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Abstract- In this paper, a general algebraic method based on the generalized Jacobi
elliptic functions expansion method, the improved general mapping deformation
method and the extended auxiliary function method with computerized symbolic
computation is proposed to construct more new exact solutions of a generalized KdV
equation with variable coefficients. As a result, eight families of new generalized Jacobi
elliptic function wave solutions and Weierstrass elliptic function solutions of the
equation are obtained by using this method, some of these solutions are degenerated to
soliton-like solutions, trigonometric function solutions in the limit cases when the
modulus of the Jacobi elliptic functions m—21 or 0, which shows that the general
method is more powerful and will be used in further works to establish more entirely
new solutions for other kinds of nonlinear partial differential equations arising in
mathematical physics.
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1. INTRODUCTION

Nonlinear partial differential equations (NLPDEs) are widely used to describe
complex physical phenomena arising in the world around us and various fields of
science. The investigation of exact solutions of NLPDESs plays an important role in the
study of these phenomena such as the nonlinear dynamics and the mechanism behind
the phenomena. With the development of soliton theory, many powerful methods for
obtaining exact solutions of NLPDEs have been presented, such as inverse scattering
transformation [1], Hirota bilinear method [2], Backlund transformation [3], Darboux
transformation [4], homotopy perturbation method [5], extended Riccati equation
rational expansion method [6], asymptotic methods [7], extended auxiliary function
method [8], algebraic method [9], Jacobi elliptic function expansion method [10],and so
on [11-13].

In [14][15], Hong proposed a generalized Jacobi elliptic functions expansion method
to obtain generalized exact solutions of NLPDEs. In [16], Hong et al. proposed an



B.-J. Hong and D.-C. Lu 195

improved general mapping deformation method to obtain generalized exact solutions of
the general KdV equation with variable coefficients (GVKDV). Which is more general
than many other algebra expansion methods [6,8-15] etc. The solution procedure of this
method, by the help of Matlab or Mathematica, is of the utmost simplicity, and this
method can be easily extended to all kinds of NLPDEs.

In this work, we will proposed the general algebraic method to obtain several new
families of exact solutions for the GVKDV equations.

The rest of this paper is organized as follows. In section 2,we briey describe the new
general algebraic method. In section 3, several families of solutions for the GVKdV
equation are obtained, some of which are degenerated to new solitary-like solutions and
new triangular-like functions solutions in the limit case. In section 4, some conclusions
are given.

2. SUMMARY OF THE GENERAL ALGEBRAIC METHOD

Consider a given nonlinear evolution equation with one physical field u(x,t)in two

variables x and t
P(u,u,,u,,u,,---)=0. 1)

We seek the following formal solutions of the given system by a new intermediate
transformation:

UO =D ADAE+ 3 A 09O @

Where A(t), A _;(t) are functions of t to be determined later. &=£&(x,t)are arbitrary

functions with the variables x and t. The parameter n can be determined by balancing

the highest order derivative terms with the nonlinear terms in Eqg.(1). And ¢(&) is a

solution of the following ordinary differential equation (ODE)
4 .
P?(&) =2 at' (). @)
i=0

Substituting Egs. (3) and (2) into Eq. (1), and setting the coefficients of
@' (&)i=012,) and

4
X! (&) /Zai(t)go‘(g‘)(s=0,1; j=---,-2,-10,1,2,--)to zero yield a set of algebraic
i=0

equations for A(t), A () and &. Using the Mathematica to solve the algebraic
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equations and substituting each of the solutions of the set, i.e. each of the expressions of

o(&) into Eqg. (2), we can get the solutions of Eq. (1). In order to obtain some new

general solutions of Eg.(3),we assume that (3) have the following solutions:

P(&) =G, +ce(8) +¢,F(£) +¢,9(5) +¢,h(S) - (4)
Where ¢ =c (t)(i=0,---,4) are functions of t to be determined later, the four functions
e=e(&), f =f1(£),g=9(&),h=h(&) are expressed as the follows:

.- 1 . F o F o F
P+QF+rF*+IF"" p+qF+rF2+IF"""  p+gF+rF*+IF'"  p+gF +rF*+IF"

(5)

Where p,q,r,l are arbitrary constants which ensure denominator unequal to zero, so

do the following situations, and F =F(¢&) is a solution of the following ODE

F?=A+BF’+CF*+2DF+2EF®, F =BF+2CF’+D+3EF’. (6)

