

Mathematical and Computational Applications, Vol. 18, No. 3, pp. 459-466, 2013

A PARAMETRIC HYBRID METHOD FOR THE TRAVELING SALESMAN

PROBLEM

Gözde Kızılates and Fidan Nuriyeva

Department of Mathematics, Ege University, 35100, Bornova, Izmir, Turkey.

gozde.kizilates@gmail.com, nuriyevafidan@gmail.com

Abstract- The traveling salesman problem (TSP) is one of the typical NP–Hard

problems of combinatorial optimization area. This paper proposes a new hyper heuristic

algorithm named Parametric Hybrid Method (PHM) based on The Farthest Vertex (FV)

and Greedy heuristics for solving the traveling salesman problem. In addition, many

problem instances from TSPLIB (traveling salesman problem library) were solved with

NN, Greedy and PHM algorithms. The experimental results show that the new hybrid

algorithm is more effective and efficient than both Greedy and Nearest Neighbor

algorithms.

Key Words- traveling salesman problem, nearest neighbor algorithm, greedy algorithm,

parametric hybrid algorithm, hyper heuristic algorithm

1. INTRODUCTION

TSP is a well-known and important combinatorial optimization problem which is

studied in operations research and computer science [2, 3]. TSP can be described briefly

as follows: a salesman wants to sell his goods in n city. Salesman visits each city only

once and has to go back into initial city. The problem is investigating the route which

has minimum cost to do this job. In this paper, we will consider the symmetric TSP [7].

Formally, the TSP can be stated as follows [14]. The distances between n cities are

stored in a distance matrix D with elements where and the diagonal elements are

zero. A tour can be represented by a cyclic permutation of where represents the city

that follows city i on the tour. The traveling salesman problem is then the optimization

problem to find a permutation that minimizes the length of the tour denoted by




n

i

iid
1

)( .

TSP has important part of applications in many areas including vehicle routing,

network design, computer wiring, machine sequencing and scheduling, frequency

assignment in communication networks, electronic circuit design, transportation and

logic applications [4, 8, 9].

Since the TSP belongs to NP-Hard, it is very hard to develop an efficient

algorithm for the problem. It is very important to find quality results in reasonable times

for the problem, due to its large application area [6].

The rest of this paper is organized as follows. Section 2 describes some

approaches for solving the traveling salesman problem. Section 3 presents our proposed

parametric hybrid algorithm. Section 4 illustrates our experimental results. Finally,

section 5 concludes the paper.

460 G. Kızılates and F. Nuriyeva

2. APPROACHES FOR SOLVING TSP

 TSP is a simple problem, yet it is dramatically hard to solve [1]. Various

methods are used to generate solutions for the TSP [15], however, there is no known

algorithm that finds an exact solution to the problem in polynomial time. The problem

gets extremely difficult after a certain number of cities. Thus, heuristic and hyper

heuristic methods are often preferred.

 Heuristic algorithms can produce good solutions, but they do not guarantee that

the solution they find is optimal. In general, the heuristic algorithms for TSP are

subdivided into the following three classes: tour construction algorithms, tour

improvement algorithms and hybrid algorithms [16]. The tour construction algorithms

gradually build a tour by adding a new city at each step, the tour improvement

algorithms improve upon a tour by performing various exchanges, and finally hybrid

algorithms use both composing and improving heuristics at the same time [5, 10-13].

The best results are obviously obtained by using hybrid approaches [1, 15].

 Hyper heuristics are algorithms searching the “heuristic space” for solving the

hard optimization problems. In this sense, a hyper heuristic decides which heuristic is

more efficient to solve the problem instead of using a fixed method. In other words, if

there are more than one successful heuristics for a problem, deciding which one of these

will be even more successful is called as hyper heuristic. A deciding algorithm in

situations where there is more than one heuristic applied to the problem is also called a

hyper heuristic.

 New hybrid heuristic algorithm we propose is based on our previous algorithms

NND and The Farthest Vertex (FV), as well as the well-known Greedy and Nearest

Neighbor algorithms. Next, we briefly review those.

 2.1. The nearest neighbor algorithm (NN)
Among the tour construction heuristics, the nearest neighbor heuristic is the

most simple one. The nearest neighbor (NN) algorithm for determining a traveling

salesman tour is as follows. The salesman starts at a city then visits the city nearest to

the starting city. Afterwards, he visits the nearest unvisited city, and repeats this process

until he has visited all the cities, in the end, he returns to the starting city.

