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Abstract - The NEWSR and the EWSR are studied microscopically within
TDA and RPA methods. By exploiting the analytic properties of
the electromaS'11eticand allowed (3-transitions matrix elements
the theory of residue and contour integrals is used IO show that exact
calculation of the NEWSR and EWSR is possible. In TDA (non-
degenerate limit) we deduce formula for the EWSR ofEA. transition
strength We have given different way of the proof of Thouless theorem
about exactly exhausting the EWSR ofEA transitions matrix elements
in RPA The unlike particle-hole formalism is developed for allowed
13transitions We find that TDA and RPA conserve the NEWSR and
EWSR for Fermi and G-T (3-decays

Microscopic nuclear models are successfully used to investigate the properties
of nuclear collective excitations [l] This model involves the c.oncept of effective nuclear
interaction For each class of nuclear effects, OIle finds the corresponding most
important component of nuclear forces , only this component is then used in the
calculation. The nuclear many-body problem is thus reduced to a problem with a limited
nuclear degrees of freedom .The equations for the problem are defined by means of the
Green functions method [2] , the finite Fermi system theories [3] the Tamm-Dancoff
approximation (TDA) and the random-phase approximation (RPA)[4] All of them
contain description of collective motion in many body system However exactly solvable
models are very important in nuclear physics for the prediction of the reduced
probability of the electric and magnetic multipole radiation, (J. and (3- transition
probabilities.

In quantum mechanics, the transition probabilities of the system from one state to
the other one are restricted by certain relations which are valid for the matrix elements
and these relations are called the sum rules The sum rules are often used in the atomic,

nuclear, and particle physics.
The sum rule approach is not exclusive to nuclear physics ,this is quite general

and often used in ether theoretical physics applications. The sum rule description was
first used by HBethe (1930) to get the general formula for the effective retardation of
fast electrons by hydrogen atoms The sum rule approach has been widely used in
dispersion theory of resonance nuclear reactions, which is well knowrl for reduced
width of nuclear levels. According to the rule, the sum of reduced width of nuclear



levels for given reaction products has a certain value The sum rule method has been
extensively employed in microscopic nuclear theory in order to investigate the properties
of nuclear collective excitations[5-8) .For example, the total cross-section for EA
gamma absorption can be deduced from the energy-weighted sum rule (EWSR) for the
electric 2A-pole transition matrix elements. The sum rules allow us to obtain the
approximate oscillator estimate of the giant dipole and quadrupole resonance energy in
the case of an arbitrary potential in nuclei [9,10].To check the accuracy of the TDA and
RPA solutions, we can use the sum rule approach for nuclear transition matrix elements.

Numerical calculations of the sum rules within the framework of modem
microscopic models of nucleus are simple with a small number of the phonon states.
However, in many real cases the spectrum of such states is characterized by high
density. This gives rise to considerable difficulties in exact calculations of all the
eigenvalues con and correct evaluation of transition matrix elements .In view of this ,it is
useful to consider the approach in which the evaluation of sum rules can be made
analytically .Alternative and more direct method of calculation of the sum of beta
transition matrix elements was proposed in article[ll].We note that similar difficulties
can be avoided in the case of the beta transition properties of highly excited states in
double beta decay by using the analytic properties of nuclear matrix elements [12].

In this paper, using the analytic properties of the electromagnetic and beta
transition nuclear matrix elements and the theory of residues and contour integrals, we
have derived formulas for the energy- weighted and none energy-weighted sum rules
(NEWSR) for matrix elements of the electromagnetic and allowed beta transition
operators in TDA and RPA approximations.

In quantum mechanics, the sum rules for the transition matrix elements from one
state to the other one are obtained by using the commutation relations of the transition
operators and their herrnitic conjugates with each other, and with the system Hamiltonian
by making explicit use of the closure relation of exact eigenstates of the system. Sum
rules have two types: EWSR and NEWSR. First, we will show the use of sum rules, and
then the calculation of these sum rules in IDA and RPA method.

