

Mathematical and Computational Applications, Vol. 18, No. 3, pp. 486-494, 2013

A GENETIC ALGORITHM TO SOLVE THE MULTIDIMENSIONAL

KNAPSACK PROBLEM

Murat Ersen Berberler

1
, Asli Guler

2,*
 and Urfat G. Nurıyev

3

1
Department of Computer Science, Dokuz Eylul University, Izmir, Turkey

2
Department of Mathematics, Yasar University, Izmir, Turkey
3
Department of Mathematics, Ege University, Izmir, Turkey

1murat.berberler@deu.edu.tr 2asli.guler@yasar.edu.tr 3urfat.nuriyev@ege.edu.tr

Abstract- In this paper, The Multidimensional Knapsack Problem (MKP) which occurs

in many different applications is studied and a genetic algorithm to solve the MKP is

proposed. Unlike the technique of the classical genetic algorithm, initial population is

not randomly generated in the proposed algorithm, thus the solution space is scanned

more efficiently. Moreover, the algorithm is written in C programming language and is

tested on randomly generated instances. It is seen that the algorithm yields optimal

solutions for all instances.

Key Words- Multidimensional Knapsack Problem, Genetic Algorithm, Heuristic

Approach, Evolutionary Algorithms

1. INTRODUCTION

Knapsack problems have been intensively studied recently due to its simple structure

and the more complex problems can be solved through knapsack problems. The

problems such as capital budgeting, cargo loading and project selection problem can be

modeled by knapsack problems [4]. The multidimensional knapsack problem (MKP) is

special case of the classical 0-1 knapsack problem, and it has more than one constraint.

The MKP is a well-studied, NP-hard combinatorial optimization problem occurring in

many different applications and there is no FPTAS for two dimensional knapsack

problem unless P=NP, [9].

The MKP can be stated as follows:

Consider a set of projects (j = 1,...,n) and a set of resources (i = 1,...,m). Each project

has assigned a profit 0jp and resource consumption values 0ijw . The problem is to

find a subset of all projects that leads to the maximum possible profit and not exceeding

given resource limits ic [13].

It is seen that there are more constraints unlike the general KP. The problem cen be

defined by the following integer linear programming:

A Genetic Algorithm to Solve the Multidimensional Knapsack Problem 487

1

1

maximize

subject to , 1,... ,

 0,1 , 1,..., .

n

j j

j

n

ij j i

j

j

p x

w x c i m

x j n

Here,

jp : profit of project j,

ijw : consumption of project j from resource i,

ic : capacity of resource i,

1, if project is selected,

0, otherwise.
j

j
x

It is assumed, without loss of generality, that jp , ijw and ic are pozitive integers,

besides

, 1,...,ij iw c j n

1

, 1,...,
n

ij i

j

w c i m

 .

MKP is a particular difficult problem of integer programming since the constraint

matrix consisting of ijw is dense. On the other hand, there is already a feasible solution

at hand for MKP, namely 0, 1,...,jx j n , whereas finding a feasible solution can be

as hard as finding an optimal solution in general integer programming [11].

The first examples have been exhibited by Lorie and Savage and by Manne and

Markowitz as a capital budgeting model. There is a comprehensive overview of the

results for the MKP by Kellerer et al. [9]. A recent review of the MKP was given by

Fr´eville [3]. Besides the method currently yielding the best results, at least for

commonly used benchmark instances, was described by Vasquez and Hao [16] and has

recently been refined by Vasquez and Vimont [17]. It is a hybrid approach based on

tabu search. Moreover, there are studies of Gilmore and Gomory [9]; Weingartner and

Ness [9]; Shih [9]; Gavish and Pirkul [5]; Glover and Kochenberger [9]; Chu and

Beasley [2], Raidl and Gottlieb [7, 14] and Puchinger et al. [12] in the litarature.

2. GENETIC ALGORITHMS FOR MKP

Genetic Algorithms (GA), which find application in bioinformatics, phylogenetics,

computational science, engineering, economics, chemistry, manufacturing,

mathematics, physics, pharmacometrics and other fields are search algorithms based on

natural selection and genetics. These algorithms belong to the larger class of

evolutionary algorithms (EA), that generate solutions to optimization problems using

488 M. E. Berberler, A. Guler and U. G. Nurıyev

techniques inspired by natural evolution, such as inheritance, mutation, selection, and

crossover. It can be said that the strongest individuals in a population will have a better

chance to transfer their genes to the next generation.

In a genetic algorithm, a population of candidate solutions to an optimization

problem is evolved toward better solutions. Each candidate solution has a set of

properties which can be mutated and altered; traditionally, solutions are represented in

binary as strings of 0s and 1s, but other encodings are also possible.

