

Mathematical and Computational Applications, Vol. 18, No. 3, pp. 301-312, 2013

CROPPED QUAD-TREE BASED SOLID OBJECT COLOURING WITH CUDA

Abdullah Çavuşoğlu
1
, Baha Şen

1,*
, Caner Özcan

2
 and Salih Görgünoğlu

2

1
Department of Computer Engineering, Yildirim Beyazit University, Ankara, Turkey

2
Department of Computer Engineering, Karabuk University, Karabuk, Turkey

bsen@ybu.edu.tr

Abstract-In this study, surfaces of solid objects are coloured with Cropped Quad-Tree

method utilizing GPU computing optimization. There are numerous methods used in

solid object colouring. When the studies carried out in different fields are taken into

consideration, it is seen that quad-tree method displays a prominent position in terms of

speed and performance. Cropped quad-tree is obtained as a result of the developments

seen with the frequent use of this method in the field of computer sciences. Two

different versions of algorithm which operate recursively on CPU and at the same time

which use GPU computing optimization are used in this study. Besides, OpenGL is used

for graphics drawing process. Within the setting of the study, results are obtained via

CPU and GPU’s, at first using Quad-Tree method and then Cropped Quad-Tree method.

It is observed that GPU computing is obviously faster than CPU computing and

Cropped Quad-Tree method produces rapid results compared to Quad-Tree method as a

result of performance. GPU computing method boosted approximately performance by

up to 20 times compared to only CPU usage; furthermore, cropped quad-tree method

boosted approximately performance of algorithm by up to 25 times on average

dependent on screen and object size.

Key Words-Graphics processors, Parallel processing, GPU-Computing, Cuda,

Computer Graphics, Object Rendering Techniques, Image Models

1. INTRODUCTION

Developments seen in the fields where computer technology has been used

require shorter durations of processing time on huge data sets for solving problems.

Design of the systems operating faster becomes obligatory as a result of rapid increase

in data sizes. Data processing speed of the systems becomes more important, whereas

shorter response period is expected due to the data processing speed. Solutions to

scientific problems, especially, to engineering problems are obtained by powerful

computers running in parallel.

In the recent years, parallel computing and its applications become widespread

in computer industry. Processing of data on graphics processing units (GPU) occurs as a

new technology besides the use of central processing units on data processing. Although

the studies carried out on GPU’s are not new, GPU’s are included in current computing

areas as a new field. GPU’s are generally optimized for computer graphics processes

which require rapid calculation such as computer games and images. Despite the fact

that the powers of high arithmetical calculations of GPU’s mark out for a brilliant

future, they include some limitations for programmers. They are almost used in every

desktop pc, laptop pc, game console and mobile devices as a standard part of them.

302 A. Çavuşoğlu, B. Şen, C. Özcan and S. Görgünoğlu

When compared to CPU, they have higher memory bandwidth and floating point [1].

Nvidia developed CUDA (Compute Unified Device Architecture) programming model

which enables software developers to use parallel computing by utilising C

programming language. CUDA programming model allows programmers to use multi-

threaded GPU’s effectively in parallelisation. This model enables thousands of threads

to run synchronously on GPU. Parallel computing is provided by the fine organization

of threads, blocks and grids [2,3]. CUDA eliminates all difficulties since it creates

parallelism manually. A program written with the support of CUDA is a series of a

program sequence called as kernel. GPU makes this kernel parallel by duplicating it in

requested numbers and running. Since CUDA is an extension of C programming

language, there is no need to change their architectures in order to generally direct

programs to CUDA library or make them multi-threaded [4].

There is not enough study on colouring solid objects with Cropped Quad-Tree

method utilising GPU computing. But there are many studies related to this topic. An

algorithm design was developed from a display of binary image series to generate a

quad-tree in a study. Algorithm was carried out only one process on every pixel in

image. In addition to this, when the tree-data structure is being generated, only

maximum size of nodes are generated and therefore temporary nodes are not needed.

Running duration of algorithm becomes equal to the numbers of pixels in the image [5].