None energy-weighted sum rule .is obtained from the law of matrix multiplication

(fg)mn = Lfmkgkn (1)
k

For any operator f, the transition probability from the ground state to the excited
states of the system is given by the sum rules

L1<n Ifi 0 >[2 = L< 0 I f+ In> < n if I 0 >=< 0 If+fl 0> (2)
n n

Here 10> and In> are the wave-functions of ground and excited states of many-body
particle system, respectively.

Sum-rule (2) is widely used in the processes in which the electric charge is
conserved. As it is seen from the formula, transition probability from ground state to all
excited states is equal to the expectation value of square module of the transition
operator in the ground state.



A direct calculation gives

2:(1< n If 1 O>t -1< n If+1 0>1
2

) =<0 IF! 0> (4)
n

Since beta-transition operators are not hermitic, this sum rule is widely used in the
allowed beta transitions.

Using the relation between the matrix elements of some transition operators and
its derivative with respect to time, the general formula for the EWSR can be calculated
by means of summation theorem [13 ] which is

2:/En-EO)!<n If 1 0>1
2

=~<o l[rr[H,fJ]! 0> (5)
n

Here Eo and En are energies of the ground state and the excited state, respectively.
The matrix elements of the quantity f and of its commutation with the Hamiltonian

H are related

< n If 1 0 >= ~J(~,f]i 0> (6)
En -Eo

Direct calculation of the left hand side of(5) using (6),we have the required theorem (5).
The right-hand sides of the sum rules in (2),(4) and (5) for transition operators

are independent from the properties of the exciting energy levels considered and their
calculation methods, and are calculated with the help of the ground state wave-function.
On the other hand, since the left-hand side of the sum rules contains the excited states
wave functions their values depend on model and the accuracy of the methods used.
Thus, sum rules simplify the results obtained without ealculating the matrix elements
numerically, and to check the accuracy degree of the methods used.

Another importance of sum .rules is that they are independent from the model for
the particular transitions. For example, the EWSR (5) for electric-dipole and electric-
quadrupole transitions are of definite value, because they can be compared with model
independent estimate, obtained by ignoring the effects of exchange and velocity-
dependent interactions (7]. This also provides to understand whether the models
applied to many-body system are useful ~r not

The key problem in the program for investigating accuracy of IDA and RPA
approaches is the calculation of the EWSR and NEWSR. A detailed description of the
use of the RPA and TDA in microscopic nuclear model was given in many articles [1,2]

The equations of the IDA may be obtained from the more general equations of RPA.
In this section, we shall discuss the nuclear processes that give an information about the
integral characteristics of the nuclear vibrations. Here we are mainly interested in
E1,E2,Ml and allowed Fermi and Gamov-Teller (GT) p-transitions. We shall use the
model with pairing and multipole-multipole interaction for electric dipole and
quadrupole vibrations and spin -isospin interaction for magnetic-dipole and G-T
excitation The dipole-dipole interaction describes relative motion of the protons against
the neutrons Such a vibration determines the properties of the giant dipole resonance



with pt = 1- [7,9]. The quadrupole-quadrupole interactions generate the vibration with
the quantum number pt = 0+ ,2+ (K=0,2) in deformed nuclei [1,14].

In the RP A, the Hamiltonian of system is reduced to the form[1]:

H===LronQ~Qn
n

Where the phonon operators Q~ describe the intrinsic pt excitations generating by

multipole-multipole interactions and eigenenergies ron >0 are solutions to the equation

2E .r (,"-)2U2 ,
F (ro ) = L ss ss ss (8)

t n 55 E~-ro~

Here USS' =Usvs' -us,vs and't denotes the summation over the states of identical particles
(neutrons or protons) . Ess' and r;.~)=< s'lrJ..YJ..fl!S> are single quasiparticle energies and

reduced matrix elements of multipole transition operators fA~===rA.YA.~, respectively, Us
and Vs are quasiparticle occupation parameters,

The explicit form of the matrix element of electric 2/-pole transition from the
ground state to one phonon state with spin and parity pt is (1,14]

