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Abstract-In this paper, we study inextensible flows of curves according to type-2 

Bishop frame in Euclidean 3-space. Necessary and sufficient conditions for an 

inextensible curve flow are expressed as a partial differential equation involving the 

curvature.  
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1. INTRODUCTION 

 

 The flow of a curve is called to be inextensible if the arc-length of a curve is 

preserved. Inextensible curve flows have growing importance in many applications such 

as engineering, computer vision, structural mechanics and computer animation [1-5]. 

The terms "inextensible" and "extensible" mostly come up in physics. There are 

inextensible and extensible collisions in physics. In extensible collision, both the kinetic 

energy and momentum are conserved. In inextensible collision, the kinetic energy is not 

conserved in the collision; however, the momentum is conserved. One of the oldest 

topics in the calculus of variations is the study of the elastic rod which, according to 

Daniel Bernoulli's idealization, minimizes total squared curvature among curves of the 

same length and first order boundary data. The classical term extensible refers to a 

curve in the plane or
3E  which represents such a rod in equilibrium. 

 Physically, inextensible curve flows give rise to motions in which no strain energy 

is induced. The swinging motion of a cord of fixed length, for example can be described 

by inextensible curve flows. Such motions arise quite naturally in a wide range of 

physical applications. For example, both Chirikjian and Burdick [6] and Mochiyama et 

al. [7] study the shape control of hyper-redundant, or snake-like, robots. Gage and 

Hamilton [8] and Grayson [9] investigated shrinking of closed plane curves to a circle 

via the heat equation. Kwon and  Park [10] derived the evolution equation for an 

inextensible plane and space curve . Besides, Latifi, Razavi [11] studied inextensible 

flows of curves in Minkowskian space. In this paper, we study inextensible flows of 

curves according to type-2 Bishop frame in Euclidean 3-space
3E . We hope that these 

results will be helpful to mathematicians who are specialized on this area. 

 

2. PRELIMINARIES 

 

 Let 3: I E   be an arbitrary curve in
3E . Recall that the curve  is said to be of 

unit speed if , 1    , where , is the standard scalar (inner) product of 
3E given by
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1 1 2 2 3 3,x y x y x y x y   , for each 1 2 3( , , )x x x x , 3

1 2 3( , , )y y y y E  . Particularly, the 

norm of a vector 3x E  is given by ,x x x . Denote by  ( ), ( ), ( )T s N s B s    the 

moving Frenet frame along the unit speed curve  . Then the Frenet formulas are given 

by 
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Here, ,T N  and B  are the tangent, the principal normal and the binormal vector fields 

of the curves, respectively. ( )s and ( )s are called, curvature and torsion of the curve

,  respectively. 

 The Bishop frame or parallel transport frame is an alternative approach to defining a 

moving frame that is well defined even when the curve has vanishing second derivative. 

We can parallel transport an orthonormal frame along a curve simply by parallel 

transporting each component of the frame. 

 Let ( )s  be a unit speed regular curve in 
3E . The type-2 Bishop frame of the 

( )s is defined by [12,13] 
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The relation matrix between Frenet-Serret and type-2 Bishop frames can be expressed 
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Here, the type-2 Bishop curvatures are defined by 

 

                              1 2( ) cos ( ), ( ) sin ( ).k s s k s s                                                   (4) 

 

It can be also deduced as 
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The frame  1 2, ,N N B is properly oriented, and   and 
0

( ) ( )

s

s s ds    are polar 

coordinates for the curve ( )s  . We shall call the set  1 2 1 2, , , ,N N B k k as type-2 

Bishop invariants of the curve ( ).s   

 

3. INEXTENSIBLE FLOWS OF CURVES ACCORDING TO TYPE-2 BISHOP 

FRAME 
3E  

 

We assume that     3: 0, 0,F l w E   is a one parameter family of smooth curve in 

Euclidean space
3E , where l  is the arc-length of initial curve. Let u  be the curve 

parametrization variable, 0 u l  . The arc-length of F  is given by  

 

                                            
0

( )

u
F

s u du
u


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                                                                 (6) 

 

where 

                                         

1
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, .
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u u u
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                                                              (7) 

 

The operator of 
s




 is given in terms of u by 

 

1
,

s v u

 


 
 

 

where  
F

v
u





. The arc-length parameter is s v u   . 

 

Any flow of F  can be given by  

 

                                            1 2 ,
F

fN gN hB
t


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
                                                        (8) 
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where , ,f g h  are tangential, principal normal, binormal speeds of the curve in 
3E , 

respectively. We put 
0

( , )

u

s u t vdu  , which is called the arc-length variation of curve F

. From this, the requirement that the curve not be subject to any elongation or 

compression can be expressed by condition  

 

                                         
0

( , ) 0

u
v

s u t du
t t

 
 

 
,                                                          (9) 

 for  all  0,u l . 

