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Abstract- The multigroup neutron diffusion criticality problem is studied by the radial 

basis function collocation method. The multiquadric is chosen as the radial basis 

function. To investigate the effectiveness of the method, one, two and three-group 

problems are considered. It is found that the radial basis function collocation method 

produces highly accurate multiplication factors and it is also efficient in the calculation 

of group fluxes. 
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1. INTRODUCTION 

 

 Numerical solution of the neutron diffusion equation has been done by many 

numerical methods such as the finite difference, finite element and boundary element 

methods. These are all mesh-based methods in which the nodes that discretize the 

problem domain are related in a predefined manner. In this paper we apply a novel, 

meshless technique, the radial basis function (RBF) collocation method, for the 

numerical solution of the neutron diffusion equation. 

 Meshless methods have emerged in late 70’s and became an alternative class of 

numerical tools for the solution of differential and integral equations. As their name 

implies, the nodes do not have to satisfy any relation. The analyst can distribute them 

uniformly or randomly. There are many meshless methods in literature with different 

mathematical properties. For details, we refer the readers to Liu [1]. 

 The RBF collocation method was proposed by Kansa [2] and has found itself a 

wide application area [3-5] over the past decades. It is a strong-form meshless method 

and unlike the weak-form meshless methods it is a truly meshless one since there is no 

integration in the solution procedure. There is numerical evidence that the method has 

an exponential convergence rate [6] and it is shown to be more accurate then the finite 

difference, finite element with linear shape functions and spectral methods [7,8]. On the 

other hand the method is less stable then weak-form meshless or mesh-based methods, 

but the high level of accuracies that can be obtained by fewer nodes motivates the use of 

this approximation scheme.  

 

2. FORMULATION OF THE PROBLEM 

 

 This study deals with the numerical solution of the multigroup neutron diffusion 

criticality problem and for a square homogeneous system with reflective boundary 

conditions at its bottom and left sides and with vacuum boundary conditions at its right 

and top sides the problem can be mathematically written as 
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−𝐷𝑔𝛻2𝜑𝑔
 𝑛 

+ Σ𝑟,𝑔𝜑𝑔
 𝑛 

=  Σ𝑠,𝑔′ →𝑔𝜑
𝑔′
 𝑛 

𝑔−1

𝑔′ =1

+
1

𝜆 𝑛−1 
𝜒𝑔𝐹 𝑛−1 , 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑎        (1) 

𝜕𝜑𝑔

𝜕𝑦
 𝑥, 0 = 0, 0 ≤ 𝑥 ≤ 𝑎 

𝜑𝑔 𝑎, 𝑦 = 0, 0 ≤ 𝑦 ≤ 𝑎    

𝜑𝑔 𝑥, 𝑎 = 0, 0 ≤ 𝑥 ≤ 𝑎    

𝜕𝜑𝑔

𝜕𝑥
 0, 𝑦 = 0, 0 ≤ 𝑦 ≤ 𝑎

                                                                                                      (2) 

 

where 𝑔 = 1, … 𝐺. Here 𝑔 and n denote the energy group and the iteration index, 

respectively, 𝐺 is the total number of energy groups, 𝐷 is the diffusion constant, 𝜑 is the 

neutron flux, 𝜆 is the multiplication factor, 𝜒 is the fission spectrum function, 𝜐 is the 

number of neutrons per fission, Σ𝑟 , Σ𝑠  and Σ𝑓  are macroscopic removal, scattering and 

fission cross sections, respectively and 𝑎 is the size of the domain. 𝐹 is the fission 

source and it is defined as 

𝐹 ≡  𝜈𝑔 ′ Σ𝑓,𝑔 ′ 𝜑𝑔 ′

𝐺

𝑔 ′ =1

                                                                                                               (3) 

