smaller than 

3( ,0.2) 0.0374A S  . However, 
1( ,0.2) 0.198S   is 

bigger than 
3( ,0.2) 0.1961S  . Hence, according to the proposed ranking method in this 

paper, we have 1 3A A . This analysis shows that the ambiguity-index plays an 

important role in the ranking order of TrIFNs.  

 

(3) Comparison with Wang and Zhang’ ranking method 

 

There are some commonly-used methods which do not consider the maximum 

membership degrees and the minimum non-membership degrees, i.e., assume that 

1
ijaw   and 0

ijau  . In this case, the TIFNs in Table 1 are reduced to the triangular 

fuzzy numbers. Thus, the above MADM problem with TIFNs is reduced to the MADM 

problem with triangular fuzzy numbers. Hereby, the weighted comprehensive values are 

obtained as 
1
ˆ (0.592,0.774,0.910)S  , 

2
ˆ (0.769,0.903,1)S   and 

3
ˆ (0.653,0.849,0.956)S  . 

Using the existing ranking methods of fuzzy numbers, obviously, their ranking order is 

always 
2 3 1
ˆ ˆ ˆS S S  , i.e., 2 3 1A A A , which is different from the results obtained by 

the proposed method considering maximum membership degrees and the minimum 

non-membership degrees. It shows that the maximum membership degrees and the 

minimum non-membership degrees are also very important in the ranking order of 

TrIFNs. Intuitively, the decision maker with different preference attitudes may have 

different choices. On the other hand, the method proposed by Wang and Zhang [2] 

transformed the ranking of TIFNs into that of interval numbers, which is difficult to be 

solved.  

 

6. CONCLUSION 

 

We discuss the value and ambiguity of a TrIFN, which are used to define the 

value-index and ambiguity-index of the TrIFN. Hereby the difference-index based 

ranking method is developed to rank TrIFNs and applied to solve MADM problems 

with TrIFNs. The proposed ranking method is a kind of two-index approaches, which 

aggregates both the value-index and ambiguity-index, and it takes into consideration the 

subjective attitude of the decision maker. And the proposed ranking method can be 

extended to rank more general IFNs in a straightforward manner due to the fact that the 

difference-index of a TrIFNs is not dependent on the form/shape of its membership and 

non-membership functions. Especially, the proposed ranking method has a natural 

appealing interpretation and possesses some good properties such as the linearity, which 

can be easily applied to real decision and optimization problems.  
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