In another study, representation of image with Quad-tree in deeper levels, in other

terms, gradually decreasing sub-divisions, was studied. Within the scope of the study,

an algorithm was given for superposing N quad trees in time proportional to the total

number of nodes in the trees. Warnock-type algorithms were then presented for building

the quad tree for the picture of the boundary of a polygon, and for colouring the interior

of such a polygon [6].

In another study, relational-linear Quad-Tree approach for two dimensional

spatial representation and manipulation was presented as a new approach. This approach

unifies relational database models and the advantages of hierarchical data structures.

Moreover, this approach offers flexible and powerful tools for spatial data structures

and manipulation. Another advantage of this approach is that the rules are obviously

clear and easily applicable [7]. An algorithm was presented for constructing a Quad-

Tree for a binary image given its row-by-row description. Within the study, the

algorithm processes the image one row at a time and merges identically coloured

children as soon as possible, so that Quad-Tree which is a minimal size exists after

processing the each pixel. According to the study, this method is superior to one which

reads in an entire array and then attempts to build the Quad-Tree [8]. In another study,

fast algorithm design operates on GPU for Quad-Tree structure was developed.

Three different implementations were realised for algorithm. These are

completely GPU based implementation, CPU based sequential implementation and

hybrid implementation. In hybrid implementation, first levels are constructed on CPU

before data transfer to GPU in order to perform the rest of the stages. At the end of the

study, it was seen that hybrid implementation provides better performance compared to

others on sufficiently large datasets [9]. In another study, key factors in design and

evaluation of image processing algorithms on the massive parallel graphics processing

units (GPUs) using the compute unified device architecture (CUDA) programming

model was studied. Within the settings of the study, a set of metrics especially

Cropped Quad-Tree Based Solid Object Colouring with Cuda 303

customized for image processing was proposed to quantitatively evaluate algorithm

characteristics. Besides, the algorithms were carefully selected from major domains of

image processing. It was seen that the speeds observed varies according to the

characteristics of the algorithms. Intensive analyses were conducted to show the

appropriateness of the proposed metrics in predicting the effectiveness of an application

for parallel implementation [10]. A novel algorithm is presented to solve dense linear

systems using CUDA. According to results of this study, GPU computation

approximately worked 3 times faster than the CPU computation. This implementation

provides significant performance improvement and can easily be used to solve dense

linear system [11]. An implementation is proposed for quad-tree based solid object

colouring using CUDA. The computation studies were evaluated for different solid

objects and a better performance was obtained with GPU computing. According to

results, GPU computation was 20 times faster than the CPU computation [12].

In this study, solid objects were coloured with Cropped Quad-Tree method

utilising GPU computing optimization. Although, there are many methods used for

colouring solid objects, when the studies carried out in different fields are taken into

consideration, it is seen that Quad-Tree method displays a prominent position in terms

of speed and performance. Within the setting of the study, results were obtained via

CPU and GPU’s, at first using Quad-Tree method and then Cropped Quad-Tree method.

It was observed that GPU computing is obviously faster than CPU computing and

Cropped Quad-Tree method produces rapid results compared to Quad-Tree method as a

result of performance results obtained from the use of two methods.

2. MATERIALS AND METHODS

Quad-Tree and Cropped Quad-Tree methods are implemented to present solid objects.

CPU and GPU computing is realized for comparisons of methods.

2.1. Presentation of Solid Objects by Using Cropped Quad-Tree Method

Quad-Tree is a tree data structure in which each internal node has four children.

It is a structure which is used to organise pixels in the processes performed on images

and computer graphics. Thousands, even millions of records can be stored within this

structure. Each leaf node should not be obliged to contain a record but more than half of

them should contain a record. Quad-Tree is a unique algorithm used in studies on

locating pixels in two-dimensional image. Images are divided into quad parts and each

quad is again divided into quads. They are generally classified according to data type

they represent such as area, point, line and curves. In our study, we used area Quad-Tree

structure which is appropriate for data type that should be represented. Partitioning of

two dimensional spaces, dividing of the specific region or divided sub-regions into four

equal quadrants can be represented with area Quad-Tree method. Each node in tree

structure has either four children or no children [13,14,15]. Cropped Quad-Tree method

is the enhanced version of Quad-Tree method. Here, the minimal screen part where the

object is located is determined instead of performing operations on the entire image.

