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Abstract- The traveling salesman problem (TSP) is one of the typical NP–Hard 

problems of combinatorial optimization area. This paper proposes a new hyper heuristic 

algorithm named Parametric Hybrid Method (PHM) based on The Farthest Vertex (FV) 

and Greedy heuristics for solving the traveling salesman problem. In addition, many 

problem instances from TSPLIB (traveling salesman problem library) were solved with 

NN, Greedy and PHM algorithms. The experimental results show that the new hybrid 

algorithm is more effective and efficient than both Greedy and Nearest Neighbor 

algorithms.  
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1. INTRODUCTION 

 

TSP is a well-known and important combinatorial optimization problem which is 

studied in operations research and computer science [2, 3]. TSP can be described briefly 

as follows: a salesman wants to sell his goods in n city.  Salesman visits each city only 

once and has to go back into initial city. The problem is investigating the route which 

has minimum cost to do this job. In this paper, we will consider the symmetric TSP [7]. 

Formally, the TSP can be stated as follows [14]. The distances between n cities are 

stored in a distance matrix D with elements   where   and the diagonal elements   are 

zero. A tour can be represented by a cyclic permutation   of   where   represents the city 

that follows city i on the tour. The traveling salesman problem is then the optimization 

problem to find a permutation   that minimizes the length of the tour denoted by 


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i
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TSP has important part of applications in many areas including vehicle routing, 

network design, computer wiring, machine sequencing and scheduling, frequency 

assignment in communication networks, electronic circuit design, transportation and 

logic applications [4, 8, 9].  

Since the TSP belongs to NP-Hard, it is very hard to develop an efficient 

algorithm for the problem. It is very important to find quality results in reasonable times 

for the problem, due to its large application area [6].  

The rest of this paper is organized as follows. Section 2 describes some 

approaches for solving the traveling salesman problem. Section 3 presents our proposed 

parametric hybrid algorithm. Section 4 illustrates our experimental results. Finally, 

section 5 concludes the paper.  
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2. APPROACHES FOR SOLVING TSP 

 

 TSP is a simple problem, yet it is dramatically hard to solve [1]. Various 

methods are used to generate solutions for the TSP [15], however, there is no known 

algorithm that finds an exact solution to the problem in polynomial time. The problem 

gets extremely difficult after a certain number of cities.  Thus, heuristic and hyper 

heuristic methods are often preferred.  

 Heuristic algorithms can produce good solutions, but they do not guarantee that 

the solution they find is optimal. In general, the heuristic algorithms for TSP are 

subdivided into the following three classes: tour construction algorithms, tour 

improvement algorithms and hybrid algorithms [16]. The tour construction algorithms 

gradually build a tour by adding a new city at each step, the tour improvement 

algorithms improve upon a tour by performing various exchanges, and finally hybrid 

algorithms use both composing and improving heuristics at the same time [5, 10-13]. 

The best results are obviously obtained by using hybrid approaches [1, 15].  

 Hyper heuristics are algorithms searching the “heuristic space” for solving the 

hard optimization problems. In this sense, a hyper heuristic decides which heuristic is 

more efficient to solve the problem instead of using a fixed method. In other words, if 

there are more than one successful heuristics for a problem, deciding which one of these 

will be even more successful is called as hyper heuristic. A deciding algorithm in 

situations where there is more than one heuristic applied to the problem is also called a 

hyper heuristic. 

 New hybrid heuristic algorithm we propose is based on our previous algorithms 

NND and The Farthest Vertex (FV), as well as the well-known Greedy and Nearest 

Neighbor algorithms. Next, we briefly review those. 

    

 2.1. The nearest  neighbor algorithm (NN) 
Among the tour construction heuristics, the nearest neighbor heuristic is the 

most simple one. The nearest neighbor (NN) algorithm for determining a traveling 

salesman tour is as follows. The salesman starts at a city then visits the city nearest to 

the starting city. Afterwards, he visits the nearest unvisited city, and repeats this process 

until he has visited all the cities, in the end, he returns to the starting city.  

The steps of the algorithm are as following: 

NN Algorithm 

Step 1. Select a random city. 

Step 2. Find the nearest unvisited city and go there. 

Step 3. Are there any unvisited cities left? If yes, go to Step 2. 

Step 4. Return to the first city. 

 

 A better result can be obtained by running the algorithm over again for each 

vertex and repeat it for n times. 

 

2.2. The nearest neighbor algorithm from both end points (NND) 

The algorithm starts with a vertex chosen randomly in the graph. Then, the 

algorithm continues with the nearest unvisited vertex to the chosen vertex. We will have 

two end vertices.  We add a vertex to the tour such that this vertex has not visited before 



 

 

A Parametric Hybrid Method for the Traveling Salesman Problem            461 

 

 

and it is the nearest vertex to these two end vertices. We update the end vertices. The 

algorithm ends after visiting all vertices.  

The steps of the algorithm are as following:  

NND Algorithm 

Step 1. Choose an arbitrary vertex in the graph. 

Step 2. Visit the nearest unvisited vertex to this vertex. 