The steps of the algorithm are as following:

NN Algorithm

Step 1. Select a random city.

Step 2. Find the nearest unvisited city and go there.

Step 3. Are there any unvisited cities left? If yes, go to Step 2.

Step 4. Return to the first city.

 A better result can be obtained by running the algorithm over again for each

vertex and repeat it for n times.

2.2. The nearest neighbor algorithm from both end points (NND)

The algorithm starts with a vertex chosen randomly in the graph. Then, the

algorithm continues with the nearest unvisited vertex to the chosen vertex. We will have

two end vertices. We add a vertex to the tour such that this vertex has not visited before

A Parametric Hybrid Method for the Traveling Salesman Problem 461

and it is the nearest vertex to these two end vertices. We update the end vertices. The

algorithm ends after visiting all vertices.

The steps of the algorithm are as following:

NND Algorithm

Step 1. Choose an arbitrary vertex in the graph.

Step 2. Visit the nearest unvisited vertex to this vertex.

Step 3. Visit the nearest unvisited vertex to these two vertices and update the end

vertices.

Step 4. Is there any unvisited vertex left? If yes, then go to Step 3.

Step 5. Go to the end vertex from the other end vertex.

2.3. The greedy algorithm

The Greedy heuristic gradually constructs a tour by repeatedly selecting the

shortest edge and adding it to the tour as long as it does not build a cycle with less than

N edges, or increase the degree of any node to more than 2.

The steps of the algorithm are as following:

Greedy Algorithm

Step 1. Sort edges by increasing lengths.
Step 2. Select the shortest edge and add it to our tour if it doesn’t violate any of the

above constraints.

Step 3. Do we have n edges in our tour? If no, go to Step 2.

2.4. The farthest vertex algorithm (FV)

 This algorithm is about finding the sums of each row in the adjacent matrix. The

algorithm continues to add the minimum two distances of each row which includes the

maximum distance to the tour. This process is applied to each row.

 The steps of the algorithm are as following:

FV Algorithm

Step 1. Find the sums for each row in the adjacency matrix and add them to SUM

column.

Step 2. Find the maximum sum of SUM column.

Step 3. From the same row in which this maximum sum exists, select the two minimum

distances which do not contain a sub tour and add them to the tour.

Step 4. Delete the row and the column which correspond to the maximum sum.

Step 5. Increase the number of selected vertices by 1.

Step 6. If the number of selected vertices is less than n then go to step 2.

3. A NEW PARAMETRIC HYBRID ALGORITHM

A new Hyper Heuristic algorithm is proposed below:

Initially, NN algorithm is to determine a path whose end vertices are used in

NND algorithm. Then NND algorithm continues with an implementation of FV

algorithm where the farthest vertices are being considered. Finally, k parameter is

included to the method so that FV and the Greedy algorithm work together. The

parameter k determines the contribution ratio of the algorithms. For k = 0, the hybrid

462 G. Kızılates and F. Nuriyeva

algorithm will only use the Greedy algorithm; likewise, for k = n, the hybrid algorithm

will only use FV algorithm. When k is in interval (0, n), for the first k farthest vertices

FV (or the NN algorithm for these vertices) is performed and the Greedy algorithm runs

on the rest of the vertices. We call this hybrid algorithm PFVGH.

The steps of the algorithm are as following:

PFVGH Algorithm

Step 1. Find the sums for each row in the adjacency matrix.

Step 2. Sort the sums in descending order.

Step 3. Identify the k parameter.

Step 4. For the first k vertices of the sorted sums, select the two edges with minimum

distances that don’t form a sub tour, and add them to the tour.

Step 5. Perform the Greedy algorithm for choosing rest of the edges to complete the

tour.

3.1. Computational experiments with PFVGH

The results of the computational experiments conducted on the problems

ulysses16 and ulysses22 of TSPLIB [18] are represented below.

Table 1. The results of the computational experiments on the problem ulysses16
k 0 1 2 3 4 5 6 7

Result 88.923 79.133 79.133 78.716 78.147 78.147 76.509 77.144

k 8 9 10 11 12 13 14 15 16

Result 75.813 75.041 75.138 75.138 75.138 75.138 75.138 75.138 75.138

Table 2. The results of the computational experiments on the problem ulysses22
k 0 1 2 3 4 5 6 7 8 9 10

Result 89.436 81.783 81.783 82.159 82.159 79.491 78.193 78.193 78.193 77.868 78.503

k 11 12 13 14 15 16 17 18 19 20 21 22

Resul

t

78.50

3
77.494

77.49

4

78.67

5

78.67

5

78.67

5

78.67

5

78.67

5

78.67

5

78.67

5

78.67

5
78.675

As shown in Table 1, on the problem ulysses16 the best result was achieved

when k was 9. As shown in Table 2, on the problem ulysses22 the best result was

achieved when k was 12 and 13.

