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Abstract- In this paper, impulsive Nicholson’s blowflies model with linear harvesting 

term is studied. By using  the  contraction mapping  fixed point theorem,  we  obtain  

sufficient conditions for  the existence  of  a  unique  positive  almost  periodic  solution. 

In  addition, the  exponential  convergence  of  positive  almost  periodic  solution  is  

investigated.  
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1. INTRODUCTION 

 

The dynamic behaviors  of  biological   models  are very  important  research 

topics.  In 1980, Gurney [1]  proposed  the  following   delay   differential  equation 

                                            ( )( ) ( ) ( ) x tx t ax t bx t e                             

to describe  the population of the Australian sheep-blowfly and  to agree with the 

experimental  data obtained by  Nicholson  in [2]. Since this equation explains 

Nicholson’s data of blowfly more accurately, this model and  its  modifications  have 

been  now referred  to  as  the  Nicholson’s  blowflies  model. The theory of   

Nicholson’s  blowflies  model  has  made  a  remarkable  progress[3-10,16-19,21-23].  

 

The assumption that the environment is constant is rarely the case in real life. 

When the environmental fluctuation is taken into account, a model must be 

nonautonomous. Due to the various seasonal effects of the environmental factors in real 

life situation, it is rational and practical to study the biological system with periodic 

coefficients or almost periodic coefficients. Many authors [4,6,7,10,16-18] have studied   

nonautonomous  differential  equations with  periodic   coefficients of  the  above  

Nicholson’s  blowflies  model  and  its generalized  models. Recently,   L. Berezansky 

[9] pointed  out  an  open  problem:  How  about  the  dynamic  behaviors of  the  

Nicholson’s  blowflies  model with  linear  harvesting  term. 

     

In the natural   biological   systems, there exist many impulsive phenomena. If  

impulsive factors  are introduced  into  biological  models,  the  models  must  be 

governed  by impulsive differential  equations. The theory of impulsive differential 

equation has been well developed [11-13].  

 

In this paper, motivated by the above mentioned facts,  we  will  study  the 

following  impulsive  Nicholson’s  blowflies   model  with   linear  harvesting  term 
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where   
1k k kt R t t k Z       lim k

k
t


  , ( ) ( ) ( )k k kx t x t x t    ,  ( ) ( )k kx t x t  , 

( ), ( ), ( ), ( ) ( , )i ia t b t t H t PC R R     and ( ), ( ), ( ), ( )i ia t b t t H t  are  positive  bounded   almost  

periodic functions ( 1, 2, , )i n , ( , ) { ( ) | : , ( )PC R R x t x R R x t    is  continuous  for  

, ( ), ( )k k kt t x t x t   exist  and  ( ) ( )}k kx t x t  . The admissible initial condition associated   

with   equation (1.1) is    

                        ( ) ( ) 0x t t    for  [ ,0]t   ,  0  ,      [ ,0],BPC R    , 

where    [ ,0], { | :[ ,0]BPC R R           is  bounded   piecewise  left   continuous  

function  with  points  of   discontinuity of  the  first  kind }. 

A function  ( )x t   is called   the solution of equation (1.1)   if   the function  ( )x t   is   

defined   on  [ , )   and   satisfying (1.1) for  0t  . For  a  given  initial function 

 [ ,0],BPC R    , by [15]  we  know  that  (1.1)  has  a  unique solution  ( ) ( ; )x t x t   

defined on  [ , )    and  satisfying  the   initial  condition: ( ; ) ( )x t t    for  [ ,0]t   . 

 In the study of  biological systems, an  important  problem is  concerned  with 

the  existence  of positive periodic solutions  or  positive almost  periodic solutions. 

Many authors have investigated the existence of positive periodic solution by using 

Krasnoselskii cone fixed point theorem and   Mawhin's   coincidence degree theory.  