Step 3. Visit the nearest unvisited vertex to these two vertices and update the end 

vertices. 

Step 4. Is there any unvisited vertex left? If yes, then go to Step 3. 

Step 5. Go to the end vertex from the other end vertex. 

 

2.3. The greedy algorithm 

The Greedy heuristic gradually constructs a tour by repeatedly selecting the 

shortest edge and adding it to the tour as long as it does not build a cycle with less than 

N edges, or increase the degree of any node to more than 2.  

The steps of the algorithm are as following:  

Greedy Algorithm 

Step 1. Sort edges by increasing lengths. 
Step 2. Select the shortest edge and add it to our tour if it doesn’t violate any of the 

above constraints. 

Step 3. Do we have n edges in our tour? If no, go to Step 2. 

 

2.4. The farthest vertex algorithm (FV) 

 This algorithm is about finding the sums of each row in the adjacent matrix. The 

algorithm continues to add the minimum two distances of each row which includes the 

maximum distance to the tour. This process is applied to each row.  

 The steps of the algorithm are as following:  

FV Algorithm 

Step 1. Find the sums for each row in the adjacency matrix and add them to SUM 

column. 

Step 2. Find the maximum sum of SUM column. 

Step 3. From the same row in which this maximum sum exists, select the two minimum 

distances which do not contain a sub tour and add them to the tour. 

Step 4. Delete the row and the column which correspond to the maximum sum. 

Step 5. Increase the number of selected vertices by 1. 

Step 6. If the number of selected vertices is less than n then go to step 2.   

 

3. A NEW PARAMETRIC HYBRID ALGORITHM 

 

A new Hyper Heuristic algorithm is proposed below: 

Initially, NN algorithm is  to determine a path whose end vertices are used in 

NND algorithm. Then NND algorithm continues with an implementation of FV 

algorithm where the farthest vertices are being considered. Finally, k parameter is 

included to the method so that FV and the Greedy algorithm work together. The 

parameter k determines the contribution ratio of the algorithms. For k = 0, the hybrid 



 

 

462                                          G. Kızılates and F. Nuriyeva
 

 

 

algorithm will only use the Greedy algorithm; likewise, for k = n, the hybrid algorithm 

will only use FV algorithm. When k is in interval (0, n), for the first k farthest vertices 

FV (or the NN algorithm for these vertices) is performed and the Greedy algorithm runs 

on the rest of the vertices. We call this hybrid algorithm PFVGH.  

The steps of the algorithm are as following:  

PFVGH Algorithm 

Step 1. Find the sums for each row in the adjacency matrix. 

Step 2. Sort the sums in descending order. 

Step 3. Identify the k parameter. 

Step 4. For the first k vertices of the sorted sums, select the two edges with minimum 

distances that don’t form a sub tour, and add them to the tour.  

Step 5. Perform the Greedy algorithm for choosing rest of the edges to complete the 

tour. 

 

3.1. Computational experiments with PFVGH  

The results of the computational experiments conducted on the problems 

ulysses16 and ulysses22 of TSPLIB [18] are represented below. 

 

Table 1. The results of the computational experiments on the problem ulysses16 
k 0 1 2 3 4 5 6 7 

Result 88.923 79.133 79.133 78.716 78.147 78.147 76.509 77.144 

 

k 8 9 10 11 12 13 14 15 16 

Result 75.813 75.041 75.138 75.138 75.138 75.138 75.138 75.138 75.138 

 

Table 2. The results of the computational experiments on the problem ulysses22 
k 0 1 2 3 4 5 6 7 8 9 10 

Result 89.436 81.783 81.783 82.159 82.159 79.491 78.193 78.193 78.193 77.868 78.503 

 

k 11 12 13 14 15 16 17 18 19 20 21 22 

Resul

t 

78.50

3 
77.494 

77.49

4 

78.67

5 

78.67

5 

78.67

5 

78.67

5 

78.67

5 

78.67

5 

78.67

5 

78.67

5 
78.675 

 

As shown in Table 1, on the problem ulysses16 the best result was achieved 

when k was 9. As shown in Table 2, on the problem ulysses22 the best result was 

achieved when k was 12 and 13. 

Similarly, Figure 1 shows the results PFVGH produces for the problem Eil76, 

depending on the parameter k. 
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Figure 1. Correlation between the parameter k and the results PFVGH produces for the 

problem Eil76.   

 

 As it is seen in Figure 1, PFVGH produces better results with larger k values, 

until a particular value. 

 The experimental results are shown in Table 3, on 10 different problems with a 

variety of dimensions from TSPLIB. The first column contains names of the problems 

and their dimensions. Second column contains the optimum tour length and third 

column contains the best result achieved with PFVGH and associated k values. 

Likewise, fourth column contains the worst results and associated k values. Last 2 

columns contain the results achieved for k = 0 and k = n. 

