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Abstract- In this paper, we have presented a special finite difference method for solving
a singular perturbation problem with layer behaviour at one end. In this method, we
have used a second order finite difference approximation for the second derivative, a
modified second order upwind finite difference approximation for the first derivative
and a second order average difference approximation for y to reduce the global error and
retaining tridiagonal system. Then the discrete invariant imbedding algorithm is used to
solve the tridiagonal system. This method controls the rapid changes that occur in the
boundary layer region and it gives good results in both cases i.e., h<gande <<h. The
existence and uniqueness of the discrete problem along with stability estimates are
discussed. Also we have discussed the convergence of the method. We have presented
maximum absolute errors for the standard examples chosen from the literature.
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1. INTRODUCTION

Singularly perturbed boundary value problems arise frequently in many areas of
science and engineering such as heat transfer problem with large Peclet numbers,
Navier—Stokes flows with large Reynolds numbers, chemical reactor theory,
aerodynamics, reaction—diffusion process etc. due to the variation in the width of the
layer with respect to the small perturbation parameter e. Several difficulties are
experienced in solving the singular perturbation problems using standard numerical
methods. Equations of this type typically exhibit solutions with layers; that is, the
domain of the differential equation contains narrow regions where the solution
derivatives are extremely large.

The numerical treatment of singularly perturbed differential equations gives
major computational difficulties due to the presence of boundary and/or interior layers.
This type of problem was solved asymptotically by Bellman [1], Bender and Orszag [2],
Kevorkian and Cole [3], Nayfeh [4], O’Malley [5] and numerically by Kreiss [6], Miller
[7], Kadalbajoo and Devendra Kumar [8], Reddy [9, 10], Lin and Vancouver [11], and
Van Veldhuizen [12] etc. It is well-known that replacing the first derivative by central
difference is not suitable, i.e., no resemblance at all exists between the solution of the
differential equation and the solution of the difference equation. This difficulty can be
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removed by approximating the first derivative by second order modified upwind
difference.

2. DESCRIPTION OF THE METHOD
2.1. Left-end boundary layer problems

To describe this method, we consider a linearly singularly perturbed two point
boundary value problem of the form:

&y" () +ax)y'(x) +b(x)y(x) = f(x), xe[0]] (1)
with the boundary conditions  y(0) =« (2a)
and y@) =2 (2b)

where ¢ is a small positive parameter (0 < & <<1) and «, # are known constants. We
assume that a(x), b(x) and f(x) are sufficiently continuously differentiable functions in
[0, 1]. Further more, we assume that b(x) < 0, a(x) > M >0 throughout the interval
[0, 1], where M is some positive constant. Under these assumptions, (1) has a unique
solution y(x) which in general, displays a boundary layer of width O(¢) at x = 0 for
small values of & .

Divide the interval [0, 1] into N equal parts with constant mesh length h. Let
0=X;, Xy ,.......Xy =1 be the mesh points. Then we have x, =ih:i=0,1,2, ..., N.

At x =X; the equation (1) becomes &y"(x) +a;y; +by; = f;

We extend the idea given by Van Veldhuizen [12] to the boundary value problem (1) by
considering the special finite difference scheme for the equation (1) as follows:

{ Yi1 —2h32/i + Yi+1j ta ( yi+1h— Yi _gyiﬂj b, ( Yin ; yilj - f,

s( Yi1 —Zh)z’i + yi+lj +a ( Yi+1h— Yi _g( fi —ayyi by B b ( Yia ‘; yi—l] - f. @)
&

{ Yi1—2Yi+ Yi+1j N a_( Yia — Yij +aiai+1/2h Vi + ajb;y/h
|

h? h 2¢ ' 2¢ '
) (4)
y.+ + y.i a.
+ bi[%} =T +2'—g fi
Substituting y; = % in the above equation and simplifying, we get
e b 26 8 @8, b0
—+—= Y | —=+—+ - P+
[hz z]y"l (hz h 2 2 )V
b h ©
E 8 a8, b 3 a
(h—2+ﬁ+$+?jym = fi +2'—g fiaar
The tridiagonal system of the above equation is:
Evi.—-FY +Gy.,=H;; i=12...,N-L (6)

where



210 Special Finite Difference Method for Singular Perturbation Problems

e b 2¢ @&, aa a.b -.-h
Ej:_2+—|, |:j=_2+_l+ i4i+1/2  %iViq1/2
h 2 h h 2& 2
a;h

& g b;

