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Abst.ract- A generalized equation of motion with odd nonlineariries is considered. The
nonlinearities of cubic and fifth order are l'epresented in the form of 8rbitraly operators.
The equation of motion, in its general form, may model a class of partial differential
equations encmmtered in vibrations of continuous systems. Approximate analytical
solutions are sought using the method of multiple scales, & penurbation technique.
Forced vibrations with viscous damping are considered. Frequency-response relation is
derived in its most: genera] form. Finally, an application to a specific problem is given.

A new notation of expressing the nonlinearities in continuous systems has been
first proposed by Pakdemirh [1]. Quadratic and cubic nonlinearities of a general system
were expressed by arbitrary spatial operators. Free vibrations with damping were
considered for single-mode approximations. The analysis was generalized to infir.ite
modes by Pakdemirli and Boyael [2]. Primary resonances with forced vibrations were
considered in that analysis. Subharmonic, su.perharmonic and combination resonances
were treated using the general model by the same authors (3). Finally, the same
notation was also used by Boyael and Pakdemirli [4] for expressing the nonlinearities
of quadratic and cubic type. General solutions were constructed using different
versions of the method of multiple scales.

In this work, we treat Ii general continuous-system model of odd nonlinearities
as follows

w+ fiw+ L(w) + eC(w, w, W)+82 E(w, w, w, w,w)::: ft cosnt
B1(w)=O at x=O, Bz(w)=O at x=l

where w(x,t) is the deflection, p is the viscous damping ooefficien~ it is the external
excitation amplitude and n t5 the external excitation frequency. L, C and II are the
linear self-adjoint, nonlinear cubic and nonlinear :fifth order operators respectively.
BJ and B; are the linear operators for the boundary conditions. All operators are spatial
differential and/or integral operators. x and t are the spatial and time variables
respectively. The dot denotes differentiation with respect to time and the prime denotes
differentiation with respect to the spatial variable x. The equations of motion are in
dimensionless form. The nonlinear operators possess the property of being multilinear
as explained in more detail in previous work [1-4].



For .finding steady-state solutions of partial differential system (1), we use the
version of the method of multiple scales first proposed by Rahman and BUlton [5].
Damped vibrations with forcing are considered. Frequency-response relation is derived
in its most general form. Finally, the solution algorithm i~applied to a beam resting on
a fOl.mdation with odd nonlineariries.

In this section, we ·..viIl solve system (1) .inits most general form. We follow the
analysis given by BoyaCl and Pakdemirli [4] for partial differential equations, which is
an adaptation of the method proposed by Rahman and Burton [5] for ordinary
differential equations. Defining a new time variable

T=.Qt
and substituting into (1), we have

.Q2W + jiv., + L(w)+ &C(w, lV,w) +&2 E(w, w, W,"jI', w) == ft cosT

BJ(w)::::O at x=O, B2(w)=O at x=l

where the dot now denotes differentiation with respect to the new variable T and
jJ = jJ.O. The response. damping coefficient, excitation amplitude and frequency are
expanded in terms of the small parameter &

w(x, T; &) =- wo(x, To,~, 1;) + [,'w1 (x, 1~,1;,7;)+ &2 w2(x, Tv, I;, T; )+ ...
Ji == 6f.LJ + &2 ,u2' ft = ElF, n: = 0/ + &0"1 + &2(52

(4)
(5,6,7)

where To = T is the usual fa~ltime scale and ~ = ET and T; = & 2 T are the slow time
scales. Derivatives \-vith respect to time are defined .interms of the new variables

dldT:Do +&D1 +fi
2D2 +...

d2/dT2 = D; +2eDOD] + &2 (D]2 +2DoD2 )+ ...

Expansion of ft in eq. (6) is kept up to Orb). An expansion to 0(&2) yields redundant
tezms and requires com.patibility conditions [4]. In search of approximate solutions, we
are directly attacking the paniat differential system rather than discretizing the system
first and then applying perturbations. The fonner method has advantages over the latter
one [1,2,6-9].

Inserting eqs. (4)-{8) into eq. (3) and separating each order OfE yields the set of
equations

" 2 ., ""
(j)- Do wJ +L(w])::: -2cu- DoDJwo - O'JD;wO _. J1.JD{lwo

- C(wo,wo,wo)+Fcos'Fa



oil. D;wz +L(-w2):= -2al Do DI WI - al(D1
2 +2DoDz}wo - 0'1D;w1 - 20iDaDIWo

- CJ:zD;wo - JJIDOWI - ,u1D1wO - J.l2DoWa - C(wo' Wep WI) (11)

- ('(WO' WI' WO)- C(W1 ,'WO' WO)- E(wO' 'Wo, WO' WO' 'WO)

L(Y)- a/lY = 0
B/Y)::::.O at X"" 0. B2(Y)=O at x=l

The ahove boundary value problem is an eigenvalue-eigenfunction problem with al
(Square of the natural frequencies of the system) the eigenvaluesand Y(x) the
corresponding eigenfunctions. For continuous systems, there are infinite nwnber of
eigenvalues and corresponding eigeILfunctions.

