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The sYlUmeu1' and energy levels of icosahedral C6() are studied. Explicit matrix
representations of the jcosahedral group are constructed. Projection operators are obtained
to simplify eigenvalue problem We summarize role of the group theory to specify energy
leveL" of C6i1.

Many spectroscopic prohlems require the computation of projecr.ion operators. To
calculate these operators, matrix representations of a point group. in appropriate dimension
must be carried out. The software packages., Mathema6ca and GAP are much more
versatile for this purpose. We demonstntc with H specific example how Mathematica and
GAP are usefUl for Gornpmiug matrix represCIltations of a point group and projection
operators ofmolecuhu system

It is well kno~m that molecular and crystallographic point groups can be constructed by
breaking symmetr.ies of Special Orthogonal ('.rroup SO(3)[ 1]. There are a number of
interesting work about construction of crystallographic and molecular point groups[2].
Symmetry bJ'caking method is a simple way for Mathametica and GAP users to construct
these point groups.

Group theory has been applied in :m.any different fields of physics, such as, classification of
eigenfunetions., an31ysis of differeDt types of phase transitions in solids, classification of
energy levels of atomic, molecular, solid stat.e and nuclear systems. In Ulany cases, these
applicatio:us require truttri.J'( representations of corresponding group[3,4].

In recent years, there have been some reports on calculation of the energy levels of
icosahedral C&; and its various compounds[5]. Since C6(1 has high symmetry with
symmetri\~ g.roup Ih ,the computations are based on group theoretical analysis. Many
quasicrystal-; have icosahedTfil structure, and crystallographic description of Ih quasicrystals
is purely mathematical.

The purpose of this paper is threefold. Firstly, we develop a systematic method to
con~1m.:.t matrix representation of a poml gnmp. Secondly we compute projection



operators of icosahedral point group \\~ich has great interest for physicists who study C6()

molecule or quasicfystals. Lastly, we demonstrate a specific example.

The irreducible representation of SO(3) are all real. SO(3) is a subgroup of SU(2) and
generators of SU(2) can be written as elm,}, v"here J are angular momentum operator and
closed under commutation

To obtain the standard fonn of the commutation relationship of SO(3) algebra, we can
v"rite

___ J



J±¢(jm) = J(j+ mil ± m+l)¢(jm ± 1)

J3¢>(jm):;" m¢(jm)

since the range of m is bounded from j to ~j,the unitary representations of SO(3) has
dimension 2j~ I, when j takes intc-ger values. The generation relations of the finite
subgroups of SO(3) are given in the last column of Table 1.

The molecular andior crystallographic point groups can be classified as cyclic groups Cn,

dihedral groups On, ttmahedral group T, octahedral group 0, icosahedral group 1. In the
following table, we list the generators and generation relations of finite subgroups of
SO(3).

Detailed description of the groups Cn, Do, T, and 0 were studied In previollsly[l]. Since
we are dealing with icosahedral grm.lp I, "ve construct irreducible matrix representations of
the COlTespondmg group. Icosahedral group has five irreducible representations with
dimensions. 1, 3, 4, and 5. It 1.5obvious that one dimensional matrix representations of the
rs are obtained from Eqn( 4) for the values ofJ=O.

'nle breaking of SO(3) to icosahedral group is made by finding vacuum e'''1Jcctatioll values
for 4>. In a mathematical point of view tht~ icosahedral group generators can be obtained by
choosing the l\ and rs ill the form of Table 1. To ohtain :1x3 matrix representations of
icosahedra I group j. are taken as 1 From Eqn( 4), we obtain rs and from last row of the
table, we find the g';nerators A and B which are complex matrices. These are transfoffiled
to a real base';: by choosing the field X=Tij> .

x. == -. ~. (4)(11) + 4>(1 -. 1»
, I'"w-

I
X, = -/'- ($(11) -- $(1 - 1»- ,,2
X3 = $(lO)

that transforms 3 dimeliSional representation to real field. The other 3x3 representation of
I group can be obtained by repuJl::;ng a and 1" in Table 1 and transforming to a real field
with the X=Tq, given in Eqn(5). The representations are given in Appendix 1.