GJ:_Z _'+M+_" Hj:fi+'_
h h 2¢ 2

We solve the tridiagonal system (6) by using the discrete invariant imbedding

algorithm.

fi+l/2

2.2. Right - End Boundary value problems

Now we assume that a(x), b(x) and f(x) are sufficiently continuously
differentiable functions in [0, 1] and b(x) < 0, a(x) < M < 0 throughout the interval
[0, 1], where M is some negative constant. Under these assumptions, (1) has a unique
solution y(x), displays a boundary layer of width O(¢) at x = 1 for small values of &.
For the right-end boundary layer problems, we consider the special finite difference
scheme as:

Yi1—2Yit+VYia +a M-l— nyl” +b, YintYia = f; (7
h2 h 2 2

{yH 2y yi+1j +a{yi =T ( f-ay; by, Dm(%j: @
&

{ Yii—2Yi+ yi+l] + a_( Yi — ij_ a3_1/,h y! - abi_y,h y o+

h? h 2¢& ' 2¢ '
i+! + yi— alh
bl( : 2 1) = fl - 2 f|—1/2
iz_i+ &84/ +ﬁ_biai—l/zh - 2_§_ﬁ+ 4842 " abiy,h Y,
h h 2¢ 2 2 h h 2¢& 2¢&
©)
e b a;h
+(h_2+ 2 ]ym = f, "o fio
Equation (9) can be written as the tridiagonal system of the form:
Ev.,-Fy. +Gy.,=H,; i=12...,N-1. (10)
where
j _& & &diap +ﬁ_biai—1/2h’ F, :E_ﬁJr Qdiap aibi_y/,h
h? h 2& 2 2s h? h 2& 2&
e b a;h
G; :h_2+51 H; = fi—zfi—llz

We solve the tridiagonal system (10) by using the discrete invariant imbedding
algorithm. Since Eq. (6) or (10) holds for i=1, 2,..., N-1, we have N-1 linear equations
in the N-1 unknowns y;, y,,....YnN_1 -



K. Phaneendra, K. Madhulatha and Y.N. Reddy 211

3. STABILITY AND CONVERGENCE ANALYSIS

Theorem 1. Under the assumptionse >0, a(x)>M >0 and b(x) < 0,vx €[0,1], the

solution to the system of the difference equations (6), together with the given boundary
conditions exists, is unique and satisfies

W <M. + (e +15)

where ||, _is the discrete I, —norm, given by |x| = Orp%ﬂx |}

Proof. Let L, (.) denote the difference operator on left hand side of Eq. (6) and w,

be any mesh function satisfying L, (w;) = f,

By rearranging the difference scheme (6) and using non-negativity of the coefficients
E;, F, and G;, we obtain F; |w;|<|H;|+ E; [W_y|+G; |w,,,|

Now using the assumption ¢>0 and a >M, the definition of I_-norm and
manipulating the above inequality, we obtain

) qu+1| — 2w, [+ |Wi_1|) .a (|Wi+1| —|w, |j L Al qu+1| —|w, |)

h?2 2h 2¢
(11)

b; ab;4,,h a;h
ﬁLE'qu—1|JF|Wi+1|)+—I — |Wi|+|fi|+2|_g|fi+1/2|20
To prove the uniqueness and existence, let {u,},{v,} be two sets of solution of the
difference equation (6) satisfying boundary conditions. Then w;, =u, —v,

satisfies L, (w;) = f, where f, =0 andw, =w, =0.

Summing (11) overi=1,2, ...... , N-1, we obtain
wi| |wya| [lal,. ||||w sz ajbh
ol al B B B B o g

Since  £>0, |jaf, >0,y <0 and |w;|>0 Vi,i=12,....,N-1  therefore  for

inequality (12) to hold, we must have w, =0 Vi, i=12,....N —1.

This implies the uniqueness of the solution of the tridiagonal system of difference
equations (6). For linear equations, the existence is implied by uniqueness. Now to
establish the estimate, let w, =y. —I., where vy, satisfies difference equations (6), the

boundary conditions and I, =(1—ih)e+(ih)B, then w,=w, =0, and
w, i=12,..N-1.

Now let w,| =[], . =[W,i =0L.......,N.