Similarly, Figure 1 shows the results PFVGH produces for the problem Eil76,

depending on the parameter k.

A Parametric Hybrid Method for the Traveling Salesman Problem 463

Figure 1. Correlation between the parameter k and the results PFVGH produces for the

problem Eil76.

 As it is seen in Figure 1, PFVGH produces better results with larger k values,

until a particular value.

 The experimental results are shown in Table 3, on 10 different problems with a

variety of dimensions from TSPLIB. The first column contains names of the problems

and their dimensions. Second column contains the optimum tour length and third

column contains the best result achieved with PFVGH and associated k values.

Likewise, fourth column contains the worst results and associated k values. Last 2

columns contain the results achieved for k = 0 and k = n.

Table 3. The results PFVGH produces on 10 different problems

Problem
Optimum

Result

Best

Result

Worst

Result

Result for

k = 0

Result for

k = n

ulysses16 74.108
75.041 88.923

88.923 75.138
k=9 k=0

ulysses22 75.665
77.494 89.436

89.436 78.675
k=12,13 k=0

bayg29 9074.148
9186.771 10372.301

9886.208 9196.496
k=14-22 k=13

dantzig42 699
746.860 843.737

843.737 784.908
k=22 k=0

att48 33523.708
36325.328 40434.100

38849.621 36325.328
k=41-48 k=11

eil51 429.983
440.746 519.591

481.518 440.746
k=46-51 k=5,6,8

berlin52 7544.365
8201.316 9954.062

9954.062 8618.198
k=19 k=0

st70 678.597
727.778 779.968

746.044 727.778
k=64-70 k=12

eil76 545.387
581.407 666.441

617.131 581.407
k=60-76 k=3

pr76 108159.438
116288.923 147438.691

127897.984 117569.531
k=14 k=1

As seen in Table 3, the better results are always achieved for (0 < k < n).

464 G. Kızılates and F. Nuriyeva

Similarly, Figure 2 shows the results PFVGH produces for the problems ulysses 16,

ulysses 22, bayg29, att48, pr76, depending on the parameter k.

Figure 2. Correlation between the parameter k and the results PFVGH produces for the

problems ulysses 16, ulysses 22, bayg29, att48, pr76.

 As it is seen in Figure 2, PFVGH produces better results with larger k values,

until a particular value for different problems with a variety of dimensions.

 For validating the efficiency of the PFVGH algorithm, experimental results

conducted on 22 different problems with a variety of dimensions are given in the next

section. Different values of the parameter k, like [0.3*n], [0.5*n], [0.8*n] and [0.9*n]

were chosen to observe the behavior of the algorithm and the result are presented along

with the results of the NN and the Greedy algorithms.

4. EXPERIMENTAL RESULTS

 This section presents the results of the computational experiments for the

proposed hyper heuristic algorithm. The sample problems used in these experiments are

taken from the [17]. And the optimum solutions for each of these problems are taken

from the [18].

 Table 4 shows the length of the optimal tour and the tours produced by different

heuristic algorithms and the new hybrid algorithm. In Table 4, filled cells show the best

results achieved by heuristics.

A Parametric Hybrid Method for the Traveling Salesman Problem 465

Table 4. The experimental results

Problems Optimal NN Greedy k=[0.3*n] k=[0.5*n] k=[0.8*n] k=[0.9*n]

