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Abstract - A mathematical model covering many practical vibration problems of continuous
systems has been proposed. The equations of motion consist of two nonlinearly coupled partial
differential equations. The quadratic and cubic nonlinearities as well as the linear part of the
equations are represented by arbitrary operators. A perturbation approach (method of multiple time
scales) has been applied directly to the partial differential equations. The responses as well as the
amplitude and phase modulation equations are found for the case of primary resonances of the
external excitation and one-to-one internal resonances between the natural frequencies of the
equations. The coefficients of the amplitude and phase modulation equations are calculated in their
most general form. Results are then applied to a nonlinear cable vibration problem having small sag-
to-span ratios.

A generalized system of nonlinear partial differential equations is treated. This general
model covers many practical vibration problems of continuous systems such as beam, string and
cable vibrations. The quadratic and cubic nonlinearities, which occur frequently in vibrations of
continuous systems, are inserted into the equations in the form of arbitrary spatial operators. Also
the linear part of the equation is left arbitrary. With the aid of these arbitrary operators, the equations
have the advantage of modeling a wide range of nonlinear problems. A perturbation method
(method of multiple time scales) is applied directly to the partial differential equations. This directly
applying perturbations to the partial differential system (direct perturbation method) has, at least, the
advantage of yielding spatial corrections to the linear normal modes [1-7]. The responses and the
amplitude and phase modulation equations are presented for this general system of equations.
Because of the arbitrariness, the solution procedure yields an algorithm for solutions of many
practical problems. Using this algorithm, solutions are presented for a specific problem of ponlinear
cable vibrations.

W2 + Ldw2) + 'u2W2+ Q4(WI,WI) + Q5(W2,W2) + Q6(WI,W2) + C4(W2,W2,W2)

+ C5(W2,W2,WI) + CdW2,WI ,WI) = 0

where n denotes time differentiation. ,UJ and'u2 are the damping coefficients, and ft and n are the
external excitation amplitude and frequency respectively. Li are the linear spatial differential and/or
integral operators. Qi and C are the arbitrary spatial differential and/or integral operators producing
quadratic and cubic nonlinearities respectively. The quadratic and cubic operators possess the
property of being multilinear such that



where Ci are some arbitrary constants. Instead of Q(w), a more common notation, the reason that we
use Q(w.w) is that it gives the flexibility to represent the contributions of nonlinearity at higher
orders of approximation correctly.

The associated boundary conditions for Eqs. (1) and (2) are assumed to be linear and
homogenous and free from time derivatives.

There have been attempts of generalizing the direct perturbation method for a wide range of
nonlinear vibration problems very recently. For a single arbitrary nonlinear partial differential
equation, Pakdemirli[3] presented results for primary resonance case. For finite mode truncations,
he[3] also compared results of direct approach method with discretization methods. The analysis is
generalized to infinite modes by Pakdemirli and Boyacl[4]. Using the same model of single
differential equation, Pakdemirli and Boyacl[8] treated the subharmonic, superharmonic and
combination resonance cases in detail. Nayfeh et al. [5] compared results of direct perturbation
method with those of discretization methods by considering several examples from continuous
systems. Solutions are also presented for an arbitrary cubic nonlinear spatial and temporal operator
using the nonlinear normal mode concept. Two different versions of method of multiple scales are
compared using general models, one with an arbitrary cubic operator and the other arbitrary
quadratic and cubic operators[9]. Finally a general odd-nonlinearity model was treated by
Pakdemirli, Boyacl and Yllmaz[ 10].