Then summing (11) from i = n to N-1 and using the assumption on a(x), which gives
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_ngn|_|wnfl|) 8|WN 1| M| |

1 N-2 Mh N-1
h2 h2 —| | _i:§71bi|wi|+z En bii1/2 |Wi|

(13)

Mh N
N IZ;] |f|+1/2|Jr Z|f |>O

Inequality (13), together with the condition on b(x) implies that

N-1 N
M |w,| <h Y[ fif <hd [ fi <[], .
i=n i=0
i.e., we have
w| <M, a9

Also, we have y. =w. +1.,
M = o 41yl <l .+, <]+, (15)

0 <i <N
Now to complete the estimate, we have to find out the bound on I,

M., = mas (]} < e {0~ in) o+ i) 1} < me {0 i)+ i) )

0<i<N 0<i<N
e, wehave 1] <|a|+||. (16)
From Egs. (14) - (15), we obtain the estimate|y|, <M ~*|f] + (o +1A)-

This theorem implies that the solution to the system of the difference equations (6) is
uniformly bounded. Thus the scheme is stable for all step sizes.
Corollary 1. Under the conditions for theorem 1, the error e, = y(x;) —y; between the

solution y(x) of the continues problem and the solution y, of the discretized problem,
with boundary conditions, satisfies the estimate
ym(X)|}

lel,... <™ “e,.. where
+ max {E(1+ha(x)+h2b(x)] W(x)\}
24 y

X 1 SX<Xi

hZ
|Ti | < Xigg(m{? b(X)

2
y"<x>|}+ mex {h—a(x)
X a<x<x,, | 6

Proof. Truncation error z; is given by

e ) R B e e B

{h au y"(x)|} max {“ 2 y'"(x)|}

+ max {gh—:(1+ ha(x)+h2b(x)]y(4)(x)‘}

X1 SXSXi

ri|< max

X1 SXLX;

One can easily show that the errore,, satisfies
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Lh(e(xi))= Lh(y(xi))_ L, (yi)= 7, 1=12..,N-1land g =e, =0.
Then Theorem 1 implies that [, <M 7|, . (17)
The estimate (17) establishes the convergence of the difference scheme for the fixed

values of the parameter ¢ .
Theorem 2. Under the assumptionse >0, a(X) <M <0and b(x) < 0,vxe[0,1] the

solution to the system of the difference equations (10), together with the given boundary
conditions exists, is unique and satisfies

Yy <M, + (ol +180).
The proof of this estimate can be done on similar lines as we did in theorem 1.

4. NUMERICAL EXAMPLES

To demonstrate the applicability of the method we have applied it on linear,
nonlinear singular perturbation problems with left-end and right-end boundary layer.
The numerical solutions are compared with the exact solutions and maximum absolute
errors are presented to support the given method.

Example 1. Consider the following homogeneous singular perturbation problem from
Bender and Orszag [2] gy"(x)+ Y'(X) — y(x) =0; x€[0,1] with y(0) = 1 and y(1) = 1.

Clearly this problem has a boundary layer at x = 0.
The exact solution is given by
[e™ —1)e™ +(@1—e™)e™ ]
[e™ —e™]
where mi=(—1+ 1+ 4&)/(2¢) and my=(-1—V1+4¢g)/(2¢)
The maximum absolute errors are presented in tables 1 and 2 for different values of ¢ .
Example 2. Consider the following variable coefficient singular perturbation problem

" (X)+ (1—§)y'(x) —% y(x)=0: x [0, 1] with y (0) =0 and y (1) =1.

y(x) =

We have chosen to use uniformly valid approximation (which is obtained by the method
given by Nayfeh [4] as our ‘exact’ solution:
_ 1 1 ~(x-x214)/ &
y(x) 7% 2°
The maximum absolute errors with fitting factor are presented in tables 4 for different
values of ¢ .
Example 3. Consider the following non linear singular perturbation problem from
Bender and Orszag [[2], page 463; equations: 9.7.1]
&"(X)+2y' () +e'® =0; xe[0,1]
with y(0)=0 and y(1)=0.
The linear problem concerned to this example is
2

ey"(X) + 2y/(X) + Xi+1y(x) - (X%J{Iog[x—ﬂ} —1}
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We have chosen to use Bender and Orszag’s uniformly valid approximation [[2], page
463; equation: 9.7.6] for comparison,

2 _
y(x) = Ioge(x—ﬂj— (loge 2)e2X/¢

For this example, we have boundary layer of thickness O(e) at x=0.