 The evolution usually starts from a population of randomly generated individuals

and happens in generations. In each generation, the fitness of every individual in the

population is evaluated, the more fit individuals are stochastically selected from the

current population, and each individual's genome is modified (recombined and possibly

randomly mutated) to form a new population. The new population is then used in the

next iteration of the algorithm. Commonly, the algorithm terminates when either a

maximum number of generations has been produced, or a satisfactory fitness level has

been reached for the population, [6].

The reproduction can be done in three ways :

 Pure Reproduction - The individual is copied directly into the next generation

 Crossover - Two individuals are selected and their genes are crossed at some

point, as the first part of the new individual comes from one parent and the last

part

from the other.

 Mutation - An individual is selected, and one bit is changed.

Evolutionary algorithms is an important subject of metaheuristics. The early papers

have not successfully proved that genetic algorithms were an effective heuristic tool for

the MKP. Khuri et al. [10] extended previous work for the single constraint knapsack

problem. A similar study is given in Battiti and Tecchioli [1]. Thiel and Voss showed

that a standard GA using a direct search in the complete search space is not able to

obtain good solutions for the MKP, except for small problems [15]. Moreover, they

investigated the combination of GA with tabu search and obtained promising results.

Chu and Beasley gave the first successful implementation of GA’s by restricting the

genetic algorithms to search only the feasible search space. Finally, Haul and Voβ

enhanced the performance of GA’s by using surrogate constraints [8].

3. A NEW GENETIC ALGORITHM FOR MKP

The steps of the algorithm are as follows:

 [GA1] Each of m constraints is handled seperately and its optimal solution is found

by dynamic programming method. The total frequencies of occurrence of items that are

located in the solution vectors are found, then they are sorted in descending order and

index sequence I is obtained.

 [GA2] The first n elements of the initial population are established in a way that the

item concerning the current index is taken as long as it does not exceed knapsack

capacities starting with the i
th

 element of index sequence I (1 i m) at each step.

A Genetic Algorithm to Solve the Multidimensional Knapsack Problem 489

 [GA3] Each of m constraints is handled seperately and
j ijp w , (1 i m), values

are calculated. The relaxed solutions of each constraint are found, then index sequence J

is obtained by sorting the frequencies of entering the solution of each item in

descending order.

 [GA4] The other n elements of the initial population are established in a way that

the item concerning the current index is taken as long as it does not exceed knapsack

capacities starting with the j
th

 element of index sequence J (1 j n).

 [GA5] The coefficients of the objective function, jp , are sorted in descending order

and index sequence K is obtained.

 [GA6] Each individual of the population consisting of 2*n elements is crossed with

all other individuals. If there is an item which can be taken for the generated individual,

the item concerning the current index is taken as long as it does not exceed knapsack

capacities starting with the first element of index sequence K(1 k n). The individual

that has the maximum value of the objective function in the population is assigned as

the record.

 [GA7] Step [GA6] is repeated until the iteration number is n.

 [GA8] The record is written and the algorithm ends.

Unlike the technique of the classical genetic algorithm, initial population is not

randomly generated in this algorithm through the steps [GA1]...[GA4], thus the solution

space is scanned much more efficiently.

4. COMPUTATIONAL EXPERIMENTS

Computational experiments have been carried out generating random problems for

1 100ijw , 1 100jp , m:10,20,…,100 and n:10,20,…,100. In all instances, the

capacity of each knapsack (ic) in each constraint is obtained by taking 25 percent off

total weight of the items.

The optimal values of the problems have been found by GAMS IDE and shown in

Table 1.

490 M. E. Berberler, A. Guler and U. G. Nurıyev

The algorithm has been written in C language and it has been observed that the

proposed algorithm yields optimal results when it is run for 100 problems. The solution

times are given in Table 2.

A Genetic Algorithm to Solve the Multidimensional Knapsack Problem 491

The parameters which affect the running time of the algorithm are m, n and ic .

Figure 1 shows the time increment with respect to parameter m, and Figure 2 shows the

time increment with respect to parameter n.

0,000

10,000

20,000

30,000

40,000

50,000

60,000

0 20 40 60 80 100 120

ti
m

e

m (n=100)

Figure 1. The time increment with respect to parameter m

Figure 2. The time increment with respect to parameter n

As it is seen in Table 2 and the figures, while parameter m affects the running time of

the program linearly, parameter n affects the time 3rd degree parabolically.

In order to observe how the capacity of the knapsack affects the running time,

computational experiments have been carried out for n=100, m:10,20,…100. The values

of ic are determined by taking 25 percent, 45 percent, 55 percent, 75 percent off total

weight of the items in i
th

 constraint. The optimal values are shown in Table 3, and the

running times are given in Table 4 and Figure 3.