In this section, we apply the method of multiple scales[ 11,12] directly to the partial
differential equations (1) and (2). Contrary to the harmonic balance or discretization methods, this
direct method requires no initial assumptions for the form of solutions. Due to cubic nonlinearities,
we assume expansions up to third order for WI and W2 of the form

where 8 is a small dimensionless measure of the amplitude of WI and W2, used as a book-keeping
device, Win and W2n are 0(1). To= t is a fast-time scale characterizing changes occuring at the
external excitation and natural frequencies; T2 = 8

2t is a slow-time scale. The later analysis shows
that there is no TI = E:t dependence, hence we omit it from the beginning. Assuming a weakly
nonlinear system, damping and excitation coefficients are ordered such that their effects appear at
the third order,

A 2
PI.2 = 8 PI.2,



(}
where Dn = (} T . Substituting Eqs. (4)-(8) into Eqs. (1) and (2) and seperating the eqll.:tlOnsat

n

each order of £ ; we finally obtain

D/ WI3 + L1 (WI3) = -2DoD2wJJ - J.!.IDowJJ - QI (wJJ ,WI2) - QI (W12 ,wJJ) - QdW21 ,W22)

- QdW22 ,W21) - Q3(WJJ ,W22) - Q3 (W12 ,W21) - C1 (wJJ ,WJJ ,wn)

D/W23 + L2(W23) = -2DoD2W21- J.!.2DOW21- Q4(WJJ ,WI2) - Q4(W12 ,wJJ) - Q5(W21 .W22)

- Q5 (W22 ,W21) - Qo (wJJ ,W22) - QdWI2 ,W21) - C4 (W21 .W2/.WlI)

In this section, we search for general solutions to the above equations at each order of
approximation. At order £, the solution can be written as

where cc stands for the complex conjugate of the preceeding terms. Y1 (x) and Y2 (x) satisfy the
following equations

where OJI and OJ2 are the eigenvalues and Y1 and Y2 are the corresponding eigenfunctions. Note that
there are infinite number of eigenvalues for continuous systems. In the presence of damping, and for
weakly nonlinear systems, the mode that is directly excited by an external excitation or indirectly
excited by an internal resonance would survive and all other modes would decay with time [1]. In



the following analysis, we will assume that w, is directly excited by an external excitation and w] is
indirectly excited by a one-to-one internal resonance with w, .Note that the boundary conditions for
Eqs. (17) and (18) are homogenous and linear, as assumed previously.

At order &2 , the right hand sides of Eqs. (11) and (12) are known functions and we assume
suitable solutions for W'2 and W22 of the form

Substituting Eqs. (15), (16), (19) and (20) into Eqs. (11) and (12), we find the equations
determining the unknown functions ~lx)

Ll~,) - 4w/~, = - Ql Y, ,Y,) (21)

Ll~2) =-Q,(Y"Y,) (22)

Ll~3) - 4w/ ~3 = - Q2( Y2,Y2) (23)

L'(~4) =- Q2(Y2,Y2) (24)

Ll~5) - (w, + (2)2~5 = - Q3(Y' ,Y2) (25)

Ll~6) - (w, - (2) 2~6 = - Q3( Y, ,Y2) (26)

L2(~7) - 4w/ ~7 = - Q4( Y" Y/) (27)

L2(~8) = - Q4( Y, ,Y/) (28)

L2(~9) - 4W/~9 = - QlY2 ,Y2) (29)

L2(~'O) = - Ql Y2, Y2) (30)

L2(~ll ) - (w/ + w2i ~ll = - Q6( Y/ ,Y2) (31)

L2(~'2) - (w/- w2i ~'2 = - Q6( Y, ,Y2) (32)



where (T and p are detuning parameters of 0(1). Since the homogenous part of Eqs. (13) and (14)
have a nontrivial solution, the inhomogenous Eqs. (13) and (14) have a solution, only if a solvability
condition is satisfied[7]. To find this condition, we express their solution in the form

where WI and W2 are governed by Eqs. (13) and (14) with the terms proportional to exp(iOJITo) and
exp(iOJ2TO) being deleted. Hence WI and W2 are unique and free of secular and small-divisor terms.
Substituting Eqs. (35), (36), (19), (20), (15) and (16) into Eqs. (13) and (14), using Eqs. (33) and
(34), and equating the coefficients of exp(iOJITo) and exp(iOJ2TO) on both sides of each equation
results in