The maximum absolute errors are presented in table 3 for small values of ¢ .

Example 4. Consider the following singular perturbation problem

&"(X)—y'(x)=0; x €[0,1] with y(0) =1 and y(1) = 0.

Clearly, this problem has a boundary layer at x=1. i.e., at the right end of the underlying

interval.
e(x—l)/g _1

-1le
e -1
The maximum absolute errors are presented in tables 5 for different values of & and the
maximum absolute errors with classical difference scheme are presented in table 6 for

comparison.
Example 5. Now we consider the following singular perturbation

problem &y”(x) — y'(X) — @+ &) y(X) =0; xe[0,1]

with y(0) = 1+exp(-(1+€)/e); and y(1) =1+1/e.

The exact solution is given by y(x) = e/ e

The maximum absolute errors are presented in tables 7 for different values of ¢ .

The exact solution is given by y(x) =

5. DISCUSSIONS AND CONCLUSIONS

We have described a special finite difference method for solving a singular
perturbation problem with layer behaviour at on end point. In this method, we have
used a second order finite difference approximation for second order derivative, a
modified second order upwind finite difference approximation for first order derivative
and a second order average difference approximation for y. This method controls the
rapid changes that occur in the boundary layer region and it gives good results in the
case whene <<h. We have presented maximum absolute errors for the standard
examples chosen from the literature with the proposed method and compared with the
classical second order finite difference method to show the efficiency of the method
whene <<h. The computational rate of convergence is also obtained by using the
double mesh principle defined below.

Let Z, = m?x‘y'} - y?’z‘, j=0,1,2.., N-Lwhere y] is the computed solution on the

computed solution at the nodal point x; on the mesh {xj}éN where

Xj =Xj4+h/2, j=11)2N . In the same way we can define Z;,, by replacing h by

h/2 and N by 2N i.e., Z,,, = m?x‘y?’z - y?"“, j=0,1,2, .., 2N-1.
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logZ,, —log Z,,,

log(2)
We have taken h = 272 for finding the computed order of convergence and results are
shown in Table 8.

The computed order of convergence is defined as Order =

Table 1. The maximum absolute errors in solution of example 1

e\ h 273 27 2°° 2°°
Present  Class.2" order ~ Present Class.2™ order  Present Class.2™ order Present Class.2™ order
method method method method method method method method
270 204(-2) 6.87(-1) 1.06(-2) 6.21(-1) 5.30(-3) 543(-1) 2.50(-3) 4.83(-1)
2712 214(-2) 7.37(-1) 1.10(-2) 7.32(-1) 5.60(-3) 6.58(-1) 2.90(-3) 5.87(-1)
2715 216(-2) 7.54(-1) 1.11(-2) 7.83(-1) 5.60(-3) 7.81(-1) 2.80(-3) 7.30(-1)

270 216(-2) 7.56(-1) 1.12(-2) 7.91(-1) 5.70(-3) 8.09(-1) 2.90(-3) 8.16(-1)

Table 2. The maximum absolute errors in solution of example 2
273 24 275 276

Class.2™ order ~ Present Class.2™ order Class.2™ order Class.2™ order
method method method method method

1.51(-2)
1.52(-2)
1.51(-2)
1.51(-2)

&\ h

Present
method

2.93(-2) 6.75(-1)
2.92(-2) 7.71(-1)
2.92(-2) 8.07(-1)
2.92(-2) 8.12(-1)

Present
method

4.00(-3) 3.86(-1)
3.90(-3) 4.67(-1)
3.90(-3) 6.34(-1)
3.90(-3) 8.20(-1)

Present
method

5.22(-1) 7.70(-3) 4.36(-1)
6.92(-1) 7.70(-3) 5.43(-1)
8.00(-1) 7.70(-3) 7.56(-1)
8.19(-1) 7.70(-3) 8.23(-1)

