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Abstract- In this paper, we have presented a special finite difference method for solving 

a singular perturbation problem with layer behaviour at one end. In this method, we 

have used a second order finite difference approximation for the second derivative, a 

modified second order upwind finite difference approximation for the first derivative 

and a second order average difference approximation for y to reduce the global error and 

retaining tridiagonal system. Then the discrete invariant imbedding algorithm is used to 

solve the tridiagonal system.  This method controls the rapid changes that occur in the 

boundary layer region and it gives good results in both cases i.e., h and h .  The 

existence and uniqueness of the discrete problem along with stability estimates are 

discussed. Also we have discussed the convergence of the method.  We have presented 

maximum absolute errors for the standard examples chosen from the literature.  
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1. INTRODUCTION 

 

Singularly perturbed boundary value problems arise frequently in many areas of 

science and engineering such as heat transfer problem with large Peclet numbers, 

Navier–Stokes flows with large Reynolds numbers, chemical reactor theory, 

aerodynamics, reaction–diffusion process etc. due to the variation in the width of the 

layer with respect to the small perturbation parameter ε. Several difficulties are 

experienced in solving the singular perturbation problems using standard numerical 

methods. Equations of this type typically exhibit solutions with layers; that is, the 

domain of the differential equation contains narrow regions where the solution 

derivatives are extremely large.  

The numerical treatment of singularly perturbed differential equations gives 

major computational difficulties due to the presence of boundary and/or interior layers. 

This type of problem was solved asymptotically by Bellman [1], Bender and Orszag [2], 

Kevorkian and Cole [3], Nayfeh [4], O’Malley [5] and numerically by Kreiss [6], Miller 

[7], Kadalbajoo and Devendra Kumar [8], Reddy [9, 10], Lin and Vancouver [11], and 

Van Veldhuizen [12] etc.  It is well-known that replacing the first derivative by central 

difference is not suitable, i.e., no resemblance at all exists between the solution of the 

differential equation and the solution of the difference equation. This difficulty can be 
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removed by approximating the first derivative by second order modified upwind 

difference. 

 

2. DESCRIPTION OF THE METHOD 

  

2.1.  Left-end boundary layer problems 

To describe this method, we consider a linearly singularly perturbed two point 

boundary value problem of the form: 

                  ]1,0[   , )()()()()()(  xxfxyxbxyxaxy                    (1) 

 with the boundary conditions       )0( y                                              (2a) 

                                            and   )1(y                                                   (2b) 

where   is a small positive parameter ( 10   ) and   ,  are known constants. We 

assume that a(x), b(x) and  f(x) are sufficiently continuously differentiable functions in 

[0, 1].  Further more, we assume that b(x) ≤ 0, a(x) ≥ M >0 throughout the interval       

[0, 1], where M is some positive constant.  Under these assumptions, (1) has a unique 

solution y(x) which in general, displays a boundary layer of width O( ) at x = 0 for 

small values of   . 

Divide the interval [0, 1] into N equal parts with constant mesh length h. Let 

0= Nxxx ,......., 21 =1 be the mesh points.  Then we have  iihxi : 0, 1, 2, …, N. 

At ixx   the equation (1) becomes   )( iiiiii fybyaxy   

We extend the idea given by Van Veldhuizen [12] to the boundary value problem (1) by 

considering the special finite difference scheme for the equation (1) as follows:  
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The tridiagonal system of the above equation is: 

1,.....,2,1i     ;11   NHyGyFyE iiiiiii .             (6) 

where  
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We solve the tridiagonal system (6) by using the discrete invariant imbedding 

algorithm.  

 

2.2.  Right - End Boundary value problems 

Now we assume that a(x), b(x) and f(x) are sufficiently continuously 

differentiable functions in   [0, 1] and b(x) ≤ 0, a(x) ≤ M < 0 throughout the interval    

[0, 1], where M is some negative constant.  Under these assumptions, (1) has a unique 

solution y(x), displays a boundary layer of width O( ) at x = 1 for small values of .  

