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1. INTRODUCTION 

 

 In the recent two decades, orthogonal matrix polynomials comprise an emerging field 

of study, with important results in both theory and applications continuing to appear in the 

literature. Hermite matrix polynomials are introduced by Jodar and Company in [9]. 

Moreover, some properties of the Hermite matrix polynomials are given in [3, 14, 15] and a 

generalized form of the Hermite matrix polynomials have been introduced and studied in [16, 

17, 19, 20, 22, 24]. Other classical orthogonal polynomials as Laguerre, Gegenbauer, 

Chebyshev and Jacobi polynomials have been extended to orthogonal matrix polynomials, 

and some results have been investigated, see for example [4, 5, 8, 21, 23]. From the 

connection with orthogonal matrix polynomials, special matrix functions have been 

introduced and studied by some mathematicians.  Gamma matrix function is introduced and 

studied in [7, 10] for matrices in ℂ𝑟×𝑟  whose eigenvalues are all in the right open half-plane. 

Apart from the close relationships with the well-known beta and gamma matrix functions, the 

emerging theory of orthogonal matrix polynomials and its operational calculus suggest the 

study of hypergeometric matrix function. Hypergeometric matrix function 𝐹 −;𝐴; 𝑧  has 

been recently introduced in [13]. Explicit closed form for general solutions of the 

hypergeometric matrix differential equations is given in [12]. The paper is organized as 

follows. In the next section we deal with important properties of the Hermite matrix 

polynomials such as addition, multiplication theorems and summation formula. We 

obtain a generating function for Hermite matrix polynomials and write these 

polynomials as hypergeometric matrix functions. We obtain some results which follow 

from this generating function. 

Throughout this paper, if 𝐴 is a matrix in ℂ𝑟×𝑟 , its spectrum  𝐴  will denotes the set 

of all the eigenvalues of 𝐴. Its 2-norm will be denoted by  𝐴  and defined by 

 𝐴 =
𝑠𝑢𝑝

𝑥 ≠ 0

 𝐴𝑥 2

 𝑥 2
, 

where for a 𝑦 in ℂ𝑟 ,  𝑦 2 =  𝑦𝑇 , 𝑦 
1

2  is the Euclidean norm of y. If 𝑓 𝑧  and 𝑔 𝑧  are 

holomorphic functions of the complex variable z, which are defined in an open set Ω of 
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the complex plane, and 𝐴 is a matrix in ℂ𝑟×𝑟  such that 𝜎 𝐴 ⊂ Ω, then from the 

properties of matrix functional calculus [6, page 558], it follows that 

𝑓 𝐴 𝑔 𝐴 =  𝑔 𝐴 𝑓 𝐴 . 
If 𝐷0 is the complex plane cut along the negative real axis and log 𝑧 denotes the 

principle logarithm of 𝑧, then 𝑧
1

2  represents 𝑒𝑥𝑝  
1

2
log 𝑧 . If 𝐴 is a matrix ℂ𝑟×𝑟  in 

which 𝜎 𝐴 ⊂ 𝐷0 then 𝐴
1

2 =  𝐴 denotes the image by 𝑧
1

2  of the matrix functional 

calculus acting on the matrix 𝐴. 
Let 𝐴 be a matrix in ℂ𝑟×𝑟  such that 

                       𝑅𝑒 𝑧 > 0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑧 ∈ 𝜎 𝐴 ,                                (1) 

Then the Hermite matrix polynomials 𝐻𝑛 𝑥, 𝐴  are defined by [9]  

                         𝐻𝑛 𝑥, 𝐴 =  
 −1 𝑘𝑛!  𝑥 2𝐴 

𝑛−2𝑘

𝑘!  𝑛 − 2𝑘 !