The system of equations, Eq. (1), is solved by fission source iteration, which starts by 

guessing the fission source and the multiplication factor as 𝐹~𝐹 0 , 𝜆~𝜆 0 . Next, the 

neutron flux of the first group, 𝜑1
 1 

, is calculated. Then, by using this flux, 𝜑2
 1 

 and 

neutron fluxes of the following groups can be found. After that a new fission source and 

a multiplication factor is determined by 

𝐹 1 =  𝜈𝑔 ′ Σ𝑓𝑔 ′ 𝜑
𝑔 ′
 1 

𝐺

𝑔 ′ =1

             𝜆 1 = 𝜆 0  𝑑Ω𝐹 1 

 𝑑Ω𝐹 0 
                                                          (4) 

where 𝑑Ω is the area element. This iterative strategy goes on until a predetermined 

convergence criterion is satisfied 

 

 
𝜆 𝑛+1 − 𝜆 𝑛 

𝜆 𝑛+1 
 < 𝜖                                                                                                                    (5) 

 For the formulation we first introduce a set of internal nodes with 𝑁𝐼 members 

such that: 

 

𝐼 =   𝑥𝑖 , 𝑦𝑖 : 0 < 𝑥𝑖 < 𝑎, 0 < 𝑦𝑖 < 𝑎, 1 ≤ 𝑖 ≤ 𝑁𝐼                                                            (6) 

 

Then we introduce a set of reflective boundary nodes with 𝑁𝐵 2  members such that: 

𝐵𝑅 = 𝐵𝑅𝐵 ∪ 𝐵𝑅𝐿                                                                                                                          (7) 
 

where 𝐵𝑅𝐵  represent a set of reflective boundary nodes on the bottom side while 𝐵𝑅𝐿  

represent a set of reflective boundary nodes on the left side. That is: 
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𝐵𝑅𝐵 =   𝑥𝑖 , 0 : 0 ≤ 𝑥𝑖 < 𝑎, 𝑁𝐼 < 𝑖 ≤ 𝑁𝐼 +
𝑁𝐵

4
              

𝐵𝑅𝐿 =   0, 𝑦𝑖 : 0 < 𝑦𝑖 ≤ 𝑎, 𝑁𝐼 +
3𝑁𝐵

4
< 𝑖 ≤ 𝑁𝐼 + 𝑁𝐵 

                                                      (8) 

 

Also a set of vacuum boundary nodes 𝐵𝑉  with 𝑁𝐵 2  members are introduced such that 

 

𝐵𝑉 = 𝐵𝑉𝑅 ∪ 𝐵𝑉𝑇                                                                                                                          (9) 

 

where 𝐵𝑉𝑅  represent a set of vacuum boundary nodes on the right side while 𝐵𝑉𝑇  

represent a set of vacuum boundary nodes on the top side. That is 

𝐵𝑉𝑅 =   0, 𝑦𝑖 : 0 ≤ 𝑦𝑖 < 𝑎, 𝑁𝐼 +
𝑁𝐵

4
< 𝑖 ≤ 𝑁𝐼 +

𝑁𝐵

2
   

𝐵𝑉𝑇 =   𝑥𝑖 , 0 : 0 < 𝑥𝑖 ≤ 𝑎, 𝑁𝐼 +
𝑁𝐵

2
< 𝑖 ≤ 𝑁𝐼 +

3𝑁𝐵

4
 

                                                    (10) 

 

Then, the set of boundary nodes 𝐵 simply 

𝐵 = 𝐵𝑅 ∪ 𝐵𝑉 =  𝐵𝑅𝐵 ∪ 𝐵𝑅𝐿 ∪  𝐵𝑉𝑅 ∪ 𝐵𝑉𝑇                                                                       (11) 