Later, division operation is performed only within the window determined previously,

in this way, adscititious processes are avoided. Consequently, benefit is obtained in

algorithm in terms of speed dependent upon the size of the object on image. The

304 A. Çavuşoğlu, B. Şen, C. Özcan and S. Görgünoğlu

structure related to Cropped Quad-Tree structure that we used in the study is shown in

Figure 1. On the left, the minimal screen part which can be represented with the object

on image is selected and surrounded by the red dots. The representation of data structure

of Cropped Quad-Tree related to the object which was selected on the screen is given on

the right.

Figure 1. Data structure of cropped quad-tree

A Quad-Tree having a depth of N can be used to represent an image consisting

of 2nx2n pixels where each pixel value is equal to either 0 or 1. The entire object

located on image is represented by root node. If the pixels in any region are not

completely 0 or 1, relevant region is again divided. In this structure, each leaf node

should include a pixel block consisting of 0s or 1s. The division operation is carried out

until each leaf contains only one pixel. If the region consists of pixels having same

value, there is no need to divide the region again [16,17]. Application of Cropped

method besides Quad-Tree method provides computational easiness. Furthermore, it is

more advantageous to store only the region where the object is located in the image in

the memory. As a result, it can be said that images can dynamically be represented with

Cropped Quad-Tree method and this is more appropriate for image processes.

2.2. Gpu Computing and Cuda Programming Model

GPU’s have been used for general programming purposes in the recent years

and high speed performances have been obtained in many applications. The issue of

GPU programming has not been limited with only graphics and game applications;

moreover, it begins to attract the attentions of users from many different fields and also

it provides many opportunities for new applications besides providing high speed in

computations. GPU computational model is the use of a GPU in scientific and

engineering problems. GPU computation is, in other terms, to use CPU and GPU

together with in heterogeneous calculation model. Heterogeneous programming is based

on the idea of independently utilising CPU and GPU which are the primary main

processors of a PC according to the type of the application in order to obtain maximum

efficiency from the applications. Ordered part of the application is operated on CPU and

computationally predominantly computational part is operated on GPU. CPU gives the

best results in serial operations as a result of many parses and random memory access.

On the other hand, GPU is an expert in parallel processing with floating point

operations. Briefly, the best results in serial processes are obtained via CPU and the best

results in parallel processes are obtained via GPU. Heterogeneous programming is

Cropped Quad-Tree Based Solid Object Colouring with Cuda 305

related with the issue of utilising the appropriate processor for the appropriate process

[18,19,20].

GPU floating point performance has achieved TeraFlop levels in the recent years

with technological developments. Nvidia provides faster structure on GPU compared to

CPU besides floating point operations per seconds and performance increases on chip

bandwidths. GPU provides perfect computing power with its high parallelism and

multi-threaded structure and multi-core processor architecture. Products with higher

memory bandwidth have been developed by taking the demands of the users into

consideration. Maximum Flops values of CPU and GPU’s are given on left and memory

bandwidths of CPU and GPU’s are shown on the right in Figure2. Floating-point

operations amount per second accessed by GPU reach to higher values rapidly. For

instance, in single sensitivity computations, CPU processors can operate at maximum

475 GFLOPS level while Nvidia GeForce GTX 680 GPU processor operates at 3100

GFLOPS level. Similarly, in double sensitivity computations, CPU processors can

operate at maximum 240 GFLOPS level while Nvidia Tesla C2050 GPU processor

operates at 515 GFLOPS level. In the figure given, GPU bandwidth also displays higher

increase compared to bandwidth of CPU. As it can be seen from these values, GPU’s

are rather speedy processors. Therefore, GPU’s, which we selected for parallelisation,

make many parts of our algorithms composed of synchronously and benefit from the

advantages of high computation power of GPU. In this study, significant speed

acquisitions are obtained as a result of colouring designed objects with Cropped Quad-

Tree method.