The almost periodicity is closer to the reality of biological systems. In  this  

paper, we  aim  to  obtain  sufficient conditions that guarantee  the existence of unique 

positive almost periodic solution  of   model (1.1)  by using  contraction mapping fixed 

point theorem. We  also  investigate  the  exponential  convergence  of  positive  almost  

periodic  solution  by  means  of   Liapunov functional.  For the impulsive Nicholson’s 

blowflies model with linear harvesting term, we give answers to the open problem 

proposed in [9] by L. Berezansky. The results of  this  paper are valuable  in  

applications, which  complement  the previously  obtained  results  in  [3-10,16-19,21-

23]. 

 

                                                     2. PRELIMINARIES  

 

We denote      
1{ | lim }k k k k k

k
B t t R t t k Z t


         . 

Definition 1. ([13])  The  set  of sequences { | , , }i i

k k k i k kt t t t k i Z t B      is said  to be  

uniformly  almost periodic if  for  arbitrary 0   there  exists  relatively dense  set  of  

 -almost periods  common  for  any sequences. 

Definition 2.  ([13])   A function  ( ) ( , )x t PC R R   is said to be    almost   periodic,   if : 

(i)  The set of sequences  { | , , }i i

k k k i k kt t t t k i Z t B      is   uniformly almost periodic. 

(ii)  For  any 0   there  exists  real  number  0    such  that   if  the  points  t   and t  

belong to  one  and  the same  interval   of  continuity of  ( )x t  and   satisfy the   

inequality  | |t t    ,then  | ( ) ( ) |x t x t    . 
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(iii)  For  any 0   there  exists  relatively dense  set  T   such  that   if  T , then 

| ( ) ( ) |x t x t       for  t R  satisfying  | |kt t   , k Z . 

The elements of  T  are called  -almost periods. 

        In this paper,   for any bounded function ( )f t , we denote      

sup ( )
t R

f f t


 ,  inf ( )
t R

f f t


 . 

We make   the following    assumptions: 

1( )C  The bounded   almost   periodic functions ( ), ( ), ( ), ( )i ia t b t t H t  satisfy 0 ( )a a t a   ,   

0 ( )i i ib b t b   ,     0 ( )i i it     ,0 ( )H H t H      ( 1, 2, , )i n . 

2( )C  The set of sequences  { | , , }i i

k k k i k kt t t t k i Z t B      is uniformly almost periodic, 

and   
1 0inf | | 0k k

k Z
t t 


   . 

3( )C  The sequence { }kc  is almost periodic and   1 0kc   ,  k Z . 

4( )C  The sequence { }kh  is   almost periodic and    there exists   constant   0m  , such 

that  0 kh m  ,  k Z . 

 

Consider   equation   

                                       
( ) ( ) ( ), ,

( ) ( ), .

k

k k k k

x t a t x t t t

x t c x t t t

   

  

           (2.1) 

The Cauchy matrix  ( , )W t s  of  (2.1)  is  defined  as  follows:  ([13]) 
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Equation (2.1) with initial condition 
0 0( )x t x  has a unique 

solution
0 0 0 0( ; , ) ( , )x t t x W t t x . 

Lemma 1. ([13]) Let the conditions 
1 4( ) ( )C C  hold. Then for each 0  , there exist  

1 0  ,
1  , relatively dense sets T of  positive real numbers and  Q  of  natural 

numbers , such that the following  relations are fulfilled: 

(i) | ( ) ( ) |a t a t    , | ( ) ( ) |i ib t b t    , | ( ) ( ) |i it t      , | ( ) ( ) |H t H t    , ,t R T  ; 

(ii)   | |k q kc c    ,   q Q , k Z ; 

(iii)  | |k q kh h    ,  q Q , k Z ; 

(iv)  
1

q

kt    ,   q Q , T , k Z . 

Lemma 2.  ([13])   Let the condition  
2( )C  be   satisfied. Then for each 0L  , there 

exists a positive  integer N  ,  such that   ( , ) ( )i s t N t s N   ,   where  ( , )i s t   is  the 

number of  the points  
kt  in the interval  ( , )s t   of  length  L . 