Ld'l/I) - OJI 2 '1/1= - iOJI (2A' + ,uIA)YI _A2 A (Qd YI ,c;l) + Qdc;l ,YI) + Q3 (YI ,c;7)
+ 2 [Qd YI, c;2) + Qdc;2, YI) + Q3 (YI, c;8)] + 3CI (YI ,YI , YI) }
-ABB {2 [QdYI,c;4) + Qdc;4,YI) + QdYI,c;lo)] + Q2(Y2,c;JJ)
+ Qdc;JJ, Y2) + Qdc;5, Y2) + Q2 (Y2, c;12) + Q2 (c;I2, Y2) + Q3 (c;6, Y2)
+ 2 C3 (YI ,Y2, Y2) } - B2 A e-2ipTl {QI (YI, c;3) + QI (c;3, YI) + Q3(YI, c;9)
+ QdY2.c;I2) + Qdc;I2,Y2) + Q3(c;6,Y2) + CdYI .Y2,Y2)}

- A A B e-ipT1( Qd YI, c;5) + Qdc;5, YI) + Q3 (YI. C;JJ)+ QI (YI '~6)
+ Qdc;6,YI) + Q3(YI ,c;I2) + 2 [QdY2,c;8) + Qdc;8,Y2)+ Q3(~2,Y2)

2- T+ C2 ( YJ ,YI . Y2)] } - A B e'P 1 {Qd YI ,c;6) + Qd c;6 ,YI) + Q3( YI , c;12)
+ Qd Y2 ,c;7) + Qd c;7,Y2) + Q3 (c;l .Y2) + Cd YJ ,YI , Y2) }
- B2 Jj e-ipT] ( Qd Y2, c;9) + Qdc;9, Y2) + Q3 (c;3, Y2) + 2 [Q2 (Y2, c;IO)

1 laT+ Qdc;Jo,Y2) + Q3(c;4,Y2)]}- 2Fe ] (37)

Ld'l/2) - OJ22 '1/2= - iOJ2(2B' + ,u2B )Y2 - B2 Jj {Q5 (Y2 ,c;9) + Q5 (c;9 ,Y2) + Q6(c;3 ,Y2)
+ 2 [Q5 (Y2,c;IO) + Q5 (c;IO,Y2) + Qdc;4 ,Y2)] + 3 C4 (Y2 ,Y2 ,Y2)}
- A A B { Q4 ( YI , c;5) + Q4 (c;5 , YI) + Q6 ( YI , c;JJ) + Q4 ( YI , c;6)
+ Q4 (c;6,YI) + Qd YJ ,c;J2) + 2 [Q5 (Y2 ,c;8) + Q5 (c;8 ,Y2) + Q6 (c;2, Y2)

2 - 2 T+ C6(Y2,YI ,YI)]} -A Be 'p 1{ Q4(YI,c;6) + Qdc;6,YI) + QdYI,c;I2)
+ Q5 ( Y2, c;7) + Q5 (c;7 ,Y2) + Q6 (c;l , Y2) + C6 ( Y2 ,YI , YJ) }

- . T-ABB e'P 1 {2 [Q4(YI,c;4) + Q4(c;4,YI) + Q6(YI,c;IO)] + Q5(Y2,c;JJ)
+ Q5(c;JJ ,Y2) + Q6(c;5,Y2) + Q5(Y2,c;I2) + Q5(c;J2,Y2) + Q6(c;6,Y2)
+ 2C5 ( Y2 , Y2, YI) } - B2 A e-ipT1{ Q4 ( YI , c;3) + Q4 (c;3 , YI) + Q6 ( YI , c;9)
+ Q5 (Y2 ,c;I2) + Q5 (c;I2,Y2) + Qdc;6 ,Y2) + C5 (Y2,Y2,YI)}