2

A, B,C,D,E are arbitrary constants,

1 d n
Where ©“ ” denotes d—, “ ” denotes —

so do the following situations, the four functions e, f,g,h satisfy the following

relations:

e'=—geh—2rfh—I(De” + Bef + 2Cfg +3Ef %),

f'= peh—rgh+1(Ae? + Def —Cg’ - Efg),

g'=qgh+2pfh+1(2Aef +3Df > + Bfg + Eg?), ()
h'=(Dp- Aq)e’ + (Bp—Dq - 2Ar)ef +(2Cp+ Eq - Br) fg +3(Ep-Dr) f >+ (Cq - Er)g?
f2=eg,h’ = Ae’ + Bf > +Cg° + 2Def + 2Efg, pe+qf +rg+lh=1

And e, f,g,h satisfy one of the following relations at the same time.
Family 1:When p=0
(CI?—r?)h? =—C+2Clh-Br(1-lh—qf )e— Ae’r? — 2Dr?f +(2Cq - 2Er) f +(2IEr —2CIq) fh+ (2Eqr —Cq?) f2.(7a)

Family 2:When q=0
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(CI> =r®)h? =2C(Ih + pe— pleh) + 2Er(Ih—1) f —Br(1—Ih— pe)e —(Cp® + Ar?)e” + (2Epr —2Dr?)ef -C.  (7h)

Family 3:When r=0

Cl°g? =1-2EI° fg — 2 pe+(p* — Al*)e* —2qf +2(pqg— DI?)ef +(g° - Bl*)eg . (7c)

Family 4:When 1=0

r’h? =C—2Cpe+(2Er —2Cq) f +(Cp” + Ar?)e* +(Cq’ — 2Eqr + Br®)eg + (2Cpq — 2Epr + 2Dr?)ef . (7d)

Substituting (4),(5),(6),(7) along with (7a)-(7d) into Eq.(3) separately yields four

families of polynomial equations for e, f,g,h .Setting the coefficients of
e',e'f,e'g,e'he fg,e fh,

e'gh (i=0,1,2,---) to zero yields a set of over-determined differential equations(ODEs)
in
p,q,r,l,a. ¢(=021234),ABC,DE and £&(xt) ,solving the ODEs by

Mathematica and Wu elimination, we can obtain many exact solutions of Eq.(1)
accroding to (2),(3),(4),(5),(6).

Ifwelet ¢c,=c =c,=c,=0,c,=1,p=1q=r=1=0,a,=Aa =2D,a,=B,a, =2E,

a,=C, we have ¢(&)=F(<&), our method contain the improved general mapping

deformation method[16]etc.

Remark 1. Our method proposed here is more general than the extended Riccati
equation rational expansion method[6], the extended auxiliary function method [8], the
generalized F-expansion method[13], the generalized Jacobi elliptic functions expansion
method[14,15], and many other algebra expansion methods[9,10,12] [16,17,18,19] etc.

Remark 2. EqQ.(2) and EQq.(3) can be extended to the following forms

WO =F AP ©+ 3 AL OO+ D BOP (D919 () =X a e ©).

Where n is usually a positive integer. If n is a fraction or a negative integer, we
make the following transformation:

(@) when n=d/c is a fraction, we let u(&)=v""®

(&), then return to determine the
balance constant n again;

(b) when n is a negative integer, we suppose u(&)=v"(<£), then return to determine
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the balance constant n again.
Remark 3. Noticed that

F(5) =F($)

(8,2,,8,,8;,8,), (A.B,C,D,E),

(A.B,C,D,E), —> ¢, (&)

(ananana), *C|ABCDE),

We find a meanful conclusion that this general method imply a BT of Eq.(1) with the
compatible conditions (4),(5),(6),(7) and (7a)-(7d).

- 0,($)

In the following, we will use this method to solve the GVKdV equation
3. EXACT SOLUTIONS TO THE GVKDV EQUATION

We consider the following GVKdV equation [16-20].
U, +2Ou +[a(t) + St)x]u, —3M y()uu, + y(t)u,, =0 (8)

Where «(t), S(t) and y(t) are arbitrary functions of t. Equation (8) can be reduced
to other more physical forms [21-26] which has been discussed in Ref. [16].
By balancing the highest-order linear term u,, and the nonlinear uu, in (8), we
obtain n=2, thus we assume that (8) have the following solutions:
u(@) =AM+ AP+ A0 () + AP (&) + AP (&), (9)
E(x,t) =k()x+ao(t) . (10)
Where Kk(t),o(t), A(t)(i=0,12,3,4)are functions of t to be determined later.