By   Lemma 2, we    get   the following Lemma 3. 

Lemma 3.    Let the condition  
2( )C  be   satisfied. Then for  1L  , there exists a positive  

integer P , such that    ( , ) 2i s t P ,    where  ( , )i s t   is the number of the points 
kt in the 

interval  ( , )s t   of  length  1. 
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Lemma 4.    Let the conditions 
1 3( ) ( )C C be satisfied. Then, the Cauchy matrix  ( , )W t s  

of (2.1) satisfies    ( )0 ( , ) a t sW t s e   ,     , ,t s t s R  . 

Proof.    Because    ( , )W t s   is   expressed   as follows  

 

 

1

1 1

exp ( ) , ,

( , )

(1 ) exp ( ) , .

t

k k
s

k
t

i j j k k
s

i j

a u du t s t t

W t s

c a u du t s t t t t



 



    


 
       




 

 

From  the  condition 
3( )C  1 0kc   , k Z ,  we  have  0 1 1kc   ,  k Z  .  

Thus, it follows that       0 (1 ) 1
k

i

i j

c


   . 

Hence we get 

    ( )0 ( , ) exp ( ) exp
t t

a t s

s s
W t s a u du adu e        ,       , ,t s t s R  . 

 

By the Lemma 3 in [11], we   have   the following Lemma 5. 

Lemma 5.  Let the conditions 
1 3( ) ( )C C be satisfied. Then for any 0  , t s ,  ,t s R , 

kt t   ,
ks t   , k Z  , there  exist   relatively  dense  set  T   of    -almost  periods   

of  the function ( )a t   and   positive  constants  0E  , 0  ,  such that   for  T    it   

follows  that 

                                    
( )

2( , ) ( , )
t s

W t s W t s Ee


  
 

    . 

 

Let  { ( ) ( ) ( )X x t x P C R R x t     is almost periodic function} with the norm   

sup ( )
t R

x x t


     then  X  is Banach space.             

It is  easy to verify  that  ( )x t  is  the solution of  equation (1.1) if  and  only  if ( )x t   

is  the solution of  the  following  integral equation 

          ( ) ( )

1

( ) ( ) ( ) ( ) ( ) ( ) ( )i

k

nt
s x s

i k k

i t t

x t W t s b s x s e H s x s ds W t t h
   


 

 
       

 
  . 

We define operator   A X X   , 

      ( ) ( )

1

( )( ) ( ) ( ) ( ) ( ) ( ) ( )i

k

nt
s x s

i k k

i t t

Ax t W t s b s x s e H s x s ds W t t h
   


 

 
       

 
  . 

It  is  clear  that  ( ) ( )x t PC R R    is  the  almost  periodic  solution of  equation (1.1) if  

and  only  if   x    is  the  fixed  point  of  operator  A .  

 

Let   

    
1

2 1

1

n
i

a
i i

bmP
M

e ae 


 


 .  

We make assumptions: 

1( )S    
1

1
1

n

i

i

H b
a 

 
  

 
  , 



 

 

Positive Almost Periodic Solution for Impulsive Nicholson's Blowflies Model      5 
 

 

2( )S    
1

i

n
M

i

i

H b e




 , 

3( )S    0k kc M h  ,  k Z . 

It  is  easy  to  check  the global existence of  the  positive solution  ( ) ( ; )x t x t    for  

equation (1.1)  defined on  [ , )   with  the  admissible  initial condition 

( ; ) ( ) 0x t t     for  [ ,0]t   . 

Let    

       0 | [ ,0], ,0 ( ) , [ ,0]U BPC R t M t           . 

Now we prove that every solution  ( ) ( ; )x t x t   of equation (1.1) with initial function  
0U    is positive and bounded. 