 
𝑛
2
 

𝑘=0

, 𝑛 ≥ 0                                      (2) 

and satisfying the three-terms recurrence relation 

          𝐻𝑛 𝑥, 𝐴 =  𝑥 2𝐴𝐻𝑛−1 𝑥, 𝐴 − 2 𝑛 − 1 𝐻𝑛−2 𝑥, 𝐴 , 𝑛 ≥ 1.                     
𝐻−1 𝑥, 𝐴 = 0, 𝐻1 𝑥, 𝐴 = 𝐼, 

where I is the unit matrix in ℂ𝑟×𝑟 . According to [9], we have 

                                             
𝐻𝑛 𝑥, 𝐴 

𝑛!
𝑡𝑛 =

∞

𝑛=0

𝑒𝑥𝑝 𝑥𝑡 2𝐴 − 𝑡2 .                                          (3) 

The Pochhammer symbol or shifted factorial is defined by [11] 

 𝐴 𝑛 =  𝐴  𝐴 + 𝐼 ⋯  𝐴 + (𝑛 − 1 𝐼),      𝑛 ≥ 1,                          (4) 

with  𝐴 0 = 𝐼. By using (4) it is easy to show that 

 𝐴 2𝑛 = 22𝑛  
𝐴

2
 
𝑛
 
𝐴 + 𝐼

2
 
𝑛

.                                                       (5) 

The hypergeometric matrix function 𝐹 𝐴, 𝐵; 𝐶; 𝑧  has been given in [11] 

𝐹 𝐴, 𝐵; 𝐶; 𝑧 =  
 𝐴 𝑛 𝐵 𝑛  𝐶 𝑛 

−1

𝑛!
𝑧𝑛

∞

𝑛=0

,     𝑧 < 1, 

where 𝐴, 𝐵, 𝐶 are matrices in ℂ𝑟×𝑟  such that 

𝐶 + 𝑛𝐼 is invertible for all integers 𝑛 ≥ 0. 
Note that by (4) if 𝐴 = −𝑖𝐼 where 𝑖 is a natural number then  𝐴 𝑖+𝑗 = 0 for 𝑗 ≥ 1 and 

𝐹 𝐴, 𝐵; 𝐶; 𝑧  becomes a matrix polynomial of degree 𝑖. 
 

Lemma 1: ([18]) Let  .   denotes any matrix norm for which  𝐼 = 1. If  𝑀 < 1 for a 

matrix 𝑀 in ℂ𝑟×𝑟 , then  𝐼 + 𝑀 −𝑐  exists and given by 

 𝐼 − 𝑀 −𝑐 =  
 𝑐 𝑛𝑀

𝑛

𝑛!

∞

𝑛=0

, 

where c is a positive integer. 

We conclude this section recalling a result related to the rearrangement of the 

terms in iterated series. If A 𝑘, 𝑛  and B 𝑘, 𝑛  are matrices in ℂ𝑟×𝑟  for 𝑛 ≥ 0, 𝑘 ≥ 0, 

then in an analogous way to the proof of Lemma 11 of [22], it follows that 
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                                              A 𝑘, 𝑛 =

∞

𝑘=0

∞

𝑛=0

  A 𝑘, 𝑛 − 2𝑘 ,

 
𝑛
2
 

𝑘=0

 

∞

𝑛=0

                                    (6) 

and  

                                            B 𝑘, 𝑛 =

∞

𝑘=0

∞

𝑛=0

  B 𝑘, 𝑛 − 𝑘 .

𝑛

𝑘=0

 

∞

𝑛=0

                                         (7) 

 

 

2. SOME RELATIONS ON HERMITE MATRIX POLYNOMIALS 
 

Proposition 2: Hermite matrix polynomials satisfy the multiplication and addition 

formula as follows: 

                  𝐻𝑛 𝑥, 𝐴 = 𝑛  
𝑛!

𝑘!  𝑛 − 2𝑘 !
 1 −

1

2
 
𝑘

 
𝑛
2
 

𝑘=0

𝐻𝑛−2𝑘 𝑥, 𝐴 ,                               (8) 

  2 + 2 
𝑛

2 𝐻𝑛  
𝑧1 + 𝑧2

 2 + 2 
1

2 
, 𝐴 =   

𝑛

𝑘
 

𝑛

𝑘=0

𝑘𝑛−𝑘𝐻𝑘 𝑧1, 𝐴 𝐻𝑛−𝑘 𝑧2, 𝐴              (9) 

where  and  are constants. 

 

Proof: Taking 𝑥 for 𝑥 and 
𝑡


 for 𝑡 in (3), we have 

 𝐻𝑛 𝑥, 𝐴 
𝑡𝑛

𝑛𝑛!