ulysses16 74.108 78.127 88.923 78.147 75.041 75.138 75.138

ulysses22 75.665 86.906 89.436 78.193 77.494 78.823 78.823

bayg29 9074.148 9964.781 9886.208 10159.256 9186.771 9196.495 9196.495

dantzig42 699 822.095 843.737 839.244 746.860 771.017 775.506

att48 33523.708 39236.885 38849.621 37908.551 36586.350 36474.922 36325.329

eil51 429.983 505.774 481.518 488.118 449.856 466.334 458.462

st70 678.597 761.689 746.044 742.822 753.461 732.507 727.778

eil76 545.387 612.656 617.131 619.172 603.460 581.839 581.839

pr76
108159.43

8

130921.00

5

127897.98

4

122592.86

3

119428.96

7
117493.719 117639.821

gr96 512.309 603.302 580.101 589.769 567.027 548.430 549.956

kroA100 21236.951 24698.497 24197.285 23735.891 23748.697 24799.237 24129.596

kroB100 22141 25882.973 25815.214 24383.732 23880.966 23459.891 23506.210

kroC100 20750.762 23566.403 25313.671 25572.433 23259.258 23384.664 23384.664

kroD100 21294.290 24855.799 24631.533 27771.079 24221.925 24101.979 24613.012

eil101 642.309 736.368 789.112 767.548 742.973 712.200 707.324

gr120 1666.508 1850.263 1915.918 1765.153 1718.043 1768.585 1708.057

ch130 6110.860 7198.741 7142.045 6776.120 6757.945 6705.272 6788.495

pr136 96772
114560.90

2

119553.70

3

105947.88

8

104309.55

5
107841.922 105814.516

kroA150 26524 31482.020 31442.994 29832.483 30125.133 29940.798 30053.487

kroB150 26130 31320.340 31519.083 30418.430 30725.288 29736.184 29780.122

rat195 2323 2628.561 2957.176 2680.773 2570.351 2578.752 2534.335

kroA200 29368 34547.691 37650.812 35426.901 33938.628 33754.659 33476.067

As seen in Table 4, PFVGH outperforms the NN algorithm and the Greedy algorithm in

any instance.

5. CONCLUSION

 In this work, we proposed a hyper heuristic that uses the previous algorithms we

developed [11-13] and some well-known heuristics. The implementations of the

algorithms were coded in C++ language. Then, we conducted computational

experiments with the new algorithm and the other heuristics on a variety of problems.

These experiments showed that the new algorithm outperforms the other heuristics.

466 G. Kızılates and F. Nuriyeva

6. REFERENCES

1. D. L. Appligate, R. E. Bixby, V. Chavatal and W. J. Cook, The Traveling Salesman

Problem, A Computational Study, Princeton Univesity Press, Princeton and Oxford,

2006.

2. D. Davendra, Traveling Salesman Problem, Theory and Applications, In Tech, 2010.

3. G. Gutin, A. Punnen (eds.), The Traveling Salesman Problem and Its Variations,

volume 12 of Combinatorial Optimization, Kluwer, Dordrecht, 2002.

4. L. J. Hubert, F. B. Baker, Applications of Combinatorial Programming to Data

Analysis: The Traveling Salesman and Related Problems, Psychometrika 43(1),

81-91, 1978.

5. D. Johnson, C. Papadimitriou (1985b), Performance guarantees for heuristics, In

Lawler et al, chapter 5, 145-180, 1985.

6. D. S. Johnson and L. A. McGeoch, The Traveling Salesman Problem: A Case Study,

Local Search in Combinatorial Optimization, 215-310, John Wiley & Sons, 1997.

7. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, D. B. Shmoys, The Traveling

Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley &

Sons, 1986.

8. J. Lenstra, A. R. Kan, Some simple applications of the traveling salesman problem,

Operational Research Quarterly 26(4), 717-733, 1975.

9. J. K. Lenstra, Clustering a Data Array and the Traveling-Salesman Problem,

Operations Research 22(2), 413-414, 1974.

10. S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling-salesman

problem, Operations Research 21(2), 498-516, 1973.

11. F. Nuriyeva, New heuristic algorithms for traveling salesman problem, 25th

Conference of European Chapter on Combinatorial Optimization, (ECCO XXV),

Antalya, Turkey, April 26 – 28, 2012.

12. F. Nuriyeva, G. Kizilates, M. E. Berberler, Experimental Analysis of New Heuristics

for the TSP, IV International Conference “Problems of Cybernetics and

Informatics” Baku, Azerbaijan, September 12 – 14, 2012.

13. F. Nuriyeva, G. Kızılateş, A New Hyperheuristic Algorithm for Solving Traveling

Salesman Problem, 2
nd

 World Conference on Soft Computing, p. 528-531 Baku,

Azerbaijan, December 3-5, 2012.

14. A. Punnen, The Traveling Salesman Problem: Applications, Formulations and

Variations, In Gutin and Punnen (2002), chapter 1, p. 1-28, 2002.

15. G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applications,

Springer-Verlag, Germany, 1994.

16. D. J. Rosenkrantz, R. E. Stearns, P. M. Lewis, An Analysis of Several Heuristics for

the Traveling Salesman Problem, SIAM Journal on Computing 6, 563-581 (6.1).

17. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

18. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/