Lemma 6.    Assume   that  
1 4( ) ( )C C   hold.   If   

3( )S   is satisfied, then every solution   

( )x t  of equation (1.1) with initial function  0U    satisfies  

                                               0 ( )x t M       for all   0t  . 

Proof.      For [ ,0]t   ,    0( ) ( )x t t U    and 0 ( )t M  .   Hence there must exist   an 

interval 
1(0, ) (0, )T     such that   ( ) 0x t      for    

1(0, )t T . 

For impulsive point  
1(0, )kt T ,    if   0 ( )kx t M  ,    then 

   ( ) 1 ( ) 1k k k k k kx t c x t h c M h M            and       ( ) 1 ( ) 0k k k kx t c x t h     , 

which implies      0 ( )kx t M  . 

We claim that 0 ( )x t M  for 
1(0, )t T .                                                           (2.2) 

Suppose  the  claim    (2.2)   is  not  true,  then  there   must  exist  a   
1 1(0, )t T   such  

that   
1( )x t M   , 

1( ) 0x t      and    0 ( )x t M    for  
10 t t  . 

Thus, 

1 1

1 1

1

( ) ( )

1 1 1 1 1 1 1

1

( ) ( )

1 1 1 1

1

( )

1

1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) .

i

i

i

n
t x t

i

i

n
t x t

i

i

n
x t

i

i

x t a t x t b t x t e H t x t

a t x t b t x t e

a M b x t e

 

 

 

 





 

 



       



    



 



      

   

   







            (2.3) 

Since the function  ( ) , [0, )iu

ig u ue u


     reaches   its maximum  1

ie
   at   1

i

u


 , 

then we  have              1( )

1

1
( ) ix t

i

x t e
e

 




    .                                                              (2.4) 

By   (2.3) and   (2.4), we have  

         
1

1 1 1

1 2 1 1 2
( ) 0

1 1

n n n
i i

i a a
i i ii i i

b bmP mPa
x t aM b a

e e ae e e  



 
  

   
             

    
   

   , 

which contradicts  
1( ) 0x t  .   So   the claim     (2.2)   is   true. 

Hence,    0 ( )x t M        for    
1(0, )t T . 

Thus, there must exist   an interval 
1 2 1[ , ) [ , )T T T   such that  ( ) 0x t    for   

1 2[ , )t T T .  

By the above similar arguments, we   claim that  
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                                           0 ( )x t M      for    
1 2[ , )t T T .                                           (2.5) 

Suppose  the  claim   (2.5)   is  not  true,  then  there   must  exist  a   
2 1 2[ , )t T T   such  

that   
2( )x t M   , 

2( ) 0x t      and    0 ( )x t M    for  
1 2T t t  . 

Thus, 

             

2 2

2 2

2

( ) ( )

2 2 2 2 2 2 2

1

( ) ( )

2 2 2 2

1

( )

2

1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) .

i

i

i

n
t x t

i

i

n
t x t

i

i

n
x t

i

i

x t a t x t b t x t e H t x t

a t x t b t x t e

a M b x t e

 

 

 

 





 

 



       



    



 



      

   

   







               (2.6) 

Note that                2( )

2

1
( ) ix t

i

x t e
e

 




    .                                                                      (2.7) 

By   (2.6) and   (2.7) ,  we  have  

         
2

1 1 1

1 2 1 1 2
( ) 0

1 1

n n n
i i

i a a
i i ii i i

b bmP mPa
x t aM b a

e e ae e e  



 
  

   
             

    
   

   , 

which contradicts  
2( ) 0x t  .   So the claim    (2.5)   is   true.   Hence,    0 ( )x t M        

for    
1 2[ , )t T T . 

Repeating the above similar steps,    we have   0 ( )x t M   on intervals   

2 3 3 4 1[ , ),[ , ), ,[ , ),n nT T T T T T 
.   That means   0 ( )x t M     for  all   0t  . The proof of  

Lemma 6   is  complete.  