The set of domain nodes, 𝐷 is defined as 

𝐷 = 𝐼 ∪ 𝐵                                                                                                                                    (12) 

which represents a set with 𝑁𝐷 = 𝑁𝐼 + 𝑁𝐵 members. Secondly, we introduce a set of 

external nodes, 𝐸. For the purpose of preserving the nonsingularity of the coefficient 

matrix, the number of members of 𝐸 has to be equal to 𝑁𝐵. That is 

𝐸 =   𝑥𝑖 , 𝑦𝑖 :   𝑥𝑖 < 0 ∨  𝑥𝑖 > 𝑎  ∧   𝑦𝑖 < 0 ∨  𝑦𝑖 > 𝑎  , 𝑁𝐷 < 𝑖 ≤ 𝑁𝐷 + 𝑁𝐵   (13) 
 The neutron flux is to be approximated by 

𝜑𝑔 𝑥, 𝑦 ≈  𝑎𝑗 ,𝑔𝜓𝑗  𝑥, 𝑦 

𝑁𝐷 +𝑁𝐵

𝑗 =1

                                                                                              (14) 

where 𝜓𝑗  𝑥, 𝑦  is the RBF. For the first part of the collocation process, the neutron 

diffusion equation is required to hold for  𝑥𝑖 , 𝑦𝑖  such that 1 ≤ 𝑖 ≤ 𝑁𝐷 . Then 

 𝑘𝑖𝑗 ,𝑔
𝐷𝐷 𝑎𝑗 ,𝑔

𝐷, 𝑛 

𝑁𝐷

𝑗 =1

+  𝑘𝑖𝑗 ,𝑔
𝐷𝐸 𝑎𝑗 ,𝑔

𝐸, 𝑛 

𝑁𝐵

𝑗 =1

−  𝑠𝑖𝑗 ,𝑔′ →𝑔
𝐷𝐷 𝑎𝑗 ,𝑔

𝐷, 𝑛 

𝑁𝐷

𝑗 =1

−  𝑠𝑖𝑗 ,𝑔′ →𝑔
𝐷𝐸 𝑎𝑗 ,𝑔

𝐸, 𝑛 

𝑁𝐵

𝑗 =1

=
𝜒𝑔𝐹 𝑛−1 

𝜆 𝑛−1 
         (15) 

where 

𝑘𝑖𝑗 ,𝑔
𝐷𝐷 = −𝐷𝑔  

𝜕2𝜓𝑗

𝜕𝑥2
 𝑥𝑖 , 𝑦𝑖 +

𝜕2𝜓𝑗

𝜕𝑦2
 𝑥𝑖 , 𝑦𝑖  + Σ𝑟,𝑔𝜓𝑗  𝑥𝑖 , 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑁𝐷 , 1 ≤ 𝑗 ≤ 𝑁𝐷 
                     

𝑘𝑖𝑗 ,𝑔
𝐷𝐸 = −𝐷𝑔  

𝜕2𝜓𝑗 +𝑁𝐷

𝜕𝑥2
 𝑥𝑖 , 𝑦𝑖 +

𝜕2𝜓𝑗 +𝑁𝐷

𝜕𝑦2
 𝑥𝑖 , 𝑦𝑖  + Σ𝑟 ,𝑔𝜓𝑗 +𝑁𝐷

 𝑥𝑖 , 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑁𝐷 , 1 ≤ 𝑗 ≤ 𝑁𝐵

𝑠𝑖𝑗 ,𝑔′ →𝑔
𝐷𝐷 = Σ𝑠,𝑔′ →𝑔𝜓𝑗  𝑥𝑖 , 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑁𝐷 , 1 ≤ 𝑗 ≤ 𝑁𝐷                                                                                 

𝑠𝑖𝑗 ,𝑔′ →𝑔
𝐷𝐸 = Σ𝑠,𝑔′ →𝑔𝜓𝑗 +𝑁𝐷

 𝑥𝑖 , 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑁𝐷 , 1 ≤ 𝑗 ≤ 𝑁𝐵                                                                          

𝑎𝑗 ,𝑔
𝐷, 𝑛 

= 𝑎𝑗 ,𝑔
 𝑛 

, 1 ≤ 𝑗 ≤ 𝑁𝐷                                                                                                                                  

𝑎𝑗 ,𝑔
𝐸, 𝑛 

= 𝑎𝑗 +𝑁𝐷 ,𝑔
 𝑛 

, 1 ≤ 𝑗 ≤ 𝑁𝐵                                                                                                                             
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The collocation is completed by requiring the reflective and vacuum boundary 

conditions to hold for points  𝑥𝑖 , 𝑦𝑖  which are members of 𝐵𝑅 and 𝐵𝑉 , respectively. 