E,f (,"-)2 U2 , E, f (,A)2 U2 ,
Z(ron) == 4ron(2: s( ~s 2/S + 2: s( 2SS 2/S-) (10)

pro' Ess' - (On nM Ess' - ron

Following the usual procedure for generalised nuclear model calculations, we find the
reduced EA transitions probability ,

p2(ro )
B(E'A 0+ ~ An) ===IMI2 ===-'p-~ (11), Z(ron)

Now using Eqs. (11), we can write the EWSR (5) and NEWSR (2) in classical form

SEA.===LronB(EA,O+ ~ A:) ===~ < ol[f;[H,f]]!O > (12)
n

SNEJ..===LI< niflO >12
===<olf+flo > (13)

n
To emphasize the physical importance of the EWSR we should mention that it

defines the total integrated cross sections of electric 2A.pole photon absorption [9]
32n:4

oEj, ===jo(E)EdE ===9hc SEJ..



According to [7] we can write the model-independent estimate of SEA. ,obtained by
ignoring the effects of exchange and velocity dependent interactions considering all pt
='A1texcitations of the nucleus up to the threshold for meson formation

where Z is the number of protons in nuclei, m is the mass of proton . <r2A-2>is the mean
value of 1'2/.-2 at the Hartree-Fock (HF) ground state, an estimate of it is obtained by
approximating the nuclear density to be constant throughout and of radius Ro .This gives

< 1'21.,2 >=, ._3__Rn,·2
2'A -+- 1 0

The sum rule (14 ) includes both I1T=O and I1T=1 excitations. If isobaric spin is
conserved,it splits between to

SE' T-O = 'A(2A '!=..!2.~e2n2
Z2 < 1'2)..-2 >

J., - 8n m A

Let us calculate right-hand side of (12) and (13) in the quasiparticle
representation
(averaging with respect to the Hartree-Fock-Bogolyubov (HFB) ground state wave
function)

< Ol[r+ ,[H,fJ]lo >HFB= 22:: Ess' f~~)2 U;s"
ss'

01'f+~lo " fCA.)2 U2< r >HF8 = l... ss' s,'
ss'

Thouless[l5] showed that left hand side of (12) calculated with RPA is equal to
the right hand side of (12) calculated using the HF(HFB) ground state wave function
(Eq. (14»)Without numerical calculations it is not easy to see which approximations
TDA or RPA is more reliable. However using the analytic properties of transition matrix
elements we give another proof of Thouless theorem for the case E'A transition
operators. We can show that the fonowing useful relation is valid

Z = 2. dD(ron) = D'(ro.J
n 'X dw 'X

If we use (11) and (17), we find that the general expression for SEA given by (12)
assumes the form

SEA= 'X L ron~(ron)~ = ,~X 2:: ron~(ron)2 (18)
n=I,2,.. D (wn)· 2 1I=±1,±2,.. D (wo)

This sum is very laborious for evaluation. Since (On are the zeros of the function
D(wn) the basic theorem of the theory of residues [16] now allows us to write the
expression for SEA in the form of the contour integral

, 'X ~zF(Z)2S£I=-' -~z
4m L" D(z)



The contour Ln contains first-order singularities of the integrands at Z=±COn
which are the zeros of the corresponding function D(z). Analysis show that, outside Ln,
the integrands in (19) have singularities at z=±~J.i and the corresponding residues can be
evaluated relatively simply. Using the main theorem of the residue theory (the sum of all
residues of the analytic function f{z) is equal to zero) we have

00 F:(oo )
-"f- .0'(00) +LRes<p(+t;~,)+LRes<p (-EfJ.)-=O (20)

n-_l,±2,.. n fJ. fJ.

Rescp(-EfJ.)::; Rescp(&f') = - LE" f~ u~

"
Using (20 ) and (21 ) we obtain the following expression for left-hand side
EWSR(12) in the RPA

S -" B(E' 0+ ,It ) - " "n)2 U2
D. - L"OOn A, ~ "'n - L"E"", r,;" ",,'

n>O ~

It is the proof of Thoules theorem [15], Eq.(22) exactly exhausts the EWSR calculated
using the HFB ground state wave function (Eq.(15» .