 

 

3.  EXISTENCE   OF    POSITIVE ALMOST PERIODIC SOLUTION 

 

Let      

           0 ( ) ,x x X x t M t R        .   

Theorem 1.   Assume that 
1 4( ) ( )C C  hold.   If   

1( )S   and  
2( )S   are  satisfied,   then  

equation (1.1)  has  a  unique  almost  periodic  positive  solution  in   .  

Proof.     By Lemma 4, we  have     ( )
0 ( , ) ka t t

kW t t e
 

      for  
kt t . 

This and   Lemma 3   imply that  

 ( ) ( )

0 1 0 1 0

2
( ) 2

1
k k

k k k k

a t t a t t a j a j

k a
t t t t j t j t t j j t j t t j j

P
W t t e e e Pe

e

  
     


              

   
        

   
       . 

Firstly,   we prove that A . 

For    x   , we have 
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Again, we get  
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                (3.2) 

 

Since the function ( ) , [0, )iu

ig u ue u


    reaches its maximum  1

ie
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i

u


 , 

then we have     ( ) 1
( ) ix s

i

x s e
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  . 

From (3.2), we obtain 

1

1

( )

1

1

( )( ) ( ) ( )

2
( )

1

2

1

1 2
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1

k
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i i

n t
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i i

n
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a
i i

b
Ax t W t s ds m W t t

e

b P
W t s ds m

e e

b P
e ds m

e e

b mP
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a e e










 




 







   

  


 


  


 

 

 



                                (3.3) 

Let T , by   Lemma 1 and Lemma 5, we can deduce that                       

                
0( )( ) ( )( ) ,Ax t Ax t K    where 

0K  is a positive constant. 

Hence, ( )( )Ax t  is almost periodic. This and (3.1) (3.3) imply Ax . 

So we have A  

 

Next, we show that A  is a contraction mapping.  

For ,x y   , we have   
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) ( ) ( )

1

( ) ( )

( ) ( ) ( ) .

i

n
s y s

i

i

t

s y s e ds

H W t s x s y s ds

  

 

 





  
   

  

    





            (3.4) 

For   the function ( ) xg x xe , it is easy to see that ( ) (1 ) xg x x e   . 

Hence, by means of   the mean value theorem, we get  

 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

(1 ) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) ( ) ( ) ,

i is x s s y s

i i

i i

i i

s x s e s y s e

e s x s s y s

e s x s s y s

   





   

    

    

   





  

    

    

                                  (3.5) 

where     lies  between  ( ) ( )i s x s    and  ( ) ( )i s y s  . 

 

Since the function   ( ) (1 ) , [0, )xf x x e x     has maximum  
max 1f   , 

Then we get (1 ) 1e    . 

 

Thus, from (3.5), we have   

                      
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

i is x s s y s

i i

i i

s x s e s y s e

s x s s y s

      

   

   
  

   

                                       (3.6) 

 

Hence, (3.4) and (3.6) imply that 
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From the condition
1

1
1

n

i

i

H b
a 

 
  

 
 , we know that A  is a contraction mapping. So the  

operator A  exists a unique fixed   point  x   in   . Moreover, from the inequality (3.1), 

we have ( )( ) 0Ax t   for x  . So the   fixed   point  x  satisfies 0x Ax   , which 

means that x  is positive.  This implies that equation (1.1) exists a unique almost 

periodic positive solution ( )x t  in     satisfying   0 ( )x t M  . The proof is completed.  

 

4.  EXPONENTIAL CONVERGENCE OF POSITIVE ALMOST PERIODIC 

SOLUTION 

 

Theorem 2.    Assume that  
1 4( ) ( )C C  hold.  If  

1( )S  , 
2( )S  and  

3( )S  are  satisfied ,  then   

every  solution  ( )x t  of equation (1.1) with  initial  function  0U    converges  

exponentially  to   ( )x t   as  t   , where ( )x t  is the unique almost periodic   positive   

solution  of   equation  (1.1) satisfying  0 ( )x t M  .    