That is 

 𝑘𝑖𝑗
𝐵𝐷𝑎𝑗 ,𝑔

𝐷, 𝑛 

𝑁𝐷

𝑗 =1

+  𝑘𝑖𝑗
𝐵𝐸𝑎𝑗 ,𝑔

𝐸, 𝑛 

𝑁𝐵

𝑗 =1

= 0, 1 ≤ 𝑖 ≤ 𝑁𝐵                                                               (16) 

where 

𝑘𝑖𝑗
𝐵𝐷 =

 
  
 

  
 

𝜕𝜓𝑗

𝜕𝑦
 𝑥𝑖+𝑁𝐼

, 𝑦𝑖+𝑁𝐼
 , 1 ≤ 𝑖 ≤

𝑁𝐵

4
     

𝜕𝜓𝑗

𝜕𝑥
 𝑥𝑖+𝑁𝐼

, 𝑦𝑖+𝑁𝐼
 ,

3𝑁𝐵

4
< 𝑖 ≤ 𝑁𝐵

𝜓𝑗  𝑥𝑖+𝑁𝐼
, 𝑦𝑖+𝑁𝐼

 ,
𝑁𝐵

4
< 𝑖 ≤

3𝑁𝐵

4
   

  

for 1 ≤ 𝑗 ≤ 𝑁𝐷 and 

𝑘𝑖𝑗
𝐵𝐸 =

 
  
 

  
 

𝜕𝜓𝑗 +𝑁𝐷

𝜕𝑦
 𝑥𝑖+𝑁𝐼

, 𝑦𝑖+𝑁𝐼
 , 1 ≤ 𝑖 ≤

𝑁𝐵

4
     

𝜕𝜓𝑗 +𝑁𝐷

𝜕𝑥
 𝑥𝑖+𝑁𝐼

, 𝑦𝑖+𝑁𝐼
 ,

3𝑁𝐵

4
< 𝑖 ≤ 𝑁𝐵

𝜓𝑗 +𝑁𝐷
 𝑥𝑖+𝑁𝐼

, 𝑦𝑖+𝑁𝐼
 ,

𝑁𝐵

4
< 𝑖 ≤

3𝑁𝐵

4
   

  

for 1 ≤ 𝑗 ≤ 𝑁𝐵. 

 

If there is no upscattering of neutrons then, the two equation sets, Eqs. (15) and 

(16) result in 

 

𝑲𝟏 𝟎 𝟎 𝟎
−𝑺𝟏→𝟐 𝑲𝟐 𝟎 𝟎

⋮ ⋮ ⋱ 𝟎
−𝑺𝟏→𝑮 −𝑺𝟐→𝑮 ⋯ 𝑲𝑮

 

 
 
 
 
 𝒂𝟏

 𝒏 

𝒂𝟐
 𝒏 

⋮

𝒂𝑮
 𝒏 

 
 
 
 
 

=
1

𝜆 𝑛−1 

 
 
 
 
𝜒1𝑭 𝒏−𝟏 

𝜒2𝑭 𝒏−𝟏 

⋮
𝜒𝐺𝑭 𝒏−𝟏  

 
 
 

                                             (17) 

 

In Eq. (17), the elements of the global system matrix are block matrices themselves. For 

every energy group an  𝑁𝐷 + 𝑁𝐵 ×  𝑁𝐷 + 𝑁𝐵  system of equations have to be solved. 