If we use the TDA method in similar calculations, the EWSR becomes model
dependent

SE?A = "00 B(EA 0+ ~ 'K') =" [<1.)2 U2 E + xl" [<'.)2 U212 (23)r..}. LJ n ' n L.... ss' ss' ss' v L.-, ss' ss'
n SS' ss'

and violates the EWSR. This expression for the EWSR is first obtained in this paper
and in the degenerate limit when all the quasi-particle energies are equal to common
i.e. Ess'=e gives the well kno~ result of [7].

In t'le degenerate limit Eg. (23).predicts a pure collective single state

- - ~ f(i.)2U2
((leoll - r. + XJ..o ss' ",,'

!:S'

Thus the IDA method in general( see Eq (23» gives small energy weighted sum
rule for attractive interactions (X<O) and to a large value for the repulsive interactions
(X>O). The TDA satisfies the NEWSR but violates the EWSR, whereas exactly the
opposite was true for the RPA .The energy weighted sum rule in IDA method is not so
much physical value as the one for RPA method ,since its magnitude depends on the
constant X of the effective interactions. For this reason RPA method is usually preferred,
since EWSR in this method is almost model-independent and therefore more reliable.



Since the deformed nucleus is assumed to be rotating about the x axis, we must
separate the collective magnetic moment connected with this motion from the x
component of the magnetic-moment operator[ 16]

-+ 1,,[(, ')-4 ,"1']~=2L gs ._.gl aj + gJJi
J,'

where a are the Pauli matrices, g~ and g: are the free nucleon spin and orbital gyro-
magnetic ratios, and the sum rule over all nucleons .The key problem for investigating 1+
states is the isolation of the rotational branch from the internal excitation spectrum. A
detailed description of the use RPA for 1+ excitation was given in[16].Here we are
mainly interested in the consequences for internal p, K=l +J excitations and its Ml
transition probabiiity when allowance is made for the conservation of angular
momentum.

A more important characteristic of the one phonon J -I- states is the reduced Ml
transition probability for the ground state, which in the RPA has the forro[ 16]

B(MI ()+ l+)-~-~..!!._-[J ( ). ,\,( '- ')X'( )] 2
, ~ n - 4 4Z( ) p ron I-~ ,g,; gl ron ~N

7t ron <

where for one kind of nucleon
2E ·2 L2

J (, ) = ,,_SS'Jss' ss'
't ron L, -2 2

ss' Ess' - (J)

Z(ron) = !-Wn ~«(()n)
4 dron

Here I-tN is the Bohr magneton, jss' =< s'Uxis> are the single-particle matrix elements

of the angular momentum operator and in the usual notation Lss·=Usvs.-us,vs.The
excitation energies ron- are solutions of the dispersion equation

In HFB approxi.mation direct calculation of the commutator in the right-hand side of
the EWSR (12) gives[16]

2

[J.!+,[H,J.!]]HFB = :i [y p + ~ (g; - g~)y~ -y p Y: Y n ] ~~ (27)

-4"E ·2 L2 " 'E 2 L2
Y - L, ss'Jss' ss" Ocr = L, ss,ass· 5S'

55' 55'

In RPA approach using the analytical properties of the B(Ml) and dispersion
Eq.(26), the following fonnulas for EWSR are obtained using the residue theory and
contour integrals:



Z
SRPA - .•.L[ '( ' ....') , __ Y_p_] z (28)

"11 - 8n y p + ~ g, gl Yay p + Yn J.1N

and exactly exhausts the EWSR calculated using the HFB ground state wave function.
Thus in the RP A for the magnetic dipole transitions we get

LconB(MI,O+ ~ ~) = ~ < ~[M+ ,[H, M]]O >HFB
n~O.l,...

The last term in the square brackets of (28) represents the contribution related to ground
state correlations caused by the non-spherical nature of the deformed nucleus and the
effective interactions restoring the rotational invariance of the Hamiltonian. It can be
shown by a similar calculation that TDA method do not conserve EWSR (29) and gives
the uncorrect result for Ml-transition.