For the right–end boundary layer problems, we consider the special finite difference 

scheme as: 
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Equation (9) can be written as the tridiagonal system of the form:  

1,.....,2,1i     ;11   NHyGyFyE iiiiiii .        (10) 

where  
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We solve the tridiagonal system (10) by using the discrete invariant imbedding 

algorithm.  Since Eq. (6) or (10) holds for i=1, 2,…, N-1, we have N-1 linear equations 

in the N-1 unknowns 121 ,...., Nyyy .   
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3. STABILITY AND CONVERGENCE ANALYSIS 

 

Theorem 1.  Under the assumptions 0 , 0)(  Mxa  and b(x) < 0, ]1 ,0[x , the 

solution to the system of the difference equations (6), together with the given boundary 

conditions exists, is unique and satisfies 

                              




 ,

1

, hh
fMy  

where 
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
,h

is the discrete ,norml   given by  ih
xx  max

N  i  0, 
 . 

Proof.  Let (.)hL  denote the difference operator on left hand side of Eq. (6) and iw  

be any mesh function satisfying iih fwL )(  

By rearranging the difference scheme (6) and using non-negativity of the coefficients  

iii GFE  and  , , we obtain 11        iiiiiii wGwEHwF  

Now using the assumption  >0 and Mai  , the definition of l -norm and 

manipulating the above inequality, we obtain 
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To prove the uniqueness and existence, let    ii vu  ,  be two sets of solution of the 

difference equation (6) satisfying boundary conditions.  Then iii vuw    

satisfies iih fwL )(  where .0 and  0 0  Ni wwf  

Summing (11) over i = 1, 2, ……, N-1, we obtain  
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Since ,1,......,2,1 ,  0  and  0 ,0  ,0
,
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

Niiwba iih
  therefore for 

inequality (12) to hold, we must have 1,.....2,1  ,   0  Niiwi . 

This implies the uniqueness of the solution of the tridiagonal system of difference 

equations (6).  For linear equations, the existence is implied by uniqueness.  Now to 

establish the estimate, let ,iii lyw   where iy  satisfies difference equations (6), the 

boundary conditions and     ,1  ihihli   then ,0 0  Nww  and 
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Then summing (11) from i = n to N-1 and using the assumption on a(x), which gives 
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This theorem implies that the solution to the system of the difference equations (6) is 

uniformly bounded.  Thus the scheme is stable for all step sizes. 

Corollary 1.  Under the conditions for theorem 1, the error iii yxye  )(  between the 

solution y(x) of the continues problem and the solution iy  of the discretized problem, 
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One can easily show that the error ie , satisfies  
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      1,...,2,1  ,)()(  NiyLxyLxeL iihihih   and 00  Nee . 
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The estimate (17) establishes the convergence of the difference scheme for the fixed 

values of the parameter . 

Theorem 2. Under the assumptions 0 , 0)(  Mxa and b(x) < 0, ]1 ,0[x  the 

solution to the system of the difference equations (10), together with the given boundary 

conditions exists, is unique and satisfies 
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The proof of this estimate can be done on similar lines as we did in theorem 1. 

 

4. NUMERICAL EXAMPLES 

  

To demonstrate the applicability of the method we have applied it on linear, 

nonlinear singular perturbation problems with left-end and right-end boundary layer.  

The numerical solutions are compared with the exact solutions and maximum absolute 

errors are presented to support the given method.  

Example 1.  Consider the following homogeneous singular perturbation problem from 

Bender and Orszag [2] 0)()()(  xyxyxy ; x[0,1] with y(0) = 1 and y(1) = 1.  

Clearly this problem has a boundary layer at x = 0.   