492 M. E. Berberler, A. Guler and U. G. Nurıyev

Figure 3. Running times

A Genetic Algorithm to Solve the Multidimensional Knapsack Problem 493

The properties of the computer that has been used in computational experiments are

Intel CORE 2 CPU (2.8 GHz) and 3 GB RAM, besides all problems and source codes

are available in the adress http://fen.ege.edu.tr/~murateb/mknapGA/.

5. CONCLUSION

In this paper, The Multidimensional Knapsack Problem (MKP) which occurs in

many different applications such as capital budgeting, cargo loading, project selection

and which is an NP-hard problem has been studied. A new genetic algorithm to solve

the MKP has been proposed. Unlike the technique of the classical genetic algorithm,

initial population is not randomly generated in the proposed algorithm, thus the solution

space is scanned more efficiently. Moreover, the algorithm is written in C programming

language and is tested on randomly generated instances. It is seen that the algorithm

yields optimal solutions for all instances. The properties of the computer that has been

used in computational experiments are Intel CORE 2 CPU (2.8 GHz) and 3 GB RAM.

As it is seen in Table 2 and the figures, while parameter m affects the running time of

the program linearly, parameter n affects the time parabolically. Furthermore, problems

have been generated in order to observe how the capacity of the knapsack affects the

running time and the results have been given in the tables and figures.

6. REFERENCES

1. R Battiti, G. Tecchiolli, Parallel biased search for combinatorial optimization:

Genetic algorithms and tabu search, Microprocessors and Microsystems 16, 351–

367, 1992.

2. P. C. Chu and J. E. Beasley, A genetic algorithm for the multidimensional knapsack

problem, Journal of Heuristics 4, 63-86, 1998.

3. A. Freville, The multidimensional 0–1 knapsack problem: An overview, European

Journal of Operational Research 155, 1–21, 2004.

4. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman, San Francisco, 338p, 1979.

5. B. Gavish, H. Pirkul, Efficient Algorithms for Solving Multiconstraint Zero-One

Knapsack Problems to Optimality, Mathematical Programming 31, 78–105, 1985.

6. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning, Addison–Wesley, 1989.

7. J. Gotlieb, On the effectivity of evolutionary algorithms for multidimensional

knapsack problem, Proceedings of the 4th European Conference of Artificial

Evolution, Dunkerque, France, LNCS no. 1829, 23–27, 1999.

8. C. Haul, S. Voss, Using surrogate constraints in genetic algorithms for solving

multidimensional knapsack problems, D.L Woodruff (Ed.), Advances in

Computational and Stochastic Optimization, Logic Programming, and Heuristic

Search, Kluwer Academic Publishers, pp. 235–251, 1998.

9. H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, Berlin, 546p,

2004.

10. S. Khuri, T. Back, J. Heitkotter, The Zero/One Multiple Knapsack Problem and

Genetic Algorithms, ACM Symposium on Applied Computing, 188–193, ACM

Press, 1994.

http://fen.ege.edu.tr/~murateb/mknapGA/

494 M. E. Berberler, A. Guler and U. G. Nurıyev

11. E. Lin, A bibliographical survey on some well-known non-standard knapsack

problems, INFOR, 36:274-317, 1998.

12. J. Puchinger, G. R. Raidl, U. Pferschy, The Multidimensional Knapsack Problem:

Structure and Algorithms, INFORMS Journal on Computing 22:2, 250–265, 2010.

13. R. Raidl Gunther, An improved genetic algorithm for the multiconstrained 0–1

knapsack problem, D. Fogel, et al., eds., Proceedings of the 5th IEEE International

Conference on Evolutionary Computation. IEEE Press, 207–211, 1998.

14. R. Raidl Gunther, Jens Gottlieb, Empirical analysis of locality, heritability and

heuristic bias in evolutionary algorithms: A case study for the multidimensional

knapsack problem, Evolutionary Computation Journal 13:4, 441–475, 2005.

15. J. Thiel, S. Voss, Some experiences on solving multiconstraint zero–one knapsack

problems with genetic algorithms, INFOR 32, 226–242, 1994.

16. M. Vasquez, J.-K. Hao, A hybrid approach for the 0–1 multidimensional knapsack

problem, Proceedings of the Int. Joint Conference on Artificial Intelligence, Seattle,

Washington, 328–333, 2001.

17. M. Vasquez, V. Yannick, Improved results on the 0–1 multidimensional knapsack

problem, European Journal of Operational Research 165, 70–81, 2005.