(a) (b)

Figure 2. CPU and GPU comparisons (a) The maximum number of FLOPS with

CPU&GPU, (b) Memory bandwidth for the CPU&GPU from 2003 to 2012 [20].

NVIDIA makes necessary changes on GPU in order to be completely

programmable in scientific applications and added support for high level programming

languages such as C and C++ in order to allow users use the performance obtained in

various widespread platforms. This effort resulted in the development of CUDA

architecture for GPU. CUDA allows users to programme GPU with various high level

programming languages as software and hardware architecture. This parallel

programming model allows programmers to solve problems by dividing it into sub-

306 A. Çavuşoğlu, B. Şen, C. Özcan and S. Görgünoğlu

problems that can be solved independently in parallelization [18]. NVIDIA gives

support to users to programme GPU with C, C++, Fortran, OpenCL and

DirectCompute. We developed a new algorithm design using C++ programming

language in our study.

It is known that CUDA is used for calculation, data generation, and image

manipulation, on the other hand, OpenGL is used to draw pixels or vertices on the

screen. CUDA and OpenGL share data through common memory in the frame buffer.

OpenGL buffer, texture, and render buffer objects are the OpenGL resources that may

be mapped into the address space of CUDA. Sharing memory between CUDA and

OpenGL can be realized by the interoperability API, as a result the particle system can

be updated using CUDA, and can be rendered from the same memory using OpenGL

[20]. In our study the results are displayed using OpenGL graphic functions.

2.3. CPU and GPU Design of Cropped Quad-Tree Based Solid Object

Colouring

At first, the version of Cropped Quad-Tree algorithm operating on CPU was

developed in the study. Later, kernel function which will operate on GPU was designed

after the determination of parts which will be parallelised on algorithm. It is important

to determine the intersection points of object when the screen is divided and the

coordinates of the points. Furthermore, functions which will decide whether any

specified point is located within a known area or not should be defined. As a result of

the reasons mentioned above, the straight line denoted by xs, ys, xf and yf points also y

coordinate of the point intersected by the line of screen dividing line whose x coordinate

is known depicted in Figure3 are calculated by the formulae given in equation (1) and

(2).
𝑦𝑓 − 𝑦

𝑦𝑓 − 𝑦𝑠
=

𝑥𝑓 − 𝑥

𝑥𝑓 − 𝑥𝑠
 1

𝑦 = 𝑦𝑓 − 𝑥𝑓 − 𝑥 × (𝑦𝑓 − 𝑦𝑠)/(𝑥𝑓 − 𝑥𝑠) (2)

Figure 3. Graphic of function y.

Calculation of point y is performed as given in equation (1) for sample points

given in Figure3 by taking triangle resemblance into consideration. If the value y is left

alone in the equation, equation (2) is obtained. As a result of the use of this equation,

the value of coordinate y is found out. Line can be inclined toward either right or left.

Cropped Quad-Tree Based Solid Object Colouring with Cuda 307

The straight line denoted by xs, ys, xf and yf points also x coordinate of the

point intersected by the line of screen dividing line whose y coordinate is known

depicted in Figure4 are calculated. Calculation of point x is performed as given in

equation (3) by taking triangle resemblance into consideration. If the value x is left

alone in the equation, equation (4) is obtained. As a result of the use of this equation,

the value of coordinate x is found out.

𝑥𝑠 − 𝑥

𝑥𝑓 − 𝑥𝑠
=

𝑦 − 𝑦𝑠

𝑦𝑓 − 𝑦𝑠
 (3)

𝑥 = 𝑥𝑠 − 𝑥𝑓 − 𝑥𝑠 × (𝑦 − 𝑦𝑠)/(𝑦𝑓 − 𝑦𝑠) (4)

Figure 4. Graphic of function x.

