
 

 

  
Mathematical and Computational Applications, Vol. 18, No. 3, pp. 486-494, 2013 

 

 

A GENETIC ALGORITHM TO SOLVE THE MULTIDIMENSIONAL 

KNAPSACK PROBLEM  

 
Murat Ersen Berberler

1
, Asli Guler

2,*
 and Urfat G. Nurıyev

3 

1
Department of Computer Science, Dokuz Eylul University, Izmir, Turkey 

2
Department of Mathematics, Yasar University, Izmir, Turkey 
3
Department of Mathematics, Ege University, Izmir, Turkey 

1murat.berberler@deu.edu.tr   2asli.guler@yasar.edu.tr    3urfat.nuriyev@ege.edu.tr 

 

Abstract- In this paper, The Multidimensional Knapsack Problem (MKP) which occurs 

in many different applications is studied and a genetic algorithm to solve the MKP is 

proposed. Unlike the technique of the classical genetic algorithm, initial population is 

not randomly generated in the proposed algorithm, thus the solution space is scanned 

more efficiently. Moreover, the algorithm is written in C programming language and is 

tested on randomly generated instances. It is seen that the algorithm yields optimal 

solutions for all instances. 
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1. INTRODUCTION 

Knapsack problems have been intensively studied recently due to its simple structure 

and the more complex problems can be solved through knapsack problems. The 

problems such as capital budgeting, cargo loading and project selection problem can be 

modeled by knapsack problems [4]. The multidimensional knapsack problem (MKP)  is 

special case of the classical 0-1 knapsack problem, and it has more than one constraint. 

The MKP  is a well-studied, NP-hard combinatorial optimization problem occurring in 

many different applications and there is no FPTAS for two dimensional knapsack 

problem unless P=NP,  [9]. 

The MKP can be stated as follows:  

Consider a set of projects (j = 1,...,n) and a set of resources (i = 1,...,m). Each project 

has assigned a profit 0jp   and resource consumption values 0ijw  . The problem is to 

find a subset of all projects that leads to the maximum possible profit and not exceeding 

given resource limits ic  [13].  

It is seen that there are more constraints unlike the general KP. The problem cen be 

defined by the following integer linear programming: 
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Here, 

jp :  profit of project j, 

ijw  : consumption of project j from resource i, 

ic   :  capacity of resource i, 

1,       if project    is selected,

0,       otherwise.
j

j
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It is assumed, without loss of generality, that jp , ijw  and ic  are pozitive integers, 

besides 
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   . 

MKP is a particular difficult problem of integer programming since the constraint 

matrix consisting of ijw  is dense. On the other hand, there is already a feasible solution 

at hand for MKP, namely 0,   1,...,jx j n  , whereas finding a feasible solution can be 

as hard as finding an optimal solution in general integer programming [11].    

The first examples have been exhibited by Lorie and Savage and by Manne and 

Markowitz as a capital budgeting model. There is a comprehensive overview of the 

results for the MKP by Kellerer et al. [9]. A recent review of the MKP was given by 

Fr´eville [3]. Besides the method currently yielding the best results, at least for 

commonly used benchmark instances, was described by Vasquez and Hao [16] and has 

recently been refined by Vasquez and Vimont [17]. It is a hybrid approach based on 

tabu search. Moreover, there are studies of Gilmore and Gomory [9]; Weingartner and 

Ness [9]; Shih [9]; Gavish and Pirkul [5]; Glover and Kochenberger [9]; Chu and 

Beasley [2], Raidl and Gottlieb [7, 14] and Puchinger et al. [12] in the litarature. 

2. GENETIC ALGORITHMS FOR MKP  

Genetic Algorithms (GA), which find application in bioinformatics, phylogenetics, 

computational science, engineering, economics, chemistry, manufacturing, 

mathematics, physics, pharmacometrics and other fields are search algorithms based on 

natural selection and genetics. These algorithms belong to the larger class of 

evolutionary algorithms (EA), that generate solutions to optimization problems using 
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techniques inspired by natural evolution, such as inheritance, mutation, selection, and 

crossover. It can be said that the strongest individuals in a population will have a better 

chance to transfer their genes to the next generation.  

In a genetic algorithm, a population of candidate solutions to an optimization 

problem is evolved toward better solutions. Each candidate solution has a set of 

properties which can be mutated and altered; traditionally, solutions are represented in 

binary as strings of 0s and 1s, but other encodings are also possible.  

 The evolution usually starts from a population of randomly generated individuals 

and happens in generations. In each generation, the fitness of every individual in the 

population is evaluated, the more fit individuals are stochastically selected from the 

current population, and each individual's genome is modified (recombined and possibly 

randomly mutated) to form a new population. The new population is then used in the 

next iteration of the algorithm. Commonly, the algorithm terminates when either a 

maximum number of generations has been produced, or a satisfactory fitness level has 

been reached for the population, [6]. 

The reproduction can be done in three ways : 

 Pure Reproduction - The individual is copied directly into the next generation 

 Crossover - Two individuals are selected and their genes are crossed at some 

point, as the first part of the new individual comes from one parent and the last 

part 

from the other. 

 Mutation - An individual is selected, and one bit is changed. 