In this case, :Sx5 matrix generator art; carried out for j=2 as in j= 1 case, The 5 dimensional
generators are transfonned to real base by choosing the base vectors which transforms
5.><5matrix represemstiollS that are given in Appendix 1, into rea) field. The diagonal
generator in Appendix 1 are obtained by multiplying A and B at the last column of Table
1.



1
Xl == ;;:;--($(22)+</>(2-2»v2 .

X2 0:: ~ (!b(22) - $(2 - 2»
-J2

X =_1_(<1>(21)--4>(2-1»3J2
1

X4:; ;;:;-:(4)(21)+4>(2 -1»
• '112

X; == <1>(20)

Even dimensional representations of the group cannot be obtained as odd dimensional
representations, because 2j-d always give odd dimension for integer values of j. Four
dimensional representations are obtained by taking j=6 which gives 13x 13 generators of
SO(3). The conjugate classes of 13 dimensional representation are given in Table 2 and we
have checked that this representation can be decomposed as

The choice of the basis given in Eqn (8) transform these matrices to real matrices. After a
few attempts 13 dimension generator~ are blockdiogonalized and 4 dimensional matrix
representations given ilJ Appendix 1 are obtained.

,
XI == "'-:,=(tlJ(66)+<j)(6-6».,)2

X, = ~''"(4)(66).- $(6 - 6})- -/2

XJ =-~(q,(65)-'4>(6-5»
~2

1X =: ---( <1>(65) + <1>(6 - 5»4 r;;v-
I

X~::: J2'(~(64} - q,(6 - 4»

I
X6 == _.~ ( q.< 64) + c!>(6 - 4»

-..12
Xn :; cj>(60)

X 7 =~=(<jl(63) +<!>( 6 - 3»,,2

Xx :: ·:)2(<1>(63) + 4>(6- 3»

X9:: ~(q,(62)+${6- 2».J2
1

X10 = "J2 ($(61) + 4>(6 -1»

1
Xli = J2 (cP(61) + <1>(6 -I»
X12 = -ji (q,(61) + 4>(6 -1»



The frequently used method for e:i1abJioiliing permissible quantum states for a molecule
involved u~e of projection operators[6]. Projection operators based on the group
representations are often 'used for formulating appropriate linear combinations of a set of
basis functions. The operator for the ktt, irreducible representation of dimension nk
belonging to a group of order h is defined as

p." :: ~ "'""DU,(R,)R,u ~ q •
gR'

where DiJ represents the im;ducible matrix fmm , Ri is the syuunetry operations, no. is the
dimension of the ineducible representation and g is ilie order of the group. In this section,
we develop a method to obtain projection operators fur C.su molecule. It is well known
that Huckel molecular orbital theory is very useful for large carbon systems. For large
carbon systems Huckel detemlinant must be block diagonal form. This call be done by
projection operators.

Table 2. Character table for tlle full icosahedral group Ill' The last two row demonstrates
the characters of site svmmetrv matrices and the charai::ters of 13 x 13 matrices.""~~" __"'_~'"I __ ~...e.-..~..~~ . ~ __

. ~~1~ .._~2IC: 12~~~_?'~~_~~i~~_·~~:~~~2~J(~~_?Ol~'(~~~_

FIll, I 3 1: -cr 0 -1 3 -(J TO-I R"R,.R1

F211. i ') _·cr 1 0 -1 3 1 -0 0 -1
I

G" 14 -I

H" 15 0

Au -I -1 - J - 1 -I

Flu j 3 T -0 0 -1 '" 0 0 x,)',z-.' -1

F2u 3 -0- T 0 -1 -3 -1 cr 0

Gu 4 -1 -1 1 0 -4 ··1 0

lL 5 0 0 -1 1 -5 0 0 1 -1
-i.it)6o--o --O-"--O--~O--O---O----O--O---4---'-"
~ _ ~ w ~ __ 1 .2c=::~:_':::_,~-1 -1 .