2710
2712
2715
920

Table 3. The maximum absolute errors in the solution of example 3

e\ h 27 27 27 2°°
Present  Class.2" order  Present Class.2™ order ~ Present Class.2™ order Present Class.2™ order
method method method method method method method method
21 449(-2) 11661 2.52(-2) 16117 1.29(-2) 22562 6.70(-3) 6.23(-1)
2712 453(-2) 11030 2.56(-2) 1.1998  1.36(-2) 1.6372 6.90(-3) 2.2929
215 453(-2) 1.0864 257(-2) 1.1254 137(-2) 1.1747 7.10(-3) 1.3367
270 A54(-2) 1.0841 2.57(-2) 11162 1.37(-2) 1.1358 7.10(-3) 1.1495
Table 4. The maximum absolute errors in the solution of example 4
&\ h 27 27 27 2°°
Present Class.2™order ~ Present  Class.2™ order ~ Present  Class.2™ order Present Class.2™ order
method method method method method method method method
210 120(-4) 7.9019 4.73(-4) 2.0675 1.80(-3) 9.17(-1) 6.90(-3) 7.77(-1)
212 759(-6) 31.8818 3.02(-5) 7.9714 120(-4) 2.1151 4.73(-3) 9.75(-1)
2715 119(-7) 255.8759 4.76(-7) 63.9418 1.90(-6) 15.9876 7.59(-6) 4.0632
220 116(-10) 8.19(+3) 4.65(-10) 2.04(+3) 1.86(-9) 511.9693 7.49(-9) 127.9869
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Table 5. The maximum absolute errors in the solution of example 5

e\h 273
Present  Class.2™ order

method method

—4
2

Present

method

Class.2™ order

method

2—5
Class.2™ order
method

Present
method

2 -6
Class.2™ order
method

Present
method

271 206(-2) 1.0893 1.07(-2) 0.9842 6.20(-3) 0.8598  8.50(-3) 0.7657
2712 213(-2) 1.1682 1.10(-2) 1.1591 5.60(-3) 1.0426  3.00(-3) 0.9296
27 216(-2) 1.1942 1.11(-2) 1.2398 5.60(-3) 1.2363  2.80(-3) 1.1550
270 216(-2) 1.1979 1.12(-2) 1.2526 5.70(-3) 1.2809  2.90(-3) 1.2917
Table 6. Numerical order of convergence for examples 1-5

h h/2 Z, Order of convergence
Example 1 273 274 7.90E-03

27 27 3.00E-03 1.3897
Example 2 273 27 5.10E-03

27 27° 3.00E-03 0.7573
Example 3 273 27 3.02E-02

27 27 1.20E-02 1.3373
Example 4 273 27 2.12E-02

27 27 7.60E-03 1.4811
Example 5 273 27 1.08E-02

27 27 4.30E-03 1.3296

5. REFERENCES

1. R. Bellman, Perturbation Techniques in Mathematics, Physics and Engineering, Holt,
Rinehart & Winston, New York, 1964.

2. C.M. Bender, S.A. Orszag, Advanced mathematical methods for scientists and
engineers, Mc. Graw-Hill, New York, 1978.

3. M.K. Kadalbajoo, Devendra Kumar, Initial value technique for singularly perturbed
two point boundary value problems using an exponentially fitted finite difference
scheme, Computers and Mathematics with Applications, 57, 1147-1156, 2009.

4. A.H. Nayfeh, Introduction to Perturbation Methods, John Wiley and Sons, New
York, 1981.

5. R.E. O’Malley, Introduction to Singular Perturbations, Academic Press, New York,
1974.

6. B. Kreiss, H.O. Kreiss, Numerical methods for singular perturbation problems, SIAM
Journal on Numerical Analysis 46, 138-165, 1982.

7. P. Lin, Vancouver, A Numerical solution of quasilinear singularly perturbed ordinary
differential equation without turning points, Applied Mathematics and Mechanics 10,
1005-1010, 1989.



K. Phaneendra, K. Madhulatha and Y.N. Reddy 217

8. J. Kevorkian, J.D. Cole, Multiple Scale and Singular Perturbation Methods,
Springer-Verlag, New York, 1996.

9. M.K. Kadalbajoo, Y.N. Reddy, A non asymptotic method for general singular
perturbation problems, Journal of Optimization Theory and Applications, 55, 256-269,
1986.

10. Y.N. Reddy, A Numerical integration method for solving singular perturbation
problems, Applied Mathematics and Computation 37, 83-95, 1990.

11. JJ.H. Miller, E.O. Riordan, G.I. Shishkin, On piecewise uniform meshes for upwind
and central difference operators for solving singularly perturbed problems, IMA Journal
of Numerical Analysis 15, 89-99, 1995.

12. M. Van Veldhuizen, Higher order schemes of positive type for singular perturbation
problems, in P. W. Hemker, J.J.H. Miller, Numerical analysis of singular  perturbation
problems, Academic Press, New York, 361-383, 1979.