2-T-A A e'P 1 {Q4(YI,c;l) + Q4(c;l,YI) + Q6(YI ,c;7) + 2 [Q4(YI,c;2)
+ Q4(c;2,YI) + Q6(YI ,c;8)]} (38)

We now assume that the linear operators Li with the associated boundary conditions are self-
adjoint. The solvability conditions for Eqs. (37) and (38) are



+ a6I1]j e-1pT1 + f f eiuT1 = 0 (39)

iW2 (2B' + f.L2B) + a7I1]j + asA A B + a9A2]j iipT1 , a/oAB Jj eipT1+ all B2 A e-1pT2

+ a/2A2 A e,pT1
= 0 (40)

a/ = f f/ (Qd f/ ,~/)+ Qd~/ ,f/)+ Q3 (f/ ,~7)+ 2[Q/ (f/ ,~2) + Q/ (~2.f/) + Q3(y/.l;s)]
D

a2 = f fJf2[Qd f/ ,~4)+ Qd~4, f/)+ Q3 (f/ ,~/o)]+ Q2 (f2. ~Il) + Q2 (~11.f2) 'Q3(l;s. f2)
D

a3 = f f/ ( Qd f/ ,~3) + Qd ~3,f/ ) + Q3 ( f/ ,~9)+ Q2 ( f2 ,1;/2) + Q2 (1;12. f2) T Q3 (1;6.f2)
D

a4 = f f/ (Qd f/ ,~5)+ Qd~5 ,f/)+ Q3 (f/ ,~11)+ Q/ (f/ ,1;6) + Q/ (~6,f/) + Q.'{ f/ .1;/»
D

+ 2[Q2( f2 ,~8) + Q2 (~8,f2) + Q3 (~2,f2) + C2(f/ ,f/ 'y2)]} dx (44)

as = f f/ (Qd f/ ,~6)+ Qd~6 ,f/)+ Q3 (f/ ,1;/2)+ Q2 (f2 ,~7) + Q2 (~7,f2) + Q.'{I;/ .fJ)
D

+ C2(f/,f/ ,f2)} dx (45)

~6 = f f/ {Qdf2,~9)+Qd~9,f»+Q3(~3,f»+2[Q2(Y2,I;/o)+Qdl;/o,f2)+Ql~4,f»}}dx (46)
D

a7 = J f2 {Q5 (Y2 ,~9)+ Q5 (~9,f2)+ Q6 (~3'y2)+ 2 [Q5 (f2 ,~/O)+ Q5 (~/o ,f2)+Q6(~4, f»]
D

as = f f2 {Q4 ( f/ ,~5)+ Qd ~5,f/ ) + Q6 ( f/ ,~11) + Q4 ( f/ ,1;6) + Q4 (~6,f/) + Q6 ( f/, 1;/2)
D

+ 2 [Q5( f2 ,~8)+ Q5 (I;s ,f2) + Q6 (1;2,f2) + C6(f2 ,f/ ,f/)]} dx (48)

a9 = f f2 (Q4( f/ ,~6)+ Qd~6 ,f/)+ Q6 (f/ ,~/2)+ Q5( f2 ,~7) + Qs (~7,f2) + Q6 (1;/ 'y2)
D



alO = f Y2 (2[Q4( Y1 ,~4)+ Qd~4, Y1)+ Q6 (Y1 ,~/O)J+ Q5 (Y2, ~ll)+ Q5 (~ll ,Y2)+Ql~5. Y2)

D

all = f Y2 (Qd Y1 ,~3)+ Qd~3, Y1)+ Q6 (Y1 ,~9)+ Q5 (Y2. ~/2) + Q5 (~/2, Y2) + Q6 (~6.Y2)

D

+ C5 ( Y2 ,Y2 Y1) } dx (51 )

al2 = f Y2 {Q4 (YI ,~/)+Q4 (~I ,Y1)+Q6 (YI, ~7.J+2[Q4 (YI ,~JJ+Q4 (~2,Y1)+Q6(YI, ~8)}}dx (52)
D

where D is the domain of integration. Representing the solutions in this form makes it convenient to
see explicitly the contributions of each operator to the coefficients. Note that, an extension of the
above formulas for two or more spatial variables is trivial. In arriving at Eqs. (39) and (40), we
normalized the following integrals

f Y1 2 dx = 1,f y2
2 dx = 1

D D

Eqs. (39) and (40) determine the complex functions A(T JJ and B(T JJ.Note that, once the functions Y
and ~ are known either in closed form or numerically, ai coefficients can be calculated numerically
for specific operators.