A function should be written which checks whether point (xk, yk) is located

within the object or not by means of point (xk, yk) obtained as a result of the division of

the object by screen dividing lines in the sample rectangular object shown in Figure5

and points (sx, fx) and (sy, fy) obtained as a result of the intersection of the object by

the lines forming this point. According to this, if points (xk, yk) are within the object,

the function returns a true value, otherwise, the function returns a false value. If xk is

among sx and sy and yk is among sy and fy, the point is located within the triangle and

the function returns a true value.

Figure 5. Sample rectangular object.

308 A. Çavuşoğlu, B. Şen, C. Özcan and S. Görgünoğlu

The order of the points should be in the order given in Fig. 6 when performing

operations on the objects. Points which are in this order in normal circumstances change

their locations after 3D rotation. The order of these points should be rearranged. An

ordering function was designed for this order:

 At first, points are ordered according to y coordinate in a descending order.

 X coordinate of 0. should be lower than 1. Otherwise, points are shifted.

 X coordinate of 3. should be lower than 2. Otherwise, points are shifted.

Cropped Quad-Tree algorithm which was prepared provides benefits in terms of

speed by computing the minimal screen part where the object is located and by

performing the division operation only within the window determined instead of

colouring the object by dividing the entire screen; furthermore, it prevents performing

extra operations. The coordinates of the minimal rectangle which includes the shape are

found out in order to crop the shape. The steps of the algorithm of the function which

realises these operations are given below.

function CropImage{Takes Points as a Parameter}

Initialize Parameters

Set Minimum-Maximum X-Y Coordinates

Search for Min-Max X Coordinates for All Points

Search for Min-Max Y Coordinates for All Points

end function

After the crop process, screen dividing operations are initialised on the screen

cropped with Quad-Tree algorithm and the object is coloured. A sample screenshot is

given in Figure6.

Figure 6. Sample output screen of cropped quad-tree algorithm.

Necessary parallelisation operations are carried out on the functions used and

they are prepared to be able to operate on GPU after the design of the algorithm which

can operate on CPU. Kernel function which will operate on GPU is designed to cover

the program blocks which will operate parallel. Whether there is a vertex line within

each quadrant within algorithm is checked, the minimum and maximum values for each

quadrant and also the minimum and maximum values of vertex coordinates of the object

Cropped Quad-Tree Based Solid Object Colouring with Cuda 309

is compared with each other. Algorithm steps of the Kernel function which perform

these operations are given below.

functionKernel{Takes Points and CropQuads Arrays as a Parameter}

Initialize Parameters

Initialize Crop Object

Calculate sx and fx Points

Calculate sy and fy Points

Control Given Points

end function

After the design of the Kernel function which will operate on GPU,

CropQuadtree function which will operate in main function was prepared. Program

blocks operating on CPU and which cannot be parallelised were included within this

function. CUDA library which were included and necessary CUDA parameters were

defined within main function.

function CropQuadtree{Takes Points and CroppQuads Arrays as a Parameter}

Initialize Parameters

Create Cuda Event{start, stop}

Check Cuda Device Properties{myDevice}

Sort Points of Object{cropQuads}

Memory Allocation for GPU{dev_points, dev_cropQuads}

Start Timer{start}

Memory Copy From Cpu To Gpu{dev_points, points}

Memory Copy From Cpu To Gpu{dev_cropQuads, cropQuads}

Call Kernel Function{dev_points, dev_cropQuads}

Memory Copy From Gpu To Cpu{points, dev_points}

Memory Copy From Gpu To Cpu{CropQuads, dev_CropQuads}

Crate and Display Final Image

Stop Timer{stop}

Memory Deallocation for GPU{dev_points, dev_CropQuads}

end function

Before invoking Kernel function, the transfer of data which will be used within

this function was realised from CPU to GPU. After running Kernel function and

performing calculation operations, the transfer of data from CPU to GPU was realised.

After memory area allocated on GPU, data related to object were displayed in screen via

OpenGL libraries.