Substituting (3) (12) and (13) into (8) and setting the coefficients of ¢'(£)(i=0,1,2,--)

and

X! (&) /iai(t)go‘(g‘)(s=0,1;j=---,—2,—1,0,1,2,--~) to zero vyield a set of

over-determined equations (ODEs) for A(t) , A (t) , k(t),o(t) and a(t) . After

solving the ODEs by Mathematica we could determine the following solutions:
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Family 1
2
a, =i+—2ala4 : (11)
4a, a,
A =-2Ap,(1=0,1,2,34),k'=—kz,
A1:2a3k2/M,A2:4a4k2/M,A3:O,A4:O, (12)
2
o' =K[-a+3MA)y - kzy(_8a1a4 +&)]_
4a,
Family 2
2
a, :i+%, 13)
43, @
A =-2Ap,(1=0,12,34),k'=—kz,
A =0,A,=0,A =2ak’/M,A =4ak*/M, (14)

2
o' = K[t +3MAy —k2y(3%0% , By
a 4,

Substituting (4),(5),(6),(7) along with (7a)-(7d) and (11) into Eq.(3) separately yields an
ODEs, after solving the ODEs by Mathematica and Wu elimination, we can obtain the
following solutions of Eq.(3) and Eq.(8) according to (4),(5),(6) and (12).

Case 1

A=1B=-m’-1,C=m’,D=E=0,F =sn&,0<m<],

a, =1 a, = +4\2(1+ m)\m, a, :12«/2(1+ m)/m (L+6m +m? —4(1+ m)J/m),

a, =12(1+m)Jm —6m—m? —1,a, =8m(m+1)% — 2L+ m)(L+ m? + 6m)~/m,

pzl,q:$«/2(1+m)\/ﬁ,r:m,l =0,¢c,=¢,=¢,=¢,=0,c,=1

sné
/(&) = : |
v 17 21+ m)Jmsné, + msné,

&= kse_Iﬂ(t)th + J- k5e_.[ﬂ(t)d1 [-a(t) + (3Mk, — k52 (36(L+ m)\/a_ 6m — m> _1))e—zfﬁ(t)dt7/(t)]dt’
u, = koefzjlﬂ(t)0|t T 4y2(1+ m)\/H(1+ 6m+m* —4(1+ m)\/m)ksze_zjﬁ(t)dtsnfl
M (1F2(1+ m)\/ﬁsné + mSI’lZé’l)

. (B2m(m+1)” 8(1+ m)(L+ m’ + sm)mkze 217 sn7e
M (l$\f2(1+ m)</msné& +msn2&))? '
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Case 2
A=1B=-m’-1,C=m’,D=E=0,0<m<1F =sn¢&,

a,=1a =F4J1-m? a, =8-4m? a, = F8\1-m? a, = 4—4m?,
p=0,g=+y1-m?,r=0,I =1,¢,=c,=c,=c, =0,c, =1,

2 (gz) = > SN, )
+y1-m sné, +cné,dng,

£ —ke 0%+ | ke 7O ety + (MK, —k2(20—16m2))e 7%y oy]et,

2fpod 1641-m? kszefzj P%ne, L 16— mz)k&fefZI P0%n2g, |
M (£1—m?sné, +cn&,dné,) M (£y/1-m?sné, +cné,dné, )?

u, =k,e

Case 3
A=1-m*B=2m°’-1,C=-m*,D=E=0,0<m<1F =cné,
a,=1,a =-4,a,=8-4m’,a, =8m*-8,a, =4-4m?,
p=0,g=Lr=0,l=+lc,=c,=¢c,=¢,=0,c,=1

cné,
cné, Fsn&dné,

?,(&;) =

(t)dt

& =kee "k [kee 7 () + (3MK, —k2 (20— 4m?))e Ty ot

—zjﬁ(t)dt —2j,5(t)dt

DS LGN 16(m* —1)kZe cné, +16(1— m?)k’e cn’s, |
P M (cn&; ¥ sn&;dng;) M (cng, F sng,dng;)*

Case 4

A=1-m*B=2m’-1,C=-m?’,D=E=0,0<m<1F =cné,

a, = (L-c2)[L+(c -Ym?],a, = 2(c, — 2c,m* +2cim?),a, = 2m* —6¢2m* -1,
a, =4c,m*,a, =—-m*, p=1,q=0,r=0,1=0,c, =c, =c, =0,c, =1,

9,(S4) =Gy +Cn,

£ —ke 0%+ | ke 17O () + (BMk, — k2 (2m? —3c2m? —1)))e P O% (o],

8c,m’k? 4m?k;

M

—Zjﬁ(t)dt

u,= [ko + (Co +Cn§4)2]e

(Co + Cn§4) -

Remark 4: u, are in full agreement with the results in Ref.[16],which contain the

results (19) constructed by Zhao in Ref. [17] and u, obtained by Zhu in Ref. [18].
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Case 5
A=m’-1,B=2-m’,C=-1,D=E=0,0<m<1F =dn¢,
a,=1a =-4m,a, =8m*—4,a, =8m-8m°a, =4m"* —4m?,
p=0,g=m,r=0,I=+lc,=c =c,=c¢,=0,c, =1,