To find the amplitude and phase modulation equations, we insert the following polar form
into Eqs. (39) and (40)

A(T2) = ~ a(T2)eiA.FJJ , B(T2) = 1b(T2)eiJ..P·JJ (55)

and obtain the amplitude and phase modulation equations for the responses

1 1a3 2. I a5 a4 2. I a6 3. If.
at = - -!-JI a - --ab sm2YI + -(- - -) a b smn - --b smn - -- smY2 (56)

2 8 OJ1 8 OJ1 OJ1 8 OJ1 2 OJ1



Once the numerical values of a coefficients are determined for specific problems, stability and
bifurcation analysis of equations (56)-(59) can be made.

The responses are found by substituting Eqs. (55), (60), (33), (34), (19), (20), (15) and (16)
into Eqs. (4) and (5). The final results are

?

&- 2 ) 7
WI = &a cos(Dt- Y2)YI (x) + 2 {a cos[2(Dt- Y2)} ~I (x) -I- a-~2(x) +b-cos[2(Dt+YI-Y2)j.

~3 (x) ..;-b2
~4 (x) + ab cos(2D t -'- YI ~ 2Y2) ~5 (x) -I- ab COSYI~dx)} T ... (61)

2& 2 ?W2= &b cos(Dt + YI - Y2)Ydx) + 2 {a cos[2(Dt- Y2)] ~-('() + a-~8(x)

~ b2 cos[2(D t + YI- Y2)} ~9 (x) + b2C;IO(x) + ab cos(2D t - YI - 2Y2) C;II (x)

+ ab COSYI~12 (x) } ~ ...

where C;, (x) satisfy Eqs. (21 )-(3 2). The amplitudes and phases appearing in Eqs (61) and (62) are
governed by Eqs. (56)-(59). Therefore Eqs. (61) and (62) together with Eqs (56)-(59) constItute
the final solutions to Eqs. (l) and (2). In the next section, a specific problem will be treated for
illustration.

In this section, we will apply the formalism derived in the previous sections to differential
equations modelling the nonlinear vibrations of cables with small sag-to-span ratios. Following the
previous analysis, we will investigate primary resonances of the excitation and one-to-one internal
resonances between the natural frequencies of the in-plane and out-of-plane vibrations. The
equations of motion, first derived by Lee and Perkins are [13]



where x is the dimensionless arclength coordinate, and () / denotes differentiation with respect to x
The constants VI and VI are the dimensionless propagation speeds of transverse and longitudinal
waves respectively. WI is the in-plane and W2 is the out-of-plane displacements

V 2 J

QdW2,W2) =- 212 f
VI 0

V 2 J

CI (WI ,WI ,WI) = - _I_WI // f WI /2 dx.
2 0

V 2 J

C3(WI,W2,W;) =- tWI// f w;';dx
o

V 2 J

C4 (W; ,W2 ,W;) = - ~W;// f W;/2 dx,
o

Assuming expansions (4) and (5) for the displacements, we obtain solutions (15) and (16)
for the linear problem where the eigenfunctions YI (x) and Y2 (x) satisfY Eqs. (17) and (18) which
can be written for this case as follows

V 2 J
2 Y // + 2y I fVI I (01 1--4

VI 0

2y // 2y 0Vr 2 + (02 ; =

Equation (68) with the boundary conditions (70) possess two types of solutions, namely the
symmetric and the anti-symmetric in-plane solutions with respect to the mid-span of the cable. The
symmetric in-plane solution is



1

C should be chosen such that J y/2 dx = 1. The anti-symmetric in-plane solution is
o

The symmetric in-plane solution can account for stretching of the cable whereas the anti-symmetric
solution corresponds to zero stretching case[l3). We will consider only the symmetric solution in
the following analysis.