As an example for the first group one has to solve 

 

 
𝑲𝟏

𝑫𝑫 𝑲𝟏
𝑫𝑬

𝑲𝟏
𝑩𝑫 𝑲𝟏

𝑩𝑬  
𝒂𝟏

𝑫, 𝒏 

𝒂𝟏
𝑬, 𝒏 

 =
𝜒1

𝜆 𝑛−1 
 𝑭𝟏

𝑫, 𝒏−𝟏 

𝟎
                                                                        (18) 

 

Here 𝑲𝟏
𝑫𝑫 and 𝑲𝟏

𝑩𝑬 are square matrices of dimension 𝑁𝐷   and 𝑁𝐵 respectively. The 

matrix 𝑲𝟏
𝑩𝑫 is rectangular with dimensions 𝑁𝐵 × 𝑁𝐷, while 𝑲𝟏

𝑫𝑬 is again rectangular 

with dimensions 𝑁𝐷 × 𝑁𝐵. 𝒂𝟏
𝑫, 𝒏 

 and 𝑭𝟏
𝑫, 𝒏−𝟏 

 vectors are 𝑁𝐷  dimensional while the 

vector 𝒂𝟏
𝑬, 𝒏 

 is 𝑁𝐵 dimensional. Solution of Eq. (19) yields 𝒂𝟏
𝑫, 𝒏 

 and hence the 

numerical result. 
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There are many RBFs encountered in the literature with different properties. In 

this study we will employ the multiquadric, which was proposed by Hardy [9] to 

approximate geographical surfaces 

𝜓𝑗  𝑥, 𝑦 =   𝑥 − 𝑥𝑗  
2

+  𝑦 − 𝑦𝑗  
2

+ 𝑐2                                                                         (19) 

Here, 𝑐 is called the shape parameter. It determines the shape of the RBF and has an 

important role in numerical applications. Theoretically, as 𝑐 → ∞ the approximation 

error goes to zero [10]; but this property would be achieved if infinite precision 

computation could be performed. 

 

3. NUMERICAL RESULTS 

 

To investigate the performance of the RBF collocation method we considered 

one, two and three group criticality eigenvalue problems. The analytical solutions of 

these problems can be found in [11]. A program is written in FORTRAN and 

calculations are performed with double precision. In all tests uniformly scattered nodes 

are used. The power is assumed to be 16 𝑘𝑊 and the convergence criterion is chosen as 

10−6 for all problems. Accuracy of the method is examined via calculating the error in 

𝜆 and maximum errors in group fluxes 

 

𝜖𝜆 =  𝜆𝑎 − 𝜆𝑛  × 100 𝜆𝑎                                                                                                       (20) 

 

𝜖𝑚𝑎𝑥 ,𝑔 = max
1≤𝑖≤𝑁𝐷

  𝜙𝑔,𝑎 𝒙𝑖 − 𝜙𝑔,𝑛 𝒙𝑖  × 100 𝜙𝑔,𝑎 𝒙𝑖                                                (21) 

 

where subscripts 𝑎 and 𝑛 denote analytical and numerical, respectively. RBF 

collocation method is invariant under uniform scaling, hence computations are made on 

a domain scaled to  0,1 2 by defining the variables 𝑥 = 𝑥 𝑎  and 𝑦 = 𝑦 𝑎 . 

 In the first problem we studied the one-group case. The length of the square 

domain is taken as 𝑎 = 50 𝑐𝑚, while 𝐷 = 1.77764 𝑐𝑚, Σ𝑓 = 0.0104869 𝑐𝑚−1, 

𝜐 = 2.5, Σ𝑟 = 0.0143676 𝑐𝑚−1 and 𝜒 = 1. The analytical value of 𝜆 is 1.46657782. 