dné,
dn& Fm?sné&ens,

%3 (é:s) =

—ZJﬂ(t)dt

& = ke "k e 7O () + (3MI, — k2 20m —ae % poyat,

L g lson 16m(L- m?ykZe 3% dne. , 16m°(m’ _pkze O e |
0 M (dn&, ¥ m?sné.cné;) M (dn&, F m?sn&.cné, )?
Case 6
a CCA-5CIq" +4(C, +3Ca"C,(BCA" =2C) oo~ _1op_c oEc
4C3 ’ 1 ’ 11 3
cC. - _
F:SO(\/_351 4C1, 4M),a0:0,a1:C3,a2:—3C3q,a3:01+3C3q2,
2 C,  C,
—3C,C,q—9C2q® + &(C, +3C,q%)4/C,(3C,q° - 2C
a, = 150 .0 +&(C,+3C,q )\/ ,(3Cq 1),g:sgn[Cl+3C3q2],
4C,
p=0,g=const,r=11=0,c,=c =c,=c,=0,c, =1,
1
?s(&) = :
T
P e C,  C,

&=kt V" [l T ) + (MK, - (/C, 3007 —26,) -5C. ke T et

2(C, +3C,q)k: C, +3C,0%)(¢4/C,(3C,q° —2C,) —3C,q)k? [ po

u =, + 2O (¢ ErTANNEE ZE R o e 0
3

Substituting (4),(5),(6),(7) along with (7a)-(7d) and (13) into Eq.(3) separately yields an
ODEs, after solving the ODEs by Mathematica and Wu elimination, we can obtain the
following solutions of Eq.(3) and Eq.(8) according to (4),(5),(6) and (14).
Case 7
A=1B=-m*"-1,C=m*D=E=0,0<m<1F =snfa,=1a =-4q=0,
a, =60° —m’ —6m-1,a, = 2q(1+6m+m*-2qg%),a, = (L+m)* —g*)(4m-q?),
p=0,g=m,r=0,l=+1c,=c =c,=c,=0,c, =1,
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sn&,
1+qgsn&, +msn’s,

?; (57) =

& = ke " T PO mar(t) + (BMK, +4Kk2 (L 6m-+m® ~3g7))e (ot

2

=[k, - qk5 (ns&, +q+msns;) + 4& (ns&, +q+ msn§7) le 2Jp .

Case 8
A=1B=-m’-1,C=m’,D=E=0,0<m<1F =sn¢&,

a,=1la =+4/1-m?,a, =8—4m?* a, =8J1-m?,a, = 4—4m?,

p=0,g=FV1-m°,r=0,I=1¢,=c, =c,=c, =0,c, =1,

Py (58) = > Sn§8 ,
FA1-m?sné, +cn&,dné,
£ = ksefjﬁ(t)dtx_kIkse—jﬂ(t)dt [—er(t) + (3Mk, — k- (20_4m2))e—zjﬁ(t)dt7(t)]dt’
Ug :[k0_8 1-mk, (cs&dsé, FN1-m? s ks (csggds§8+ﬁ) Je 2[poa

Case 9
A=m?*-1,B=2-m?>,C=-1,D=E=0,0<m<1F =dn¢,
a, =1,a =-4m,a, =8m’ —4,a, =8m-8m°,a, =4m* —4m?,
p=0,g=m,r=0,I=+lc,=c =c,=c¢,=0,c, =1,

dné,
dn&, Fm?sn&,ené, |

?y(&) =

2jp(t)dt

& = ke "k [ee 7O () + (3K, — k2 (20m? —16))e "y ylet,

8k52

zjﬂ(t)dt

o =K, — (AFm sdégcd§9)+4—5(1+m sdfgcdgg) Je

We can give the numerical simulation of u, and u, (see Figs. 1-2).
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Figure 1. (a) Simulation of u, when k,=0,k; =M =a(t) = S(t) =y(t) =L, m=0.1.

(b) Plane graph when t=0.
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Figure 2. (a) Simulation of u, when k, =0,k, =M =a(t)=£(t)=y(t)=1,m=0.1.

(b) Plane graph when t=0.
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Remark 5: The eight types of explicit solutions except u, we obtained here to Eq. (8)

are not shown in the previous literature to our knowledge. They are new exact solutions

of Eq.(8). Solutions u,;,,;, are degenerated to solitary-like solutions when the
modulus m—1, and solutions u;;_,,,s are degenerated to triangular functions

solutions when the modulus m—0. k, and k, are arbitrary constants in all above

cases.
4. CONCLUSION

In this paper, we succeed to propose a general algebraic method for finding new
exact solutions of the GVKdV equation (8). More importantly, our method is much
simple and powerful to find new solutions to various kinds of nonlinear evolution
equations, such as KdV equation, Boussinesq equation, zakharov equation, etc. we
believe that this method should play an important role for finding exact solutions in the
mathematical physics.
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