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Abstract- Analysis and controlling of bifurcation for a class of chaotic Van der Pol-

Duffing system with multiple unknown parameters are conducted. The stability of the 

equilibrium of the system is studied by using Routh-Hurwitz criterion, and the critical 

value of Hopf bifurcation is investigated. Based on the center manifold theory and 

normal form reduction, the stability index of bifurcation solution is given. Linear and 

nonlinear washout filter feedback controllers are designed respectively to control the 

bifurcation critical value and the amplitude of the limit cycle. Numerical simulation 

results are presented to illustrate analytical results found. 
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1. INTRUDUCTION 

 

Bifurcation and chaos play an important role in the study of nonlinear science. In 

recent years, bifurcation control has attracted many researchers since chaos control is 

greatly developed. As is well known, Hopf bifurcation gives rise to limit circle, which 

has important theoretical significance and practical value. Recently, many research 

works on Hopf bifurcation control [1-4] and anti-control [5-7] have born great fruits. 

Hopf bifurcation control for high-dimensional system is more difficult. Various 

bifurcation control approaches have been proposed and used in many application, such 

as linear [4] and nonlinear feedback control [2]、washout filter feedback control [7], 

frequency domain analysis method [8] and normal form method [9].Consider the 

following chaotic Van der Pol-Duffing (ADVP) system 
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where, 3

1 2 3( , , )x x x R are state variables, , 1, 0, 0R v       are real parameters. 

When 1  , system (1) reduces to a system equivalent to the classical Chua’s 

differential equations with cubic nonlinearity. System (1) has rich dynamical behaviors 

including bifurcation and chaos. System (1) has attracted many researchers and has 

achieved considerable progress. Denis [10] studied the local codimension one, two, and 

three bifurcations of the system. Matouk [11] discussed the problem of chaotic 

synchronization. He [12] designed a kind of adaptive stabilizing controller, then the 

controlled system can convergent rapidly. As far as we known, control of Hopf 

bifurcation and amplitude of the limit cycle have not been performed to system (1). One 

of the representative approaches is applying washout filter-aided dynamic feedback 

controller, which preserve all the equilibrium points of the system. Washout filters have 

been widely applied in various bifurcating nonlinear systems [7,13,14]. In this paper, 

Hopf bifurcation and related control for the ADVP system through washout filters is 

focused on. Firstly, parameter critical value is derived through the analysis of stability 

of equilibrium point, and the stability index of bifurcation solution is also obtained 

based on the center manifold theory and normal form reduction. Secondly, linear and 

nonlinear of washout filter-aided dynamic feedback controllers are designed 

respectively to control Hopf bifurcation value and the amplitude of the limit cycle. 

Finally, numerical simulations are given to illustrate the effectiveness of the controller 

and the correctness of amplitude predictions. 

 

2. EXISTENCE OF HOPF BIFURCATION 

 

System (1) has three equilibrium: 0 (0,0,0)E   and ( ,0, )E       if 0  . 

Otherwise, system (1) has only one equilibrium 0 (0,0,0)E  . Since E  and E  are 

symmetrically placed with respect to the y-axis, in what follows, Hopf bifurcation at E  

can be obtained similarly at E . For simplicity, we only consider the Hopf bifurcation 

at 0E . Jacobian matrix of system (1) at 0E  has the form 
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which corresponds to the characteristic equation  

3 2( ) ( ) 0v v v v                                                          (3) 
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Tacking   as the Hopf bifurcation parameter and supposing that Eq. (3) possesses a 

pair of pure imaginary eigenvalues 
1,2 0 0( 0)i     , we can reach 
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Another negative root of Eq. (3) is 3 0v     . Therefore, a necessary condition for 

the system (1) to exhibit Hopf bifurcation at 0E  is  

1 0                                                                                                 (6) 

Under these conditions, the transversality condition  
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 is also satisfied. By using Routh-Hurwitz criterion, the equilibrium 0E  is stable for 

0  , and loses its stability at critical point 0 . Therefore, system (1) undergoes Hopf 

bifurcation at the equilibrium 0E  based on Hopf bifurcation theory [15].  

 

3. ANALYSIS OF STABILITY OF HOPF BIFURCATION 

 

In this section, the stability of the bifurcating periodic solutions is analyzed using 

Hopf bifurcation theory. 

By the linear transform X PY , where 1 2 3( , , )TY y y y , 
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then system (1) has the following normal form  
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where, 
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According to the Hopf bifurcation theory, a curvature coefficient is expressed by 
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The above characteristic quantities can be calculated from Eq. (9). Denote 

2 2v v      , If 0  , the periodic solutions, emanating from 0E  are stable and 

the bifurcation is supercritical. If 0  , the periodic solutions, emanating from 0E  are 

unstable and the bifurcation is subcritical. We take 3, 0.25, 2v     [10], the 

system undergoes a Hopf bifurcation when the parameter   crosses the critical value 

0 2.0625  . With the curvature coefficient derived from (11) as 1(0) 0.55385 0    , 
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the bifurcation is supercritical and the periodic solutions are stable. The bifurcation 

figure of uncontrolled system (1) is shown in Fig.1. 