In this section, we shall apply the method developed before for the calculation of
sum rule for allowed GT and Fermi 13 decay matrix elements. It is interesting to study in
the microscopic approach (unlike particle-hole RPA)the properties of 0+ and 1+ states
generated charge-exchange interactions of the form X{c't + XG-rcr'on in odd-odd nucleus
and to estimate their beta transitions sum rules (0 and 't are the spin and isospin
matrices). The excitation energies ron are obtained from [11)

1 1... ~
D(con) == (2X~ + f(ro »(2Xjl + f(CD» - t (co) ==0 (30)

f=L(-~+-' b~_),f=L(-~~+~)
y &y -con &y +IDn y &y -con ty +COn

t= I;b b (__ I _+_1__)
y f' \' &y - con &y +COn

where b~ =upvn<Pllcrlln).b~ =unVp(~'aj!n); and E~=C; ~"Sn is the two quasiparticle
energy ofa neutron -proton pair. The RPA treatment clthe collective Fermi 0+ states is
identical with the treatment given by GT oscillation if (n'l cr lip) of the latter is simply

replaced by the overlap (n!p) , If we discard factors containing 1 in (30) we
Ev +con

obtain the formulas corresponding to the IDA approximation. The matrix elements of
the ~ transitions from the ground state of 10) of an even -even nucleus to different one
phonon states In) of an odd-odd nucleus

M~_ ==<nll,LIO>= Lpf - (31)
2x.~"Yn



Y(ro} = D'(mn}
n 1/2X+f

t 1/2XI\+[1-- -----
-- 1/2Xfl+f t

Here, in the allowed beta transition, operator p± may be written

(32)

(33)

f:L t~ for Fermi decay

p =l~ ." ~~t~ for GT decay

where t± changes a proton (neutron) into a neutron (proton). According to (3) and (4)
the matrix elements (31) and (32) satisfy the following sum rule

L: c!M;-I' -1M;' r )=< 01[,0+ ,,0_]0> (35)
0>0 I

Let us calculate right-hand side of the (35) in the quasiparticle representation (averaging
with respect HFB ground )

[~+'~-]qp =< Ol[p+,~_]10>HFB= :L(b; - b;) (36)
~

The sum rule (35) is physically valuable because it can be compared with the following
model independent estimate containing the neutron and proton numbers of nuclei:

[
(+) H] { N -- Z for Fermi transition

<0 ~ ,13 0>=
3(N - Z) for GT transition

The calculation of the left-hand side of the double commutator (35) using (31)-
we get

SIl= L:(IMn_I'Z_IMO+IZ)=_~ L: f(mo~-f(roD) (38)
0>0 I fl fl 4Xfl n=I,Z D (ron)

The basic theorem of the theory of residues now allows us to write the
expression S~ in the form of the contour int~grals ;

S = __1 ~~f(z) - fez) dz (39)
fl 21ti 8X~ t." D(z)

The integral S~ are very laborious for evaluation. Analysis show that ,outside Ln the
integrand have singularities at z= 00 and the corresponding residues can be evaluated
relatively simple .We note that z= ±1:~are removable singularities of the integrands in
(:H~).Since z= 00 is an isolated singularity (fig. I. ) of the integrand in (39) and using the
basic theorem of the theory of residues[16], we find

Sr'A = S~DA= })b~-b;) (40)
~

We see that unlike particle-hole RPA and IDA exactly exhausts the NEWSR (36).



In order to establish the degree of collectivization of the phonon states under
investigation and the position of the GT and Fenni resonances we shall use the followmg
EWSR.

I 1
2

I 1
2

I ILCOn{IM~-1 +IM~+ ) =< °i[~+,[H,ILJ]IO>
n

where H is the model Hamiltonian for the problem. To verify the validity of the solutions
obtained by the RPA (TDA) we can evaluate the right- hand side of (41) in the
quasiparticle representation (averaging over the quasiparticle vacuum)

< ~[~+,[H,IL ]]10 >HFB= L~~(b~ + b~)+2x~(b~ - b~~ (42)
fi

The last term in (42) represents the contribution of the effective interaction and violates
the EWSR

Thus the EWSR for p transitions is not of so much physical value as the one for
Eland E2 transitions,sinse it is magpjtude depends on the model and form of the
effective interactions. However ,it can be used effectively to estimate the position of
Fermi and Gammov- Teller resonances, whose properties are basically determined by
isovector spin forces.