 

Proof.   From Theorem 1, we  know  that  equation (1.1)  exists  a  unique almost 

periodic positive solution  ( )x t  satisfying  0 ( )x t M  .  Assume   the    initial function  

of   ( )x t  is  ( ) ( ) 0x t t      for   0t    . 

Suppose  ( )x t  is  arbitrary  solution  of  equation (1.1)  with  initial function  0U  ,  

here  0 ( )t M     and    ( ) ( )x t t     for   0t    .   

By  Lemma 6 ,  we  know    0 ( )x t M        for  all   0t  . 

 

Consider   the   function   

                         
1

( )
n

x

i

i

F x x a H b e



 
    

 
 ,      [0,1]x . 

Since  
1

(0) 0
n

i

i

F H b a


    , then  there  exists  a  constant  (0,1)  ,  such  that  

( ) 0F   .  

That  is, 
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1

0
n

i

i

a H b e


 
    

 
  .                                                                            (4.1) 

 

Define the Liapunov functional 

                                               ( ) ( ) ( ) tV t x t x t e  .  

 

For   
kt t , we have 

 ( ) ( ) ( ) ( )

1 1

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .i i

t t

n n
t x t t x t t

i i

i i

D V t

x t x t e a t x t x t e

b t x t e b t x t e H t x t H t x t e

 

    



   




 

    

 

   

        

         (4.2) 

 

For   
kt t , we have 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( ) ( ) ,

k k

k

t t

k k k k k k k k k k k

t

k k k

V t x t x t e x t c x t h x t c x t h e

c x t x t e

 



     



       

  

 

( ) ( ) ( ) kt

k k kV t x t x t e
  . 

From the condition 
3( )C   1 0kc   , we know   1 1 1k kc c     , hence it implies that   

( ) ( )k kV t V t  . 

 

Let   

              
0

sup ( ) ( )
t

h M t t


 
  

   . 

 

For [ , 0]t    , we have    

         ( ) ( ) ( ) ( ) ( ) ( ) ( )tV t x t x t e x t x t t t          
0 0

sup ( ) ( ) sup ( ) ( )
t t

t t M t t h
 

   
     

      .               

 

Now, we prove that         

                                           ( )V t h       for all   0t  .                                                   (4.3)   

 

Suppose that (4.3)  does  not  hold  true, then there must exist  0t  ,    K Z   and  

1
( , ]

K K
t t t 




 ,  such  that    ( )V t h  ,     ( )V t h   for  t t , and    ( ) | 0

t t
D V t 




 . 

 

It follows from (4.2) that   
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 ( ) ( ) ( ) ( )

1 1

( ) (

0 ( ) |

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

i i

i

t t

t t

n n
t x t t x t t

i i

i i

t x t

i

D V t

x t x t e a t x t x t e

b t x t e b t x t e H t x t H t x t e

V t a t V t

b t x t e

 

    

 



   







 

     

 





      

            

 

  

  



   

       

 

 

 

   ) ( ) ( )

1

( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) (

i

i i

n
t x t t

i

i

n
t x t t x t t

i i

i

b t x t e H t x t H t x t e

V t a t V t

b t x t e b t x t e H t x t H t x t e

V t a t

  

    

  



   



   

     

        



  

            



 

     

 

 
        
 

 





( ) ( ) ( ) ( )

1

) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

( )
i i

n
t x t t x t ti

i i

i i

V t

b t
t x t e t x t e H t x t H t x t e

t

         


     




            




 
        
 


 (4.4) 

 

Using the mean value theorem, we get 

 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

(1 ) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ,

i it x t t x t

i i

i i

i i

i i

i

t x t e t x t e

e t x t t x t

e t x t t x t

t x t t x t

t x t x t

   





   

    

    

   

  

           

     

     

    

   

  

    

    

   

   

                         (4.5) 

where     lies  between  ( ) ( )i t x t      and  ( ) ( )i t x t     . 

