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Abstract- This study presents a new method for the solution of mth-order linear 

differential-difference equations with variable coefficients under the mixed conditions. 

We introduce a Fibonacci collocation method based on the Fibonacci polynomials for 

the approximate solution. Numerical examples are included to demonstrate the 

applicability of the technique. The obtained results are compared by the known results. 
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1. INTRODUCTION 

 

            The study of the differential-difference equations developed very rapidly in 

recent years [1-3]. These equations play an important role in various branches of science 

such as engineering, mechanics, physics, biology, control theory etc. Differential-

difference equations occur also frequently as a mathematical model for problems [3-4]. 

            Since some equations are hard to solve analytically, they are solved by using the 

approximate methods by many authors [5-7]. Approximate solutions of linear 

differential, difference, differential-difference, integral and integro-differential-

difference, pantograph equations have been found using the Taylor collocation method 

and Chebyshev polynomial method by Sezer et. al. [8-14]. Also, the Fibonacci matrix 

method has been used to find the approximate solutions of differential and integro-

differential equations [15]. 

In this paper, we consider the approximate solution of the mth-order linear 

differential-difference equation with variable coefficients, 
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where ( )kP x , ( )rQ x  and ( )g x are functions defined on a x b  ; ,jk jka b and j   are 

suitable constants. 

           Our aim is to find an approximate solution of (1) expressed in the truncated 

Fibonacci series form 
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where ,  1,2,3,...na n N  are the unknown Fibonacci coefficients. Here n  is chosen as 

any positive integer such that 1n  , and ( ),  1,2,3,...nF x n N  are the Fibonacci 

polynomials defined by 
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2. FUNDAMENTAL MATRIX RELATIONS 

  

            We can write the Fibonacci polynomials ( )nF x   in the matrix form as follows 

            ( ) ( )  ( ) ( )x x x x  T T T
F CX F X C                                                        (4)        

where 

          1 2 3( ) [ ( )  F ( )  F ( )  ...  F ( )]Nx F x x x xF , 2 1( ) [1      ]Nx x x x  X  

and if n  is even, 
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if n  is odd, 
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Let us show Eq(1) in the form 

               ( ) ( ) ( )P x Q x g x                                                                                                                                (5) 
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2.1. Matrix relations for the differential part P(x) 

            We write the solution (x)y  and its kth derivate ( )x(k)
y  in the matrix forms, 

respectively, 

              1 2( ) ( )
T

Nx x , a a a  y F A   A                                                                            (6) 

and  

           ( )( ) ( )kx x .(k)
y F A                                                                                                (7) 

Then, from relations (4) and (6), we can obtain matrix form 

           ( )(x) x T
y = X C A                                                                                                  (8) 

Similar to Eq. (8), from relations (4), (6) and (7), we can obtain ( )x(k)
y matrix form as 
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To find the matrix (x)(k)
X in terms of the matrix (x)X , we can use the following relation 
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Consequently, by substituting the matrix form (10) into Eq.(9), we obtain the matrix 

relations  

           ( ) ( )( ) .k Tx x(k) T
y X T C A                                                                              (11) 

            

2.2. Matrix relations for the difference part Q(x) 

            If we put r rx x     in the relation (6), we have the matrix form 

 ( ) ( ) .r r r rx x     y F A                            (12) 

Also, it is seen that the relation between the matrices ( )xX and ( )r rx X is 

             ( ) ( ) ( , )r r r rx x    X X                                                                                              (13) 

where 
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By using the relations (10) and (13), we can get 

 
( ) ( ) ( ) ( , )( ) .k k

r r r rx x     T
X X T              (14) 

Thus from (9) and (14), we can find 
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By using the expressions (9) and (15), we obtain the matrix forms 
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 2.3. Matrix relations for the conditions 
 By means of (11), the corresponding matrix forms for the conditions (2) can be 

shown as       
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3. METHOD OF SOLUTION 

 

            In this part, we construct the fundamental matrix equation corresponding to    

Eq. (1). For this purpose, we substitute the matrix relations (16) and (17) into Eq. (5). 

So we obtain  the matrix equation 
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By using in Eq. (19) the collocation points ix  defined by, 
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  
0 0

( ) ( ) ( ) ) ( ) ( , )( )
m s

k r

k i i r i i r r i

k r

P x x Q (x x g(x ) 
 

  T T T T
X C T A X T C A         

or shortly the fundamental matrix equation becomes 
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Therefore, the fundamental matrix equation (21) corresponding to Eq. (1) can be written 

in the augmented form 

 WA = G  or  W;G                     (22) 

where 
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Eq. (22) corresponds to a system of N  linear algebraic equations with unknown 

Fibonacci coefficients 1 2,  ,...,  Na a a . Further, we can express the matrix form (18) for 

conditions as 
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If rank  [ ]rank N  W W;G , then we can write 

              .  -1
A (W) G               (25) 

Hence, the matrix A  (thereby the coefficients 1 2, ,..., Na a a ) is uniquely determined. 

Further the Eq. (1) with conditions (2) has a unique solution. This solution is given by 

the truncated Fibonacci series (3). 
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4. ACCURACY OF SOLUTION 

  

 We can check the accuracy of the method. The truncated Fibonacci series in (3) 

have to be approximately satisfying Eq. (1). For each [ , ],  1,2,3,...ix x a b i    

           ( ) ( ) ( ) ( ) 0i i i iE x P x Q x g x     
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        ( ik  is any positive integer) 

If   max(10 ) 10ik k     ( k  is any positive integer) is prescribed, then the truncation limit 

N  is increased until the difference ( )iE x  at each of the points ix  becomes smaller than 

the prescribed 10 k .   