310 A. Çavuşoğlu, B. Şen, C. Özcan and S. Görgünoğlu

3. RESULT AND CONCLUSIONS

At first the working times of CPU and then the working times of GPU were

calculated utilising surfaces in different numbers prepared for Cropped Quad-Tree

method. Working performances were obtained for surface numbers vary between 10 and

100 by utilising two different GPU display adapters (Gtx560ti and Quadro2000) on the

same CPU. At the end of the comparison of working times, it was seen that Cropped

Quad-Tree method displays a better performance compared to Quad-Tree method. This

performance increase changes dependent upon the area covered by the objects on

image. Our study reveals that solid objects can be coloured with Cropped Quad-Tree

method in a faster manner. The results obtained at the end of the study and comparisons

between performances are given in Table 1.

Table 1. CPU and GPUs working times of quad-tree and cropped quad-tree based solid

object colouring method
of

Surface

Quad-tree

CpuAv.

(msec)

Cropped

quad-tree

CpuAv.(msec)

Quad-tree

Gpu1Av.

(msec)

Cropped

quad-tree

Gpu1Av.

(msec)

Quad-tree

Gpu2Av.

(msec)

Cropped

quad-tree

Gpu2Av.

(msec)

10 343 177 20 17 20 17

20 640 307 23 20 24 21

30 962 457 25 22 26 23

40 1253 582 30 26 32 28

50 1560 743 37 32 40 34

60 1861 884 39 34 42 36

70 2153 1019 40 34 43 37

80 2454 1154 41 35 46 37

90 2751 1273 41 35 46 38

100 3047 1404 42 35 48 39

(Gpu1: Nvidia Gtx560ti, Gpu2: Nvidia Quadro2000)

As shown in the table, the first column shows the number of different surfaces

used in the study. Second and third columns show the average measurement results

obtained as a result of the quad-tree and cropped quad-tree algorithm running on the

CPU. The average measurement results of the quad-tree and cropped quad-tree obtained

from Gtx560ti are shown in the fourth and fifth column respectively. The average

measurement results of the quad-tree and cropped quad-tree obtained from Quadro2000

are shown in the sixth and seventh column respectively.

As shown in the table, the first column shows the number of different surfaces

used in the study. Second column shows CPU performances of quad-tree and cropped

quad-tree. Third and fourth columns show GPUs performances of quad-tree and

cropped quad-tree, respectively. Cropped quad-tree performance obtained from both

GPUs are shown in the fifth and sixth and seventh columns.These results also showed

that GPU computing has a significant performance on the colouring cropped quad-tree

based solid objects.

Cropped Quad-Tree Based Solid Object Colouring with Cuda 311

Table 2. CPU and GPUs performance of quad-tree and cropped quad-tree based solid

object colouring method
of

Surface

Quad-tree vs.

Cropped quad-

tree

Cpu

Performance

Quad-tree vs.

Cropped quad-

tree

Gpu1

Performance

Quad-tree vs.

Cropped quad-

tree

Gpu2

Performance

Cropeed quad-

tree

Cpu vs. Gpu1

Performance

Cropped quad-

tree

Cpu vs. Gpu2

Performance

10 1,9x 1,2x 1,2x 10x 10x

20 2,1x 1,2x 1,1x 15x 15x

30 2,1x 1,1x 1,1x 21x 20x

40 2,2x 1,2x 1,1x 22x 21x

50 2,1x 1,2x 1,2x 23x 22x

60 2,1x 1,1x 1,2x 26x 25x

70 2,1x 1,2x 1,2x 30x 28x

80 2,1x 1,2x 1,2x 33x 31x

90 2,2x 1,2x 1,2x 36x 34x

100 2,2x 1,2x 1,2x 40x 36x

(Gpu1: Nvidia Gtx560ti, Gpu2: Nvidia Quadro2000)

In addition, graphical representation of performance of CPU and GPUs with

cropped quad-tree algorithm is given in Figure7.

Figure 7. Performance of CPU and GPUs with cropped quad-tree algorithm

As a result, we propose an implementation for cropped quad-tree based solid

object colouring using CUDA. We have tried our study on different systems that have

different GPUs and CPUs. The computation studies were also evaluated for different

solid objects. When we compared the results obtained from both systems, a better

performance was obtained with GPU computing.