 

 

Figure 1. Bifurcation figure of uncontrolled system (1) 

 

4. CONTROL OF HOPF BIFURCATION 

 

In this section, the linear washout filter controller is designed to control Hopf 

bifurcation while not changing the stability of the bifurcating periodic solution. The 

controlled system is designed as follows  
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where, w  is controller variable and controller u  assumes the following form                              

2( )u k x dw                                                                                         (14) 

where, k  is linear feedback gain. 0d  , which guarantees the stability of the controller 

[16]. Obviously, the controller raises the dimension of system (1). Since system (1) is 

obtained from a circuit after a change of variables, parameters and a rescaling in time 

[10, 11], system (13) can be considered as the result of the transformation by adding 

another parallel resistor in the original circuit. The equilibrium of system (13) are 

0 (0,0,0,0)E 


 and ( ,0, ,0),( 0)E      


, so the original equilibrium were 

preserved. The associated characteristic equation of the linearized system (13) is  
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The control gain k  and bifurcating critical value 0  can be determined to the following 

relationship 
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                                                                          (17) 

We still let 3, 0.25, 2v     , and 0.1d  . When we select 1k  , the bifurcating 

critical value 0 3.82036   is derived from (17), which is postpositional. If we 

select 2k   , 0 0.465142   can be derived, which is prepositional. Thus the linear 

control term of washout filter-aided dynamic feedback controller can control Hopf 

bifurcation effectively, however not change stability of bifurcation. The bifurcation 

figures of the controlled system (13) when 1k   and 2k    are shown in Fig.2 

respectively. 

 

                                    (a)  

    

                                                                      (b)  

          Figure 2. Bifurcation figure of the controlled system（13） 
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      (a) 1k  ;  (b) 2k    

5. AMPLITUDE CONTROL OF LIMIT CYCLES 

 

Amplitude control of limit cycle has received considerable attention [17,18]. In this 

section, the nonlinear washout filter controller is designed to control the amplitude of 

limit cycle emerging from the Hopf bifurcation in ADVP system. Under the control, the 

critical value 0  is unchanged. 

 

5.1. Nonlinear control  

The controlled system is  
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where 

3

2( )nu k x dw                                                                                       (19) 

This controller still does not affect the equilibrium structure of the original system (1). 

For simplicity, in the case 3, 0.25, 2v     , and 0.1d   are setted. At bifurcation 

value 0 2.0625    , the Jacobian matrix of system (18) has a pair of complex 

conjugate eigenvalues 1,2 0.75i   , and two real negative eigenvalues 

3 42.75, 0.1     . Then, using the transformation X PY , where 
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the controlled system (18) now reads as a canonical form 



 

 

                                              P. Cai
 
,  J.-S. Tang and 

 
Z.-B. Li

                                                        
191

 

1 2 1 1 2 3 4

2 2 2 1 2 3 4

3 3 3 1 2 3 4

4 4 4 1 2 3 4

0.75 ( , , , , )

0.75 ( , , , , )

2.75 ( , , , , )

0.1 ( , , , , )

n

n

n

n

y y g y y y y k

y y g y y y y k

y y g y y y y k

y y g y y y y k

  


 


  
   








                                       (21) 

where, 
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5.2. Relationship between amplitude of limit cycles and control gain 

The parameters are fixed as above 3, 0.25, 2v     , and we can calculate  

 0 1'(0) Re '( ) 0.12308, (0) 0.55385 0.01351 nk         . Obviously, 1(0)  

degrade into the curvature coefficient of the uncontrolled system when 0nk  . For 

ensuring the stability of the bifurcated limit cycles, it should be 41nk  . Therefore, the 

amplitude approximation for 0 2.0625    and 2.0625 1   is  

0

1

'(0) 1
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
    


            (23)   

The nk r  curve is shown in Fig. 3 with 1.9625  . Fig. 3 shows the amplitude of the 

limit cycle r  decreases as the control gain nk  decreases. And the controller can make 

the amplitude sufficiently small. Fig. 3 also shows the relative error of the approximated 

solution of amplitude with numerical solution is no more than 3.8% when 20nk  , 
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which has high accuracy. It should be pointed out that Eq. (23) describes the amplitude 

of the state variable 
1x  of the controlled system. One can change the linear 

transformation (20) to describe the amplitude of the other state variables.  

 

 

Figure 3. nk r  curve for the controlled system （18） 

．．．．．．numerical solution, _____approximated solution 

 

6. CONCLUSIONS 

 

The nonlinear dynamical behaviors of the equilibrium of the ADVP system are 

discussed. The existence and stability of the limit cycle are analyzed in virtue of Hopf 

bifurcation theory. The linear control term of washout filter-aided dynamic feedback 

controller has been used to control Hopf bifurcation but not changing the stability. The 

nonlinear control term of washout filter-aided controller has been used to control the 

amplitude of the limit cycle but not changing the bifurcating critical value. The 

amplitude approximations in terms of control gains are derived from the center 

manifold theory and normal form reduction, which can also effectively predict the 

amplitude of limit cycles. Numerical simulation results are presented to illustrate the 

correctness and efficiency of the analytical results. 
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