 

5. NUMERICAL EXAMPLES 

 

 In this section, several numerical examples are given to show the accuracy and 

the efficiency of this method. 

Example 5.1. [6] Let us first consider the linear differential-difference equation given 
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The augmented matrix for this fundamental matrix equation is calculated 
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Solving this system, Fibonacci coefficients are obtained as 
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x

x

a x


   





  







 

We obtain the solution 2( ) 1y x x  , which is the exact solution. 

Example 5.2. [5] Consider the following linear differential-difference equation given 

by 

           ( ) ( ) ( ) ( 1) ( 1) xy x xy x xy x y x y x e         ,  2 0x              (27) 

with the conditions 

           (0) 1,  (0) 1y y    

So that

 

-

2 1 0 0 1( ) 1,  ( ) ,  ( ) ,  ( ) 1,  ( ) 1,  ( ) xP x P x x P x x Q x Q x g x e       

 
0 0 1 11,  1,  1,  1.        
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The solutions obtained for 10,11,12N   are compared with the exact solution is e x
,  

which are given in Fig 1. We compare the numerical solution and absolute errors for 

10,11,12N   in Table 1. 

Table 1. Comparison of the absolute errors of Example 5.2 
Present method 

 

                                                                                             

                                               10N                                   11N                                     12N   

i
x    Exact Solution    ( )

i
y x        Absolute Errors    ( )

i
y x        Absolute Errors    ( )

i
y x       Absolute Errors    

 
-2          7.389056         7.37577          0.01328584         7.382423        0.006632786        7.387371        0.001684938 

-1,8       6.049648         6.040341        0.009306033       6.045003        0.004644495        6.048077        0.001570507 

-1.6       4.953032         4.946573        0.006459052       4.94981          0.003222258        4.951569        0.001463605 

-1.4       4.055200         4.050788        0.004412089       4.05300          0.002199794        4.05384          0.001359659  

-1.2       3.320117         3.317182        0.002935219       3.318655        0.001462234        3.318866        0.001251266 

-1          2.718282         2.716411        0.001870547       2.717351        0.0009307117      2.717153        0.001128723 

-0.8       2.225541         2.22443          0.001110914       2.224989        0.0005517244      2.22456          0.000981122 

-0.6       1.822119         1.821534        0.000584719       1.821829        0.0002895305      1.821321        0.000798193 

-0.4       1.491825         1.49158          0.000244463       1.491704        0.0001204192      1.491252        0.000572870 

-0.2       1.221403         1.221345        0.000057666       1.221375        0.0000281227      1.221099        0.000304212 

 0,0        1.0                  1.0                  0.0                        1.0                  0.0                       1.0                  0.0 
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Present method for N=12

 
Figure 1. Numerical and exact solution of Example 5.2 for N =10,11,12  
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Example 5.3. [6] We now consider the problem 

 ( ) cos( ) ( ) sin( ) 2 sin( ) 2cos( ) 1
2 4

y x x y x x y x y x x x
    

            
   

    (28)                                        

with the conditions  (0) 0,  (0) 1,  (0) 0,y y y     0.
2

x


    

So that, 3 1 0 1( ) 1,  ( ) cos( ),   ( ) 2,  ( ) sin( ),P x P x x Q x Q x x       

               ( ) sin( ) - 2cos( ) -1g x x x , 0 0 1 11,  / 4,  1,  / 2.            

The solutions obtained for 6,9,11N   are compared with the exact solution is sin( )x   

which are given in Fig 2. Also, we compare the numerical solution and absolute errors 

for 6,9,11N   in Table 2. 
 

Table 2. Comparison of the absolute errors of Example 5.3 
Present method 

 

                                                                                             

                                             6N                                      9N                                    11N   

i
x    Exact Solution    ( )

i
y x         Absolute Errors   ( )

i
y x       Absolute Errors    ( )

i
y x        Absolute Errors          

 
-π/2        -1.0               -0.8533821      0.1466179        -0.9998634       1.366421E-4       -1.000001       1.201886E-6 

-5π/12   -0.9659258    -0.870813        0.09511279      -0.9658354       9.047086E-5       -0.9659267     8.489779E-7 

-π/3       -0.8660254    -0.8110107      0.05501466      -0.8659708       5.465341E-5       -0.8660259     5.132985E-7 

 -π/4      -0.7071068    -0.6807406      0.02636616      -0.7070786       2.819873E-5       -0.707107       2.575395E-7 

-π/6       -0.5                -0.4910961      0.008903864    -0.4999893       1.070918E-5       -0.5000001     9.64397E-8 

-π/12     -0.258819      -0.2575491      0.001269951    -0.2588172       1.82441E-6         -0.2588191     1.713066E-8 

  0           0                  4.16334E-17    4.16334E-17      9.49409E-16    9.49409E-16      1.77720E-15   1.77720E-15 
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Figure 2. Numerical and exact solution of Example 5.3 for N = 6,9,11  
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6. CONCLUSIONS 

 

           Differential-difference equations with variable coefficients are usually difficult to 

solve analytically; therefore, approximate solutions are required. To have the best 

approximate solution for the equation, we take more terms from the Fibonacci 

expansion of functions, that is, the accuracy improves when N  is increased. A 

considerable advantage of this method is that Fibonacci coefficients of the solution are 

obtained very easily by using the computer programs. We use the MATLAB program to 

obtain the solution of equations. 

In this study, examples, tables and figures indicate that the present method is  

convenient, reliable and effective. So, we can say that the Fibonacci collocation method 

can be a suitable method for solving analytic solutions to linear differential-difference 

equations. 
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