4. REFERENCES

1. J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-Purpose

GPU Programming, Addison-Wesley, 2011.

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

Ti
m

e
 (

m
ili

se
co

n
d

s)

Number of Surface

Cropped quad-tree
Cpu Av.(msec)

Cropped quad-tree
Gtx560ti Av. (msec)

Quad-tree Cpu
Av. (msec)

312 A. Çavuşoğlu, B. Şen, C. Özcan and S. Görgünoğlu

2. M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E.

Phillips, Y. Zhang and V. Volkov, Parallel computing experiences with CUDA, IEEE

Micro 28 (4), 13-27, 2008.

3. Z. Yang, Y. Zhu and Y. Pu, Parallel Image Processing Based on CUDA, Proceedings

of the 2008 International Conference on Computer Science and Software Engineering,

198-201, 2008.

4. M. Akçay, B. Şen, İ. M. Orak andA. Çelik, Paralel Hesaplama ve CUDA, 6.

International Advanced Technologies Symposium, 2011.

5. H. Samet, Region representation: quad-trees from binary arrays, Computer Graphics

& Image Processing 13 (1), 88-93, 1980.

6. G. M. Hunter and K. Steiglitz, Operations on images using quad trees, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 145-153, 1979.

7. F. Wang, Relational-Linear Quad-tree Approach for Two-Dimensional Spatial

Representation and Manipulation, IEEE Transactions on Knowledge and Data

Engineering 3 (1), 118-122, 1991.

8. H. Samet, An algorithm for converting rasters to quadtrees, IEEE Trans. Pattern

Analysis and Machine Intelligence 3(1), 93-95, 1981.

9. M. Kelly andA. Breslow, Quad-tree Construction on the GPU: A Hybrid CPU-GPU

Approach, Retrieved September 13, 2012 from the World Wide

Web:http://www.sccs.swarthmore.edu/users/10/mkelly1/quad-trees.pdf.

10. I. K. Park, N. Singhal, M. H. Lee,S. Cho and C.W. Kim, Design and Performance

Evaluation of Image Processing Algorithms on GPUs, IEEE Transactions on Parallel

and Distributed Systems 22 (1), 91-104, 2011.

11. C. Özcan and B. Şen, Investigation of the performance of LU decomposition

method using CUDA, World Conference on Innovation and Computer

SciencesProcedia Technology 1, 50–54, 2011.

12. B. Şen, C. Özcan and N. A. Atasoy, An Implementation for Quad-Tree Based Solid

Object Coloring Using CUDA, AWER Procedia Information Technology and Computer

Science 1, 2012.

13. R. A. Finkel and J. L. Bentley, Quad Trees: A data Structure for Retrieval on

Composite Keys, Acta Informatica 4 (1), 1-9, 1974.

14. R. Sinha, S. Samaddar, D. Bhattacharyya and T.Kim, A Tutorial on Spatial Data

Handling, International Journal of Database Theory and Application 3(1), 2010.

15. H. Samet, The Quadtree and Related Hierarchical Data Structures, ACM Computing

Surveys 16(2), 187-260, 1984.

16. Quad-tree, Retrieved September 5, 2012 from the World Wide Web:

http://en.wikipedia.org/wiki/Quadtree

17. G. J. Sullivan and R. L. Baker, Efficient quad-tree coding of images and video,

IEEE Trans. on Image Processing 3, 327-331, 1994.

18. NVIDIA CUDA C Programming Guide, Version 4.0 available as

http://developer.nvidia.com/nvidia-gpu-computing-documentation.

19. J. Nickolls and W.J. Dally, The GPU computing era, IEEE Micro 30, 56-69, 2010.

20. NVIDIA CUDA, Retrieved October 23, 2012 from the World Wide Web:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

http://en.wikipedia.org/wiki/%20Quadtree
http://developer.nvidia.com/nvidia-gpu-computing-documentation