Substituting eq. (12) into eq. (10) and finding the solvability condition at this
order, (see Nayfeh [10] for details offinding solvability conditions) we obtain

a! =: JYC(Y,Y,Y)d>: , f::: JYFdx (15)
° 0

For steadynstate solutions, requiring D1 A == 0, writing the complex amplitude in its
polar fonn A=-( 112 )ael/J , sepa.rating the real and imaginary pans, we have

-. rf2.., ~ V 2CJ, ::: - a o· +. -- - 11
1 4 1 - aZ 1"""1

A solution at this order free from secular and resonant tenns is

WI := (A3(J;)eWO +cc),(x)
where t/(x) satisfies

L«(J)- 90i¢ = --C(Y,Y,Y)
BJ «(J ) == 0 at x=: 0, B2 (;) :; 0 At x = 1

At order &", we substitute solutions (12) and (17) into eq. (11) and find the
solvability condition



a2 = jY[C(Y,Y, ¢)+ C(Y, ¢J,Y) +C(¢,Y,Y)+ lOE(y,y,y,y,y)]dt" (20)
o

In the steady-state D2 A ::::O. Writing A=:( 1/2 )aeip, separating real and imaginary
parts, we have

1
a~"'"-"a a4

" 16 2 ,

~ ~ .3 2 !/2 2 .., 1 4
Q-::: w· +ei-a a ± /-- /I )+e---a ...a

'4 1 'a2
'-1 16·

The coefficients a 1 and a2 are defined in their most general form in terms of the
arbitrary operators.in eqs. (15) and (20). For the specific forms of the operators, these
coefficients can be calculated with ease by evaluating the integrals. When e is taken as
zero, the nonlinear result reduces to that of linear one.

The approximate steady-state solution can now be vvritten as

To summarize the algorithm developed, we have to solve the boundary value
problems appearing at eac:h order of e (i.e. eqs. (13) and (18» and then evaluate the
integrals to find the coefficients (eqs. (15) and (20». The general solutions (22) and
(23) can then be ~'ri.tten for specific continuous systems.

In this section, we apply the gen.eral algorithm to a simply-supported beam
resting on an elastic foundation with odd nonlineariries of cubic and fifth order. The
equation of motion for the problem. is

u+ jlu+utv +k1u+k2u3 +k3uS = Fcos,{Jt
u(O,t) == u"(O,t) = 0, u(l,t):= u"(l,t) = 0

where k1 is me linear coefficient and k'J, and k) Me the nonlinear coefficients of the
elastic fOWldation. Ass'111IDngthat the vibrations are mWl (a weakly nonlinear system
with E a small parameter), we make the transformations



where f::::: p!81
:
2
. Comparmg eq. (26) with eq. (3), we define the operators

L(w)=w:iv+k!w, C(w,w,w):kzwJ
, E(w,w,w,w,w)=k3w

5 (27)
,"'e first solve the bOlmdary value problem in eq. (13). With the above linear

operator,. equation (13) takes the form

yi" + (kT - a/ )Y :: 0

Y(O) := Y"(O) =: Y(1) :=: Y"(l):= 0

Y(x):::: ·/2smmlX, CtJ = J~41l"4 +k), n = 1,2,3, ...
Now, we can calculate the coefficient a 1 from eq. (15)

~ ':!

J ,. ,,4, --'ka ::: If 1 ax-==-- -.1 ... ~->. 2 2
o

Next, we solve the bmmd.ary value problem given in eq. (18)

if; n +(k) - 90)")¢; :::-Z.J"Zk
2

sin 3 nr.x
¢(O) == ¢i "(0)::: ¢(l)":: ¢ "(1):= 0

J 2 (" )2 5 3k2 9 ]
a = Y(3k Y ..A + 10k Y )dx == ·-l··---------- +25k

2 Z 'I' 3 32 n4tc4+k 9n4;r4.-k 3o 1 I

The approximate solution may be written by bubstituting first eq. (33) into eq. (21), (",.q.
(30) into eq. (16) and then the results together with eq. (29) and eq.(32) into eq. (23).



We showed the essential steps of solving a general odd nonlinearity problem.
Approximate solutions of the general equation has been found using a ~;pecia]notation
developed previously. Cubic and fifth order nonlinearities are represented by arbitrary
spatial operators. The method of multiple scales was used in the analysis. Frequency-
response relations and approximate steady-SUlte solutions were found in their most
general form. A nonlinear beam problem was solved using the algorithm developed.

Only the primary resonances were considered in the analysis. Secondary
resonances can be con.sid~red as an extension of the method.
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