The method of calculating of the quantum mechanical sum of nuclear matrix
elements with the use of theory of residues and contol.lf integrals is used for evaluating
the sum rules . The method was demonstrated for the case of the electro-magnetic and
allowed beta transitions. We have given different way of the proof of Thouless theorem.
Our caiculations in accordance with this theorem exactly support the conclusion of
Thouless about exactly exhausting the energy weighting sum rule for electromagnetic
transitions in RPA. In IDA we deduce formula for the EWSR of D. transitions matrix
elements and showed that unlike the RPA, the TDA do not predict full exhausting of
the whole energy weighted sum rule and therefore is unreliable for exact calculations

The usual like particle RPA has been extended to the calculation of sum rules for
matrix elements of beta transition operator We find that the unlike particle-hole RPA
and TDA conserves the N'EWSR, and showed that 1'l'EWSR (35) for allowed beta
transition matrix elements is satisfied if the left-hand side is evaluated with RPA or TDA
and the right-hand side is calculated with HFB ground state wave function

In the unlike particle-hole case we deduced formula for the EWSR and showed
that the sum rule is not of so much physical value as one for like particle RPA method,
since its magnitude depends on the constant of effective interaction. However, it can be



used effe~tively to estimate the position of magnetic dipole, Fermi and Gamov-Tener
resonances.

Thus the RPA arld TDA methods are used with the theory of residues and
contour integrals to show that the exact analytical calculations of physical quantities
such as the N~WSR and the E\,ySR of the nuclear matrix elements for the
electromagnetic transitions and Fermi and Gamoy- Teller ~-decays are possible. We have
conduded whether the methods used conserve or not sum rules without· the numerical
calculations, and we call see the beneficence of the methods used.

Acknow!edgement-one of the auhtors (A K.) thanks the Scientific and Technical
Research Council of Turkey (TUBITAK) for their support and Sakarya University for
the hospitality.

1. v.G So!oviev, Theory of Corr.plex Nuclei, Pergamon Press,1976.
2 G.E Brown, Unified Theory of Nuclear Models and Forces,

North-Holland Amsterdam, 1967.
3. AB.Migdal, Theory of Finite Fermi Systems and Properties of Atomic Nuclei,

lnterscience, New York, 1967
4 D.l ThouJess , Quantum Mechanics afMany Body Systems,AcademicPress ,

New York, 1961 .
5 S Stringari ,ELipparini ,G.Ortandini ,M.Traini and RLeonardi,

NucLPhys.A309( 1978), 177, 189.
6. 0 Bohigas ,AM. Lane and J Mortoreli ,PhysRep.51(1979)267.
7. D.J Rowe, Nuclear Collective Motioo. Methuen, London ,1970.
8 AStringari, Winter College on Fundamental Nuclear Physics, V12 edited by K.

Dietrrich.
9. N.I. Pyatov and DLSalamov, Nucleonika -VoL22,127,1977.
10 ABohr and BMottelson ,Nuclear Structure v.II (W.A BenjaminN Y 1975).
I I. SKBalaev ,AA Kuliev and DJ Salamov , Bulletin of Academy of sciences of the

USSR, Physical Series v.54,n05,38, 1990.
12. T.M.A1iyev, S.K.Balaev,AA Kulievand D.l.Sa1amoY, Bulletin of Academy of

Sciences of the USSR,Physicai Series v.53,no. ] 1,2140,1989.
13. L.D.Landay and E.M.Lifshitz, Quantum Mechanics, Pergamon Press. 1987
14. AA Kuliev and N.LPyatov, Builetin of Academy of Sciences of the USSR,

Physical Series, v.54,n035,831,1968.
15. DJ. Thouless ,NuclPhys.22(1961),78,305,331
16. AG. Sveshnicov,et ai, The Theory of Functions ofa Complex Variable

( in Russian), Nauka,Moscow, 1967.
17. AA Kuliev and N.I.Pyatov. Sov INuclPhys 20,297, 1974.