∞

𝑛=0

= 𝑒𝑥𝑝  𝑥𝑡 2𝐴 −  
𝑡


 

2

  

                                                        = 𝑒𝑥𝑝  𝑥𝑡 2𝐴 − 𝑡2 + 𝑡2 −  
𝑡


 

2

  

                                                          =   𝐻𝑛 𝑥, 𝐴  1 −
1

2
 
𝑘 𝑡𝑛+2𝑘

𝑛! 𝑘!
.

∞

𝑘=0

∞

𝑛=0

 

By using (6) and comparing the coefficients of 
𝑡𝑛

𝑛!
 on both sides of the above equation, 

we get (8). We can similarly prove the equation (9).  

 

Corollary 3: The Hermite matrix polynomials have the following relations: 

                    2
𝑛

2 𝐻𝑛  
𝑧1 + 𝑧2

 2
, 𝐴 =   

𝑛

𝑘
 

𝑛

𝑘=0

𝐻𝑘 𝑧1, 𝐴 𝐻𝑛−𝑘 𝑧2, 𝐴 ,                                (10) 

                    2
𝑛

2 𝐻𝑛  2𝑥, 𝐴 =   
𝑛

𝑘
 

𝑛

𝑘=0

𝐻𝑘 𝑥, 𝐴 𝐻𝑛−𝑘 𝑦, 𝐴 ,                                           (11) 

                    2
𝑛

2 𝐻𝑛 𝑥 + 𝑦, 𝐴 =   
𝑛

𝑘
 

𝑛

𝑘=0

𝐻𝑘  2𝑥, 𝐴 𝐻𝑛−𝑘  2𝑦, 𝐴 .                             (12) 

Proposition 4: The summation formulas for 𝐻𝑛 𝑥, 𝐴  are given as follows:  
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                        𝐻𝑛 𝑥, 𝐴 𝐻𝑚 𝑥, 𝐴 = 𝑚! 𝑛!   
2kHm+n−2k x, A 

 𝑚 − 𝑘 !  𝑛 − 𝑘 ! 𝑘!

min  𝑚,𝑛 

𝑘=0

                      (13) 

and for 𝑥 ≠ 𝑦, 

      
 2𝐴𝐻m 𝑥, 𝐴  𝐻m  (y, A)

2𝑚+1𝑚!

n

𝑚=0

=
𝐻𝑛+1 𝑦, 𝐴 𝐻𝑛 𝑥, 𝐴 − 𝐻𝑛+1 𝑥, 𝐴 𝐻𝑛 𝑦, 𝐴 

2𝑛+1𝑛! (𝑦 − 𝑥)
.      (14) 

 

Proof: Using (3), we have 

  𝑠

∞

𝑚=0

∞

𝑛=0

𝐻𝑛 𝑥, 𝐴  𝐻𝑚  𝑥, 𝐴 
𝑢𝑛

𝑛!
 
𝑣𝑛

𝑚!
= exp⁡( 2𝐴𝑥 𝑢 + 𝑣 − (𝑢 + 𝑣)2 + 2𝑢𝑣 

                                                =   ı

∞

𝑚=0

∞

𝑛=0

2𝑚𝑢𝑚𝑣𝑚

𝑚!
 𝐻𝑛

ı 𝑥, 𝐴 
(𝑢 + 𝑣)𝑛

𝑛!
. 

Making necessary arrangement and comparing the coefficients of 
𝑢𝑛

𝑛!

𝑣𝑚

𝑚!
 completes the 

proof of (13). Equation (14) can be easily proved by using the three-terms recurrence 

relation for Hermite matrix polynomials.  

 

Proposition 5: Let 𝐴 be a matrix in ℂ𝑟×𝑟  satisfying condition (1) and   𝐴 <
1

 2
. Then 

Hermite matrix polynomials have the following generating function: 

  

∞

𝑛=0

(𝑐)𝑛𝐻𝑛(𝑥, 𝐴)

𝑛!
𝑡𝑛 = (𝐼 − 𝑥𝑡 2𝐴)−𝑐𝐹  

𝑐𝐼

2
,
 𝑐 + 1 𝐼

2
;−;−4𝑡2  𝐼 − 𝑥𝑡 2𝐴

 

 
 
−2

 , 

where 𝑐 is a positive integer and  𝑡 < 1,  𝑥 < 1. 
 