 

Definition 3.1. A curve evolution ( , )F u t  and its flow 
F

t




 in Euclidean 3- space

3E  are 

said to be inextensible if 

0.
F

t u

 


 
 

 

 

 

Theorem 3.1. (Necessary and Sufficient Conditions for an Inextensible Flow) Let 

1 2

F
fN gN hB

t


  


be a smooth flow of F  in 

3E . The flow is inextensible if and only 

if   

                                                     1.
v f

hvk
t u

 
 

 
                                                       (10) 

 

Proof.  Suppose that 
F

u




 be a smooth flow of the curve F . Using definition of F , we 

get 

 

                                                   2 ,
F F

v
u u

 


 
.                                                         (11) 

 

Since u  and t  are independent coordinates, 
u




 and 

t




 commute. So, by 

differentiating the formula (11) with respect to t , we have 

 

2 ,
v F F

v
t t u u

   


   
. 

 

On the other hand, changing  
u




 and 

t




, we get 
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, ( )
v F F

v
t u u t

   


   
. 

 

From (8), we obtain 

 

1 2, ( )
v F

v fN gN hB
t u u

  
  

  
. 

 

By using type-2 Bishop frame, we get 

 

1 1 2 2 1 2 2, ( ) ( ) ( )
v f g h

T hvk N hvk N fvk gvk N
t u u u

   
      

   
. 

 

If 1N  is taken instead of T  

 

1 1 1 2 2 1 2 2, ( ) ( ) ( )
v f g h

N hvk N hvk N fvk gvk N
t u u u

   
      

   
 

 

by using features of inner product and after straightforward calculations from above 

equation, we get 

 

1

v f
hvk

t u

 
 

 
. 

 

Theorem 3.2. Let 1 2

F
fN gN hB

t


  


be a smooth   flow of F  in 

3E . The flow is 

inextensible if and only if   

 

                                                1

f
hk

s


 


.                                                                     (12) 

 

Proof. Now let 
F

u




be extensible. From (9), we have 

 

                     1

0 0

( , ) 0.

u u
v f

s u t du hvk du
t t u

   
    

   
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 0,u I  . Substituting (10) in (13) complete the proof of the theorem. 

 

 



 

 

74                                                          S. Kızıltuğ 

 

We now restrict ourselves to arc length parametrized curves. That is, 1v   and the local 

coordinate u  corresponds to the curve arc-length s . We require the following lemma. 

 

 

Lemma 3.1. Let 
1 2

F
fN gN hB

t


  


be a smooth  flow of F  in 

3E . Then, 

 

     

1
2 2 1 2( ) ( )

N g h
hk N fk gk B

t s s

  
    
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2 1( )
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hk N B

t s


 
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     where 2 , .
N

B
t







 

 

Proof. Using definition of F , we have 

 

1 2( ).
T F

fN gN hB
t t s s

   
   

   
 

 

Using the type-2 Bishop frame and after straightforward calculations, we get 

 

              1 1 2 2 1 2( ) ( ) ( ) .
T f g h

hk N hk N fk gk B
t s s s

   
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Substituting (12) in (15) and If 1N  take instead of T , we have 

1
2 2 1 2( ) ( ) .

N g h
hk N fk gk B

t s s

  
    
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Now differentiate the 2-type Bishop frame by t , we obtain 
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2
2 2 20 , , , , .

N B B
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t t t t
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From the above and using 2
2, , 0,

N B
N B

t t

 
 
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we obtain 
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 
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where 2 , .
N

B
t







 

 

The following theorem states the conditions on the curvature and the torsion for the 

curve flow ( , )F u t  to be inextensible. 

 

Theorem 3.3. (Equations for Inextensible Evolution) If the curve flow

1 2

F
fN gN hB

t


  


is inextensible, then the following system of partial differential 

equations holds: 
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2
2 12
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Proof. Using (14), we get 
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On the other hand, from type-2 Bishop frame we have 
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Similarly, we have 



 

 

76                                                          S. Kızıltuğ 
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(16) 

 

Substituting (14) in (16) and after straightforward calculations, we get 
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After straightforward calculations, we get 
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Similarly 

 

                  

2
2 1

2

1
2 1 22

( )

( ) ( ) .

N g
hk N B

s t s s

Ng g B
hk N hk B

s s s s s s






   
        

      
        

      

                      (17) 

 

Substituting (14) in (17) and after straightforward calculations, we get 
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