Evolutionary algorithms is an important subject of metaheuristics. The early papers 

have not successfully proved that genetic algorithms were an effective heuristic tool for 

the MKP. Khuri et al. [10] extended previous work for the single constraint knapsack 

problem. A similar study is given in Battiti and Tecchioli [1]. Thiel and Voss showed 

that a standard GA using a direct search in the complete search space is not able to 

obtain good solutions for the MKP, except for small problems [15]. Moreover, they 

investigated the combination of GA with tabu search and obtained promising results. 

Chu and Beasley gave the first successful implementation of GA’s by restricting the 

genetic algorithms to search only the feasible search space. Finally, Haul and Voβ 

enhanced the performance of GA’s by using surrogate constraints [8]. 

3. A NEW GENETIC ALGORITHM FOR MKP 

The steps of the algorithm are as follows: 

 [GA1] Each of m constraints is handled seperately and its optimal solution is found 

by dynamic programming method. The total frequencies of occurrence of items that are 

located in the solution vectors are found, then they are sorted in descending order and 

index sequence I is obtained. 

 [GA2] The first n elements of the initial population are established in a way that the 

item concerning the current index is taken as long as it does not exceed knapsack 

capacities starting with the i
th

 element of index sequence I (1 i m  ) at each step. 
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 [GA3] Each of m constraints is handled seperately and 
j ijp w , (1 i m  ), values 

are calculated. The relaxed solutions of each constraint are found, then index sequence J 

is obtained by sorting the frequencies of entering the solution of each item in 

descending order. 

 [GA4] The other n elements of the initial population are established in a way that 

the item concerning the current index is taken as long as it does not exceed knapsack 

capacities starting with the j
th

 element of index sequence J (1 j n  ). 

 [GA5] The coefficients of the objective function, jp , are sorted in descending order 

and index sequence K is obtained. 

 [GA6] Each individual of the population consisting of 2*n elements is crossed with 

all other individuals. If there is an item which can be taken for the generated individual, 

the item concerning the current index is taken as long as it does not exceed knapsack 

capacities starting with the first element of index sequence K(1 k n  ). The individual 

that has the maximum value of the objective function in the population is assigned as 

the record. 

 [GA7] Step [GA6] is repeated until the iteration number is n. 

 [GA8] The record is written and the algorithm ends. 

Unlike the technique of the classical genetic algorithm, initial population is not 

randomly generated in this algorithm through the steps [GA1]...[GA4], thus the solution 

space is scanned much more efficiently. 

4. COMPUTATIONAL EXPERIMENTS 

Computational experiments have been carried out generating random problems for 

1 100ijw  , 1 100jp  , m:10,20,…,100 and n:10,20,…,100. In all instances, the 

capacity of each knapsack ( ic ) in each constraint is obtained by taking 25 percent off 

total weight of the items. 

The optimal values of the problems have been found by GAMS IDE and shown in 

Table 1. 
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The algorithm has been written in C language and it has been observed that the 

proposed algorithm yields optimal results when it is run for 100 problems. The solution 

times are given in Table 2. 

 



 

 

A Genetic Algorithm to Solve the Multidimensional Knapsack Problem     491 

 

 

 

The parameters which affect the running time of the algorithm are m, n and ic . 

Figure 1 shows the time increment with respect to  parameter m, and Figure 2 shows the 

time increment with respect to  parameter n. 
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Figure 1. The time increment with respect to  parameter m 

 

Figure 2. The time increment with respect to  parameter n 

 

As it is seen in Table 2 and the figures, while parameter m affects the running time of 

the program linearly, parameter n affects the time 3rd degree parabolically.  

In order to observe how the capacity of the knapsack affects the running time, 

computational experiments have been carried out for n=100, m:10,20,…100. The values 

of ic  are determined by taking 25 percent, 45 percent, 55 percent, 75 percent off total 

weight of the items in i
th

 constraint. The optimal values are shown in Table 3, and the 

running times are given in Table 4 and Figure 3. 
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Figure 3. Running times 
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The properties of the computer that has been used in computational experiments are 

Intel CORE 2 CPU (2.8 GHz) and 3 GB RAM, besides all problems and source codes 

are available in the adress http://fen.ege.edu.tr/~murateb/mknapGA/. 

5. CONCLUSION 

In this paper, The Multidimensional Knapsack Problem (MKP) which occurs in 

many different applications such as capital budgeting, cargo loading, project selection 

and which is an NP-hard problem has been studied. A new genetic algorithm to solve 

the MKP has been proposed. Unlike the technique of the classical genetic algorithm, 

initial population is not randomly generated in the proposed algorithm, thus the solution 

space is scanned more efficiently. Moreover, the algorithm is written in C programming 

language and is tested on randomly generated instances. It is seen that the algorithm 

yields optimal solutions for all instances. The properties of the computer that has been 

used in computational experiments are Intel CORE 2 CPU (2.8 GHz) and 3 GB RAM. 

As it is seen in Table 2 and the figures, while parameter m affects the running time of 

the program linearly, parameter n affects the time parabolically. Furthermore, problems 

have been generated in order to observe how the capacity of the knapsack affects the 

running time and the results have been given in the tables and figures. 
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