Proof: Using (2) and (6), we have 

  

∞

𝑛=0

(𝑐)𝑛𝐻𝑛(𝑥, 𝐴)

𝑛!
𝑡𝑛 =    

∞

𝑛=0

  

 
𝑛
2
 

𝑘=0

(−1)𝑘  (𝑐)𝑛(𝑥 2𝐴)𝑛−2𝑘

𝑘!  𝑛 − 2𝑘 !
𝑡𝑛  

                                                           =   

∞

𝑛=0

  

∞

𝑛=0

(−1)𝑘(𝑐 + 2𝑘𝐼)𝑛(𝑥𝑡 2𝐴)𝑛(𝑐)2𝑘𝑡
2𝑘

𝑘! 𝑛!
. 

By using Lemma 1, we have 

  

∞

𝑛=0

(𝑐)𝑛𝐻𝑛(𝑥, 𝐴)

𝑛!
𝑡𝑛 =    

∞

𝑘=0

(−1)𝑘(𝑐)2𝑘

𝑘!
(𝐼 − 𝑥𝑡 2𝐴)− 𝑐+2𝑘 𝑡2𝑘 . 

Using the relation (5) and making necessary arrangement, completes the proof. 

 

Theorem 6: Let 𝐴 be a invertible matrix in ℂ𝑟×𝑟  satisfying condition (1). Then Hermite 

matrix polynomials 𝐻𝑛 𝑥, 𝐴  can be writen as hypergeometric matrix functions:  

                                𝐻𝑛 𝑥, 𝐴 =  𝑥 2𝐴
 

 
 
𝑛

𝐹  
−𝑛𝐼

2

 

 
,
 1 − 𝑛 𝐼

2
;−;

−2𝐴−1

𝑥2
 .                 (15) 

Proof: From (2), we have  
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𝐻𝑛 𝑥, 𝐴 =   𝑥 2𝐴
 

 
 
𝑛

   

 
𝑛
2
 

𝑘=0

(−1)𝑘(−𝑛𝐼)2𝑘(2𝐴)−𝑘

𝑘! 𝑥2𝑘
. 

Since 
𝑛!

 𝑛−2𝑘 !
= (−𝑛𝐼)2𝑘 , using the relation (5) we get (15). 

Theorem 7: Let 𝐴 be a invertible matrix in ℂ𝑟×𝑟  satisfying condition (1). For k ∈ ℤ+, 
Hermite matrix polynomials have the following generating function:  

                  

∞

𝑛=0

𝐻𝑛+𝑘 𝑥, 𝐴 
𝑡𝑛

𝑛!
= exp(𝑥𝑡 2𝐴 − 𝑡2)𝐻𝑘  𝑥 −   

𝐴

2

 

 
 

−1

 

 
𝑡, 𝐴 .            (16) 

Proof : By using (7), we have 

   

∞

𝑘=0

  𝐻𝑛+𝑘 𝑥, 𝐴 
𝑡𝑛

𝑛!

∞

𝑛=0

 
𝑢𝑘

𝑘!
=   

∞

𝑛=0

  

𝑛

𝑘=0

𝐻𝑛 𝑥, 𝐴 𝑡𝑛−𝑘𝑢𝑘

𝑘!  𝑛 − 𝑘 !
 

                                                   =   

∞

𝑛=0

𝐻𝑛 𝑥, 𝐴 
 𝑡 + 𝑢 𝑛

𝑛!
 

                                            = exp(𝑥𝑡 2𝐴 − 𝑡2)  

∞

𝑘=0

𝐻𝑘  𝑥 −   
𝐴

2

 

 
 

−1

 

 
𝑡, 𝐴  

𝑢𝑘

𝑘!
. 

By comparing the coefficients of 
!k

u k

, we obtain (16). 