The exact solution is given by   
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The maximum absolute errors are presented in tables 1 and 2 for different values of . 
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Example 3.  Consider the following non linear singular perturbation problem from 

Bender and Orszag [[2], page 463; equations: 9.7.1]   
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The linear problem concerned to this example is 
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We have chosen to use Bender and Orszag’s uniformly valid approximation [[2], page 

463; equation: 9.7.6] for comparison,   











 /x2

ee e)2(log
1x

2
log)x(y  

For this example, we have boundary layer of thickness O() at x=0.  

The maximum absolute errors are presented in table 3 for small values of .    

Example 4.  Consider the following singular perturbation problem   

0)()(  xyxy ; x [0,1] with y(0) = 1 and y(1) = 0.      

Clearly, this problem has a boundary layer at x=1. i.e., at the right end of the underlying 

interval.      

The exact solution is given by  
 
 1

1
)(

/1

/)1(














e

e
xy

x

 

The maximum absolute errors are presented in tables 5 for different values of   and the 

maximum absolute errors with classical difference scheme are presented in table 6 for 

comparison. 

Example 5.  Now we consider the following singular perturbation      

problem 0)()1()()(  xyxyxy  ;  x[0,1]  

with y(0) = 1+exp(-(1+)/);  and y(1) =1+1/e.     

The exact solution is given by   y(x) = e
(1+)(x-1)/ 

+e
-x

                                           

The maximum absolute errors are presented in tables 7 for different values of .  

 

5. DISCUSSIONS AND CONCLUSIONS 

  

We have described a special finite difference method for solving a singular 

perturbation problem with layer behaviour at on end point.  In this method, we have 

used a second order finite difference approximation for second order derivative, a 

modified second order upwind finite difference approximation for first order derivative 

and a second order average difference approximation for y.  This method controls the 

rapid changes that occur in the boundary layer region and it gives good results in the 

case when h .  We have presented maximum absolute errors for the standard 

examples chosen from the literature with the proposed method and compared with the 

classical second order finite difference method to show the efficiency of the method 

when h .   The computational rate of convergence is also obtained by using the 

double mesh principle defined below. 

Let 2/max h
j

h
j

j
h yyZ  ,  j = 0, 1, 2,..., N-1 where 

h
jy  is the computed solution on the 

mesh  N
jx

0
  at the nodal point jx  where Njhxx jj ,.....2,1  ,1    and 2/h

jy  is the 

computed solution at the nodal point jx  on the mesh   N
jx

2

0
  where 

Njhxx jj 2)1(1  ,2/1   .  In the same way we can define 2/hZ  by replacing h by 

h/2 and N by 2N  i.e., 4/2/
2/ max h

j
h
j

j
h yyZ  ,  j = 0, 1, 2, .., 2N-1. 
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The computed order of convergence is defined as  
)2log(

loglog
Order 2/hh ZZ 

  

We have taken h = 32  for finding the computed order of convergence and results are 

shown in Table 8. 

 

Table 1.  The maximum absolute errors in solution of example 1 

     h           32                             42                            52                             62                  
            Present       Class.2nd order        Present         Class.2nd order      Present     Class.2nd order         Present         Class.2nd order 

                 method              method             method              method            method          method                method           method 

102    2.04(-2)    6.87(-1)    1.06(-2)   6.21(-1)    5.30(-3)   5.43(-1)      2.50(-3)   4.83(-1)    
122    2.14(-2)    7.37(-1)    1.10(-2)   7.32(-1)    5.60(-3)   6.58(-1)      2.90(-3)   5.87(-1)     
152    2.16(-2)    7.54(-1)    1.11(-2)   7.83(-1)    5.60(-3)   7.81(-1)      2.80(-3)   7.30(-1)    
202   2.16(-2)    7.56(-1)    1.12(-2)    7.91(-1)    5.70(-3)   8.09(-1)     2.90(-3)   8.16(-1)     

 

Table 2.  The maximum absolute errors in solution of example 2 

     h          32                          42                              52                              62                  
           Present      Class.2nd order       Present         Class.2nd order        Present      Class.2nd order         Present         Class.2nd order 

                 method          method             method              method              method          method                 method           method 