Fig.1 shows the variation of 𝜖𝑚𝑎𝑥  and 𝜖𝜆with respect to the reciprocal of the fill distance 

(distance between adjacent nodes), where 𝑐2 = 0.06. It is observed from this figure that 

𝜖𝑚𝑎𝑥  decreases continuously with decreasing value of the fill distance. It has its 

minimum value of 5.642 × 10−3 when 𝑕−1 = 36. Highly accurate 𝜆 values are 

obtained above 𝑕−1 = 22 and, the percent error has decreased to its minimum of 

4.091 × 10−6 when 𝑕−1 = 32.  
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(a)        (b) 

Figure 1. Variation of (a) 𝜖𝑚𝑎𝑥  and (b) 𝜖𝜆  with respect to the fill distance 

 

 In the second problem the number of energy groups is two and 𝑎 = 25 𝑐𝑚. The 

nuclear data is given in Table 1. Diffusion constants are given in units of centimeters 

and all cross sections have units of inverse centimeters in Table 1 and later on in Table 

3. For this problem 𝜆𝑎 = 1.96293774.  

 

Table 1. Two-group nuclear data 

Group  𝐷  𝜐  Σ𝑓     Σ𝑟    Σ𝑠,𝑔→𝑔+1   𝜒 

1  1.2245  2.65  0.063  0.13552  0.0676  0.575 
2  1.2245  2.55  0.06776  0.08228 -  0.425 

 

 The numerical results of the two-group problem are summarized in Table 2 

where 𝑐2 = 0.06. We see that the maximum errors in group fluxes are similar and 

decrease with decreasing fill distance value. For the multiplication factor, a very high 

level of accuracy is obtained above 𝑕−1 = 16. It is also observed from this table that the 

number of iterations increases by one when 𝑕−1 = 32. 

 

Table 2. 𝜖𝑚𝑎𝑥  and 𝜖𝜆  for the two-group problem 

 1 𝑕   𝑛𝑖𝑡𝑒𝑟  𝜖𝑚𝑎𝑥 ,1   𝜖𝑚𝑎𝑥 ,2  𝜖𝜆  

8 29  1.040  1.060  3.221 × 10−2 
12 29  4.429 × 10−1  4.478 × 10−1  8.663 × 10−3 

16 29  2.222 × 10−1  2.236 × 10−1  2.691 × 10−3 

20 29  1.274 × 10−1  1.277 × 10−1  8.238 × 10−4 

24 29  8.173 × 10−2  8.161 × 10−2  1.722 × 10−4 

28 29  5.550 × 10−2  5.502 × 10−2  7.132 × 10−5 

32 30  4.361 × 10−2  4.298 × 10−2  9.730 × 10−5 

36 30  8.136 × 10−3  7.384 × 10−3  1.365 × 10−4 

 

In Fig. 2 the variation of 𝜖𝑚𝑎𝑥 ,1 and 𝜖𝑚𝑎𝑥 ,2 with the shape parameter of the 

multiquadric is illustrated where a fill distance of 𝑕 = 0.04 𝑐𝑚 is chosen. The 

maximum pointwise errors in flux for both groups decrease continuously with 

increasing shape parameter up to 𝑐2 ≅ 0.12. Beyond this value the errors start to 

oscillate and the numerical solution breaks down except for 𝑐2 = 0.149. This is 
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expected since as the shape parameter increases the collocation matrix becomes more 

and more ill-conditioned. 

 

  
(a)      (b) 

Figure 2. Variation of (a) 𝜖𝑚𝑎𝑥 ,1, (b) 𝜖𝑚𝑎𝑥 ,2 with respect to the shape parameter  

 

The error in multiplication factor is shown in Fig. 3 where, again 𝑕 = 0.04 𝑐𝑚. 

It is seen that the error increases with the shape parameter at first up to 𝑐2 = 0.015 and 

then starts to decrease until 𝑐2 = 0.072 where the analytical solution is reproduced. 