 

Hence, (4.4) and (4.5) imply that 

 

 

1

1

1

0 ( ) |

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

t t

n
t

i

i

n
t

i

i

n

i

i

D V t

V t a t V t b t x t x t H t x t H t x t e

V t aV t b x t x t H x t x t e

h ah b H x t x t





    

    

  











           



       



  





 
          

 

 
          

 

 
       

 







( )

1

1

1

1

( ) ( )

( )

.

t

n
t

i

i

n

i

i

n

i

i

n

i

i

e

h ah b H x t x t e e

h ah b H V t e

h ah b H he

a b H e h
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Thus we get   
1

0
n

i

i

a b H e


 
    

 
 , which contradicts (4.1).  So (4.3) holds true.   

Hence    we   have     ( ) ( ) ( ) tV t x t x t e h       for all   0t  .  

That is ( ) ( ) tx t x t he     for all   0t  , which means that ( )x t  converges exponentially 

to   ( )x t   as  t   . The proof  is completed.  

 

                                                           5.  APPLICATION 
 

Now we give an example to illustrate our results. 

Consider equation 

   
   

 

1 1
sin 2 ( )

4 100

4 cos 2 ( )

( ) 90 sin 3 ( ) 2 cos 5 ( )

1 1 1 1
sin 5 ( ) sin 3 ( ), ,

10 40 10 20

( ) ( ) , ,

t x t

t x t

k

k k k k k

x t t x t t x t e

t x t e t x t t t

x t c x t h t t







 

 
   
 

  


      


   

             


   

     (5.1) 

where      
1 1

1 1
( ) 90 sin 3 , ( ) 2 cos 5 , ( ) sin 2

4 100
a t t b t t t t      ,     

             
2 2

1 1 1 1
( ) sin 5 , ( ) 4 cos 2 , ( ) sin 3

10 40 10 20
b t t t t H t t      ,  1  , 

              1 1 1 1
sin 2 , sin 3

2 10 5 20
k kc k h k     ,   2P  . 

It is easy to calculate that   

         
1 1 1 1 2 2 2 289, 3, 1, 0.26, 0.24, 0.125, 0.075, 5, 3, 0.15a b b b b H             , 

                         0.6 0.4kc    ,      1
0.15

4
kh m   ,      

2

1

i

i

H b a


  ,  

          
2

1

2 1
1.05

1

i

a
i i

bmP
M

e ae 


  


 ,     
2

1

iM

i

i

H b e




 ,      0.4 1.05 0.25 0k kc M h      .   

By  Theorem 1  and  Theorem 2,  we  know  equation (5.1)  exists  a  unique  almost  

periodic  positive  solution ( )x t  satisfying  0 ( )x t M  . Moreover, every solution  ( )x t  

of equation (5.1) with initial function  0U    converges exponentially to   ( )x t   

as t   , here   0 | [ ,0], ,0 ( ) , [ ,0]U BPC R t M t           . 

 

                                                       6.  CONCLUSION 
   

Impulsive  phenomena  exist  extensively  in  natural   biological   systems,  

almost  periodicity  is   closer  to   real  world.  This  paper  has  studied  the  almost  

periodic  impulsive  Nicholson’s  blowflies   model  with   linear  harvesting  term.  By 

applying the contraction mapping fixed point theorem, we   obtain sufficient conditions 

for the existence of unique positive almost periodic solution. By constructing  Liapunov 

functional, we  study  the  exponential  convergence  of  positive  almost  periodic  

solution.  The dynamic behaviors   have close relations to the harvesting term and   

impulsive term.  For the impulsive almost periodic Nicholson’s blowflies model with 

linear harvesting term, we answer the open problem proposed in [9]. Our results 

complement   the previous results of some past literatures. 
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