102    2.93(-2)    6.75(-1)    1.51(-2)     5.22(-1)   7.70(-3)    4.36(-1)   4.00(-3)    3.86(-1) 
122    2.92(-2)    7.71(-1)    1.52(-2)     6.92(-1)   7.70(-3)    5.43(-1)   3.90(-3)    4.67(-1)     
152    2.92(-2)    8.07(-1)    1.51(-2)     8.00(-1)   7.70(-3)    7.56(-1)   3.90(-3)    6.34(-1)    
202   2.92(-2)    8.12(-1)     1.51(-2)     8.19(-1)   7.70(-3)    8.23(-1)   3.90(-3)    8.20(-1) 

 

Table 3.  The maximum absolute errors in the solution of example 3  

     h           32                            42                              52                           62                  
            Present       Class.2nd order       Present         Class.2nd order       Present     Class.2nd order         Present         Class.2nd order 

                 method           method              method             method               method          method                method           method 

102    4.49(-2)    1.1661     2.52(-2)    1.6117      1.29(-2)    2.2562      6.70(-3)    6.23(-1)    
122    4.53(-2)    1.1030     2.56(-2)    1.1998       1.36(-2)    1.6372      6.90(-3)    2.2929     
152    4.53(-2)    1.0864     2.57(-2)    1.1254       1.37(-2)    1.1747      7.10(-3)    1.3367    
202   4.54(-2)    1.0841      2.57(-2)    1.1162       1.37(-2)    1.1358     7.10(-3)     1.1495     

 

Table 4. The maximum absolute errors in the solution of example 4 

     h           32                          42                              52                              62                  
            Present     Class.2nd order        Present        Class.2nd order        Present      Class.2nd order         Present         Class.2nd order 

                 method          method                method              method            method          method                method           method 

102    1.20(-4)    7.9019     4.73(-4)     2.0675     1.80(-3)    9.17(-1)    6.90(-3)    7.77(-1) 
122    7.59(-6)    31.8818   3.02(-5)     7.9714     1.20(-4)    2.1151      4.73(-3)    9.75(-1)     
152    1.19(-7)   255.8759   4.76(-7)    63.9418   1.90(-6)    15.9876    7.59(-6)    4.0632    
202   1.16(-10)   8.19(+3)  4.65(-10)   2.04(+3)   1.86(-9)   511.9693  7.49(-9)  127.9869 
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Table 5.  The maximum absolute errors in the solution of example 5 

     h           32                           42                              52                              62                  
            Present      Class.2nd order       Present         Class.2nd order        Present      Class.2nd order         Present       Class.2nd order 

                 method           method              method              method              method          method                method           method 

102     2.06(-2)    1.0893      1.07(-2)    0.9842     6.20(-3)   0.8598      8.50(-3)    0.7657 
122     2.13(-2)    1.1682      1.10(-2)    1.1591     5.60(-3)   1.0426      3.00(-3)    0.9296 
152     2.16(-2)    1.1942      1.11(-2)    1.2398     5.60(-3)   1.2363      2.80(-3)    1.1550  
202    2.16(-2)     1.1979     1.12(-2)     1.2526    5.70(-3)   1.2809      2.90(-3)    1.2917  

 

Table 6.  Numerical order of convergence for examples 1-5 

                          h                    h/2                   hZ               Order of convergence 

Example 1       32                 42                7.90E-03 

     42        52                 3.00E-03                   1.3897 

Example 2    32                 42                 5.10E-03 

     42                 52                 3.00E-03                   0.7573 

Example 3    32                 42                 3.02E-02 

     42                 52                 1.20E-02                   1.3373 

Example 4    32                 42                 2.12E-02 

     42                 52                 7.60E-03                   1.4811 

Example 5    32                 42                 1.08E-02 

     42                 52                 4.30E-03                   1.3296 
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