As an example of equation (16), let us derive the following theorem: 

 

Theorem 8: Let 𝐴 be a invertible matrix in ℂ𝑟×𝑟  satisfying condition (1). Hermite 

matrix polynomials satisfy the following relation: 

     𝐻𝑛 𝑥, 𝐴 𝐻𝑛 𝑦, 𝐴 

∞

𝑘=0

 
𝑡𝑛

𝑛!
=   1 − 4𝑡2

 

 
 
−

1
2

exp 
2𝐴 (𝑥𝑦𝑡 − (𝑥2 +  𝑦2)𝑡2)ı

1 −  4𝑡2
 

ı

,    (17) 

where  𝑡 <
1

2
. 

 

Proof: By using (6) and (16), we have 

     𝐻𝑛 𝑥, 𝐴 𝐻𝑛 𝑦, 𝐴 

∞

𝑛=0

 
𝑡𝑛

𝑛!
=    

∞

𝑛=0

  
(−1)𝑘  𝑥 2𝐴  

 
 
𝑛−2𝑘

𝐻𝑛(𝑦, 𝐴)𝑡𝑛

𝑘! (𝑛 − 𝑘)!

 
𝑛
2
 

𝑘=0

ı

 

                      =    
𝐻𝑛+2𝑘 𝑦, 𝐴   𝑥 2𝐴  

 
 
𝑛

𝑛!ı

∞

𝑘=0

∞

𝑛=0

 
(−1)𝑘𝑡2𝑘

𝑘!
 

                                                 =   

∞

𝑛=0

exp 2 𝐴𝑥𝑦𝑡 − 2𝐴𝑥2𝑡2 𝑘 𝐻2𝑘 𝑦 − 2𝑥𝑡, 𝐴  
 
 
ı
(−1)𝑘 𝑡2

𝑘!
. 

Since 
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𝐻2𝑘 𝑦 − 2𝑥𝑡, 𝐴 =   

𝑘

𝑠=0

(−1)𝑠 2𝑘 !  𝑦 − 2𝑥𝑡 2𝑘−2𝑠  2𝐴  
 
 

2𝑘−2𝑠

𝑠!  2𝑘 − 2𝑠 !
, 

and  2𝑘 ! =  1 2𝑘 =  22𝑘𝑘!  
1

2
 
𝑘
, it follows that 

 𝐻𝑛 𝑥, 𝐴 𝐻𝑛 𝑦, 𝐴 

∞

𝑛=0

 
𝑡𝑛

𝑛!

= (1 − 4𝑡2)−
1
2exp  2Axyt − 2𝐴𝑥2𝑡2 exp  

−2𝐴𝑡2(𝑦 − 2𝑥𝑡)2ı

1 −  4𝑡2
 . 

Combining the exponential factors, we arrive at (17). 

 

Theorem 9: Let 𝐴 be a matrix in ℂ𝑟×𝑟  satisfying condition (1),   𝐴 <
1

 2
 and 𝑐 be a 

positive integer. Hermite matrix polynomials satisfy the following relation: 

 𝐹

∞

𝑛=0

  𝑛𝐼, 𝑐; −; 𝑦 𝐻𝑛 𝑥, 𝐴 
𝑡𝑛

𝑛!
= exp⁡(𝑥t 2A−𝑡2 )(𝐼 + 𝑥𝑦𝑡 2𝐴−2𝑦𝑡2)−𝑐  

× 𝐹  
𝑐𝐼

2
,
 𝑐 + 1 𝐼

2
;−;−4𝑦2𝑡2(𝐼 + 𝑥𝑦𝑡 2𝐴 − 2𝑦𝑡2)−2 . 

Proof: Applying equation (16) to  Proposition 5, we complete the proof. 

 

3. CONCLUSIONS 

 

In this paper, we carry the properties of classical scalar Hermite polynomials to the 

Hermite matrix polynomials. Equation (12) is the matrix analog of the Runge addition 

formula of the scalar Hermite polynomials. For the case 𝐴 =  2 1×1, the expression (13) 

concides with the formula which was proved by Feldheim for classical scalar Hermite 

polynomials. Also Proposition 5 is the matrix analogous of the Bateman’s generating 

relation for classical scalar Hermite polynomials given in [1]. Replacing t with 
𝑡

2
 in (17), 

we give another proof for the equation (41) in [14]. Theorem 9 is the matrix analog of 

the Brafman’s relation for classical scalar Hermite polynomials in [2]. 
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