The next step is to find the solutions at order &2. The form of the solutions are Eqs. (19) and
(20) where ~ i satisfy Eqs. (21)-(32). Substituting the specific form of the operators from Eq. (67)
into Eqs. (21 )-(32), we obtain the following set of equations

(80)

(81 )

2;: 1/ 0
Vt ';,/0 =



Substituting the linear solutions (71) and (74) into Eqs. (75)-(86), using Eq. (72) when necessary,
we finally obtain the solutions for c; i

2 i 2
V, f 2 2 4 VI VI OJ, 2'c;} (x)= (--2 Y} / dx- C OJ} ) { -4 (1- -tan (-)) - 4OJ} } - •

2vI 0 VI OJ, VI

OJ, 2OJ, 2OJ, I 2
{l- tan(-) sin(-x) - cos(-x)} - -CO)} Y} (x)

v( v( v( 3

j: I) I (,2 4 4 2 2f} 2 d.x (2 2 I
,:>2{X = 6 2 6 C OJ} VI - 3 VI V} Y} / ) X - x) + COJ} Y} {x)

12vI + VI 0

OJ 2V 2 20J
I 2 , 2

c;3\X) = 2(4 2 4 _ 2) {cos(-x)-l}
OJ2 VI V, VI

At order E! , we obtain the solvability conditions (39) and (40) where the coefficients a i are
defined in Eqs. (41)-(52). Substituting the specific forms of the operators defined in Eqs. (67) into
Eqs. (41)-(52), we obtain the coefficients of the modulation equations



where

J J J J

bl = f Y1 dx, b2 = f ~/dx, b3 = f ~2dx, b4 = f ';3 dx,
0 0 0 0

J J J J

b5 = f ~4 dx, b6 = f Y 12dx b7 = f y212 dx. bs = f Y1 1~/dx.I ,
0 0 0 0

J I I J

b9 = f Y1
1 ~2Idx, b10 = f Y1 1~31dx, bll = f Y1

1 ~/dx, bl2 = f Y21
';11 1dx ,

0 0 0 0

J

b/3 = f Y21~/21dx (102)
0

, 1 1 a3 2. 1 f .
a =- -j.1.la- --ab sm2YI- --smY2 (103)

2 8 OJ/ 2 OJJ

1 1 a9 2
b' = - - j.1.2b+ --a b sin2YI (104)

2 8 OJ2



[/
W2= sb cos(flt + YJ - Y2)Y2(X) + 2"ab{ cos(2flt + YI - 2Y2) 4JJ (x)

+ ab cOSYI 412 (x) } + ...

All results presented here are in full agreement with those given in references [2] and [4] provided
that the following notation is adapted

The formalism developed in this paper can be cast into a purely numerical algorithm for
more involved problems where it becomes hard to find the functions explicitly.

A general nonlinear vibration problem has been proposed. The problem generalizes many
vibration problems of continuous systems such as beam, string and cable vibrations. Solutions of
this problem are presented in their most general form so that an algorithm can be constructed for
solutions of a wide range of problems. As an illustration, the algorithm is used to solve a nonlinear
cable vibration problem.

In this study, as an initial step, only the arbitrary linear and homogenous boundary
conditions are considered. Nonlinear boundary conditions can be added as a next step. Subharmonic
and superharmonic resonances of the external excitation as well as different internal resonances can
be considered in a similar way. Numerical solutions can be searched when it is hard to find
explicitly the functions appearing at the first and second orders of approximation. This will not
involve any problem at the last level of approximation, since the coefficients of the modulation
equations are presented in a suitable way to enable further numerical calculations.
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