 

Table 3. The results PFVGH produces on 10 different problems 

Problem 
Optimum 

Result 

Best  

Result 

Worst 

Result 

Result for 

k = 0 

Result for 

k = n 

ulysses16 74.108 
75.041 88.923 

88.923 75.138 
k=9 k=0 

ulysses22 75.665 
77.494 89.436 

89.436 78.675 
k=12,13 k=0 

bayg29 9074.148 
9186.771 10372.301 

9886.208 9196.496 
k=14-22 k=13 

dantzig42 699 
746.860 843.737 

843.737 784.908 
k=22 k=0 

att48 33523.708 
36325.328 40434.100 

38849.621 36325.328 
k=41-48 k=11 

eil51 429.983 
440.746 519.591 

481.518 440.746 
k=46-51 k=5,6,8 

berlin52 7544.365 
8201.316 9954.062 

9954.062 8618.198 
k=19 k=0 

st70 678.597 
727.778 779.968 

746.044 727.778 
k=64-70 k=12 

eil76 545.387 
581.407 666.441 

617.131 581.407 
k=60-76 k=3 

pr76 108159.438 
116288.923 147438.691 

127897.984 117569.531 
k=14 k=1 

As seen in Table 3, the better results are always achieved for (0 < k < n). 
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Similarly, Figure 2 shows the results PFVGH produces for the problems ulysses 16, 

ulysses 22, bayg29, att48, pr76, depending on the parameter k. 

 

 
Figure 2. Correlation between the parameter k and the results PFVGH produces for the 

problems ulysses 16, ulysses 22, bayg29, att48, pr76. 

 

 As it is seen in Figure 2, PFVGH produces better results with larger k values, 

until a particular value for different problems with a variety of dimensions. 

 For validating the efficiency of the PFVGH algorithm, experimental results 

conducted on 22 different problems with a variety of dimensions are given in the next 

section. Different values of the parameter k, like [0.3*n], [0.5*n], [0.8*n] and [0.9*n] 

were chosen to observe the behavior of the algorithm and the result are presented along 

with the results of the NN and the Greedy algorithms.  

 

4. EXPERIMENTAL RESULTS 

 

 This section presents the results of the computational experiments for the 

proposed hyper heuristic algorithm. The sample problems used in these experiments are 

taken from the [17]. And the optimum solutions for each of these problems are taken 

from the [18].  

 Table 4 shows the length of the optimal tour and the tours produced by different 

heuristic algorithms and the new hybrid algorithm. In Table 4, filled cells show the best 

results achieved by heuristics. 
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Table 4. The experimental results 

Problems Optimal NN Greedy k=[0.3*n] k=[0.5*n] k=[0.8*n] k=[0.9*n] 

ulysses16 74.108 78.127 88.923 78.147 75.041 75.138 75.138 

ulysses22 75.665 86.906 89.436 78.193 77.494 78.823 78.823 

bayg29 9074.148 9964.781 9886.208 10159.256 9186.771 9196.495 9196.495 

dantzig42 699 822.095 843.737 839.244 746.860 771.017 775.506 

att48 33523.708 39236.885 38849.621 37908.551 36586.350 36474.922 36325.329 

eil51 429.983 505.774 481.518 488.118 449.856 466.334 458.462 

st70 678.597 761.689 746.044 742.822 753.461 732.507 727.778 

eil76 545.387 612.656 617.131 619.172 603.460 581.839 581.839 

pr76 
108159.43

8 

130921.00

5 

127897.98

4 

122592.86

3 

119428.96

7 
117493.719 117639.821 

gr96 512.309 603.302 580.101 589.769 567.027 548.430 549.956 

kroA100 21236.951 24698.497 24197.285 23735.891 23748.697 24799.237 24129.596 

kroB100 22141 25882.973 25815.214 24383.732 23880.966 23459.891 23506.210 

kroC100 20750.762 23566.403 25313.671 25572.433 23259.258 23384.664 23384.664 

kroD100 21294.290 24855.799 24631.533 27771.079 24221.925 24101.979 24613.012 

eil101 642.309 736.368 789.112 767.548 742.973 712.200 707.324 

gr120 1666.508 1850.263 1915.918 1765.153 1718.043 1768.585 1708.057 

ch130 6110.860 7198.741 7142.045 6776.120 6757.945 6705.272 6788.495 

pr136 96772 
114560.90

2 

119553.70

3 

105947.88

8 

104309.55

5 
107841.922 105814.516 

kroA150 26524 31482.020 31442.994 29832.483 30125.133 29940.798 30053.487 

kroB150 26130 31320.340 31519.083 30418.430 30725.288 29736.184 29780.122 

rat195 2323 2628.561 2957.176 2680.773 2570.351 2578.752 2534.335 

kroA200 29368 34547.691 37650.812 35426.901 33938.628 33754.659 33476.067 

 

As seen in Table 4, PFVGH outperforms the NN algorithm and the Greedy algorithm in 

any instance. 

 

5. CONCLUSION 

 

 In this work, we proposed a hyper heuristic that uses the previous algorithms we 

developed [11-13] and some well-known heuristics. The implementations of the 

algorithms were coded in C++ language. Then, we conducted computational 

experiments with the new algorithm and the other heuristics on a variety of problems. 

These experiments showed that the new algorithm outperforms the other heuristics. 
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