Above this value it increases again, and similar to the pointwise errors in group fluxes 

the numerical solution oscillates and breaks down above 𝑐2 ≅ 0.12. 

 

 
Figure 3. Variation of 𝜖𝜆  with respect to the shape parameter 

 

It should be noted that the change of errors in flux and multiplication factor with 

the shape parameter is found to be similar for the one and three-group problems also.  

The third problem deals with the solution of the three-group neutron diffusion 

equation where 𝑎 is assumed to be 25 𝑐𝑚. The nuclear data characterizing a three-group 

structure is given in Table 3 and the analytical value of 𝜆 is 0.75024241 for this 

problem. 
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Table 3. Three-group nuclear data 

Group  𝐷  𝜐  Σ𝑓   Σ𝑟  Σ𝑠,𝑔→𝑔+1 Σ𝑠,𝑔→𝑔+2  𝜒 

1  3.0034  2.65 0.0131267  0.05286 0.02705 0.01181  0.575 
2  2.2297  2.53  0.006102 0.016704 0.00822 -  0.326 

3  1.4627  2.47  0.008317  0.01414 - -  0.099 

 

The number of iterations, maximum pointwise errors for the three group fluxes 

and the error in 𝜆 is given in Table 4 for different fill distance values where 𝑐2 = 0.06. 

Once again, it is found that the errors in group fluxes and multiplication factor decrease 

with decreasing value of the fill distance. Highly accurate 𝜆 values are obtained when 

the fill distance is 0.05 𝑐𝑚 or less.  It is also observed that the number of iterations does 

not depend on the choice of 𝑕.  

 

Table 4. 𝜖𝑚𝑎𝑥  and 𝜖𝑘  for the three-group problem 

 1 𝑕   𝑛𝑖𝑡𝑒𝑟  𝜖𝑚𝑎𝑥 ,1   𝜖𝑚𝑎𝑥 ,2  𝜖𝑚𝑎𝑥 ,3  𝜖𝜆  

8 12  9.715 × 10−1  1.068  1.116  1.702 × 10−1 
12 12  4.232 × 10−1  4.494 × 10−1  4.624 × 10−1  4.649 × 10−2 

16 12  2.149 × 10−1  2.234 × 10−1  2.276 × 10−1  1.519 × 10−2 

20 12  1.239 × 10−1  1.270 × 10−1  1.285 × 10−1  5.428 × 10−3 

24 12  7.958 × 10−2  8.072 × 10−2  8.128 × 10−2  2.037 × 10−3 

28 12  5.363 × 10−2  5.406 × 10−2  5.427 × 10−2  7.811 × 10−4 

32 12  4.149 × 10−2  4.168 × 10−2  4.172 × 10−2  2.972 × 10−4 

36 12  8.572 × 10−3  5.375 × 10−3  5.329 × 10−3  9.197 × 10−5 

 

4. CONCLUSIONS 

 

 In this study we have solved the multigroup neutron diffusion criticality problem 

numerically by the meshless RBF collocation method. We used the multiquadric as the 

RBF and worked on three problems. 

 We have found that, for all the problems considered, the RBF collocation yields 

highly accurate results for the multiplication factor and it also works well in the 

computation of group fluxes. It was seen that both the maximum pointwise errors in 

group fluxes and the error in the multiplication factor decreases with decreasing fill 

distance value. For the two-group problem, it was shown that, by fine-tuning of the 

shape parameter, the analytical result can be reproduced.  

 The dependence of the errors to the shape parameter has been investigated for all 

problems and illustrated graphically for the two-group problem. It was observed that for 

group fluxes the error decreases with increasing shape parameter up to a certain point. 

Then starts to oscillate and the numerical solution breaks down at higher values of 𝑐 

because of the ill-conditioning of the collocation matrix. Unlike the group fluxes, the 

multiplication factor has a maximum error value and it starts to increase before going 

into the ill-conditioned region where it does not converge to any value. 
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