Icosahedral C60 molecule includes sixty carbon atoms in a site. rne position vectors from
the center of molecule to the jib atom in a site can be found by choosing a radial vector TI

for an atom and the other vectors are obtained from

where gi are 3 dimensional group elements and are given in Appendix 1. Site symmetry
matrix generators (60x60) oflh are constructed by tnmsfonning each position vector using



Dij = gl~ . ...,.ij

F. = g"f. --1- r.
\J • I J

where D and Fare 60 climeusion matrix generators of the group and the characters Mite are
presented in Table 2. Decomposition of Xsil<: in terms of irreducible representations are
given

We now want to obtain projection operators which blockdiagonalize Huckel Hamiltonian
matrix in the fonn of the Eqn(l2). We carried out an elements of the group in GAP and
from Eqn(9)., we obtained projection operators.

The molecular orbitals of Jr. site are formed by follo\\.'lng a simple way. We choose a basis
vector <1>1and the wave ve:::tors of each atom \f/i/ are \¥J"ittenin terms of base vectors <1>;
are

I; pk",\11 i.i = U 'VI .

III previous sectioll. we have classified the atomic orbitals and wave functions according to
the irreducible representations of In. In this section, we \vill find the euer!,'y eigenvalues of
C60 molecule. It is knOWll that energy expectation value of it" state of a molecule is given
by

E = (I.jl IIBj \II j'
I ,I I

= N~ [C~ (4) j IHI4> j) + CjjCjl (4) j !HI<I>k)]

= a +2N;CijCiI; (<I>j IHI<I>~)

where a = (cP j IHI cI>j) and Nj, Cij are scalar coefficients. According to the Huckel

approximation, in evaluating Ej we can neglect any integral fonn (cPj IHIcPk) in Eqn( 14), if

cPJ and cPKrefer to non-adjacent atoms. For C60 molecule each atom are bonded to three
neighborhood atom with two single bond and ODe double bond. In this case , we neglect
the interaction between fiuthet· atoms and we can write .

{
13 for double bond

(4Jj/H!4Jt)= (.12
1

J:'
}J lor single bond

To simplify our problem we can make another approximation. Since 131and 13:! are
double and single bonds respectively, one can choose PI = 2132, We ha've taken a=O in



our calculations according to rue HUckel approximation The Hamiltonian matrix is
computed from Eqn( 14), for each representation of Ih group and eigenvalues of these
matrices are given :in Appendix 2. As shown from Figure 1, there are an1lbonding and
bonding energy levels. Eigenvalues of block diagonalized H:tmiltonian matrices give two
different energy levels which correspond to one irreducible representation (T1u,Gg, etc ..)
Larger energy represents arltibondil1g energies, smaller energy represents bonding energies
of an electron in au atom.

The paper presti.uts a systematic way to construct the molecular orbitals and energy
eigenvalues ofCw molecule. lb.e projection operators are also used to simplify vibrational
energy problem, by taking direct product of Pi's by 3x3 matrix representations. The
energy values of Ceo are classified according to their symmetry.
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APPENDIX 1

IRREDUCIBLE 1l1ATRlX GENERATORS OF ICOSEHEDRAL GROUP

" (_. L 0 0\
I(-t cr

lJ£1(") = I 0 -1 iJ gl(3) = - -cr I
~ 0 0 2 \.-1 r

,- ~.rJ5 -~(1 0 0 0', f -I " "--I 0 4 _. 11 -J3 ..., J5
£1(4)=16 ~l -." -J I0 I g1( ) - (; _" ~ 0 II -"'¥. J5\.0 0 0 -J) \-2·l5 0 -..)5 -3 )

g,(5) J~0 0 0 ~I1 0 0
0 1 0 ~J10 0 0 -1

\,0 0 0 0

r 1
3-J5 -.[5 3+J.~ -24"'~... '5 -4 -.J3(1+.J5) 0-.) + v1 .

&(5) = ~ -J15 J3(1 +../5) -1 13(-1+15)
2fJ8l3+,fS 0 J3(-I+J5) 4

215 4 -2../3 --4



APPENDIX 2

ENERGY lYfATRlCES .'11'1DENERGY E1GENVALUES OF C60
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